示例#1
0
nz = 256

# Physical domain
zmin = -56e-06
zmax = 12e-06

# Domain decomposition
max_grid_size = 64
blocking_factor = 32

# Create grid
grid = picmi.Cartesian1DGrid(number_of_cells=[nz],
                             lower_bound=[zmin],
                             upper_bound=[zmax],
                             lower_boundary_conditions=['dirichlet'],
                             upper_boundary_conditions=['dirichlet'],
                             lower_boundary_conditions_particles=['absorbing'],
                             upper_boundary_conditions_particles=['absorbing'],
                             moving_window_velocity=[c],
                             warpx_max_grid_size=max_grid_size,
                             warpx_blocking_factor=blocking_factor)

# Particles: plasma electrons
plasma_density = 2e23
plasma_xmin = None
plasma_ymin = None
plasma_zmin = 10e-06
plasma_xmax = None
plasma_ymax = None
plasma_zmax = None
uniform_distribution = picmi.UniformDistribution(
    density=plasma_density,
示例#2
0
    def setup_run(self):
        """Setup simulation components."""

        #######################################################################
        # Set geometry and boundary conditions                                #
        #######################################################################

        self.grid = picmi.Cartesian1DGrid(
            number_of_cells=[self.nz],
            warpx_max_grid_size=128,
            lower_bound=[0],
            upper_bound=[self.gap],
            lower_boundary_conditions=['dirichlet'],
            upper_boundary_conditions=['dirichlet'],
            lower_boundary_conditions_particles=['absorbing'],
            upper_boundary_conditions_particles=['absorbing'],
            warpx_potential_hi_z=self.voltage,
        )

        #######################################################################
        # Field solver                                                        #
        #######################################################################

        self.solver = picmi.ElectrostaticSolver(grid=self.grid,
                                                method='Multigrid',
                                                required_precision=1e-12,
                                                warpx_self_fields_verbosity=0)

        #######################################################################
        # Particle types setup                                                #
        #######################################################################

        self.electrons = picmi.Species(
            particle_type='electron',
            name='electrons',
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.elec_temp / constants.m_e)
                ] * 3,
            ))
        self.ions = picmi.Species(
            particle_type='He',
            name='he_ions',
            charge='q_e',
            mass=self.m_ion,
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.gas_temp / self.m_ion)
                ] * 3,
            ))

        #######################################################################
        # Collision  initialization                                           #
        #######################################################################

        cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
        mcc_electrons = picmi.MCCCollisions(
            name='coll_elec',
            species=self.electrons,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            background_mass=self.ions.mass,
            scattering_processes={
                'elastic': {
                    'cross_section':
                    cross_sec_direc + 'electron_scattering.dat'
                },
                'excitation1': {
                    'cross_section': cross_sec_direc + 'excitation_1.dat',
                    'energy': 19.82
                },
                'excitation2': {
                    'cross_section': cross_sec_direc + 'excitation_2.dat',
                    'energy': 20.61
                },
                'ionization': {
                    'cross_section': cross_sec_direc + 'ionization.dat',
                    'energy': 24.55,
                    'species': self.ions
                },
            })

        mcc_ions = picmi.MCCCollisions(
            name='coll_ion',
            species=self.ions,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            scattering_processes={
                'elastic': {
                    'cross_section': cross_sec_direc + 'ion_scattering.dat'
                },
                'back': {
                    'cross_section': cross_sec_direc + 'ion_back_scatter.dat'
                },
                # 'charge_exchange' : {
                #    'cross_section' : cross_sec_direc+'charge_exchange.dat'
                # }
            })

        #######################################################################
        # Initialize simulation                                               #
        #######################################################################

        self.sim = picmi.Simulation(
            solver=self.solver,
            time_step_size=self.dt,
            max_steps=self.max_steps,
            warpx_collisions=[mcc_electrons, mcc_ions],
            warpx_load_balance_intervals=self.max_steps // 5000,
            verbose=self.test)

        self.sim.add_species(self.electrons,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))
        self.sim.add_species(self.ions,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))

        #######################################################################
        # Add diagnostics for the CI test to be happy                         #
        #######################################################################

        field_diag = picmi.FieldDiagnostic(
            name='diag1',
            grid=self.grid,
            period=0,
            data_list=['rho_electrons', 'rho_he_ions'],
            write_dir='.',
            warpx_file_prefix='Python_background_mcc_1d_plt')
        self.sim.add_diagnostic(field_diag)