示例#1
0
nx = 64
ny = 64

xmin = -20.e-6
ymin = -20.e-6
xmax = +20.e-6
ymax = +20.e-6

uniform_plasma = picmi.UniformDistribution(
    density=1.e25,
    upper_bound=[0., None, None],
    directed_velocity=[0.1 * constants.c, 0., 0.])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma)

grid = picmi.Cartesian2DGrid(
    number_of_cells=[nx, ny],
    lower_bound=[xmin, ymin],
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
示例#2
0
uniform_plasma_elec = picmi.UniformDistribution(
    density = PLASMA_DENSITY,
    upper_bound = [None] * 3,
    rms_velocity = [v_rms_elec] * 3,
    directed_velocity = [0.] * 3
)

uniform_plasma_ion = picmi.UniformDistribution(
    density = PLASMA_DENSITY,
    upper_bound = [None] * 3,
    rms_velocity = [v_rms_ion] * 3,
    directed_velocity = [0.] * 3
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec
)
ions = picmi.Species(
    particle_type='He', name='he_ions',
    charge='q_e',
    initial_distribution=uniform_plasma_ion
)

# MCC collisions
cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
mcc_electrons = picmi.MCCCollisions(
    name='coll_elec',
    species=electrons,
    background_density=N_INERT,
    background_temperature=T_INERT,
    background_mass=ions.mass,
solver = picmi.ElectromagneticSolver(grid=grid, cfl=1)

beam_distribution = picmi.UniformDistribution(
    density=1.e23,
    lower_bound=[-20.e-6, -20.e-6, -150.e-6],
    upper_bound=[+20.e-6, +20.e-6, -100.e-6],
    directed_velocity=[0., 0., 1.e9])

plasma_distribution = picmi.UniformDistribution(
    density=1.e22,
    lower_bound=[-200.e-6, -200.e-6, 0.],
    upper_bound=[+200.e-6, +200.e-6, None],
    fill_in=True)

beam = picmi.Species(particle_type='electron',
                     name='beam',
                     initial_distribution=beam_distribution)
plasma = picmi.Species(particle_type='electron',
                       name='plasma',
                       initial_distribution=plasma_distribution)

sim = picmi.Simulation(solver=solver,
                       max_steps=1000,
                       verbose=1,
                       warpx_plot_int=2,
                       warpx_current_deposition_algo=3,
                       warpx_charge_deposition_algo=0,
                       warpx_field_gathering_algo=0,
                       warpx_particle_pusher_algo=0)

sim.add_species(beam,
示例#4
0
############ PLASMA #############
#################################

elec_dist = picmi.UniformDistribution(
    density=plasma_density,
    rms_velocity=[elec_rms_velocity] * 3,
    directed_velocity=[elec_rms_velocity, 0., 0.])

ion_dist = picmi.UniformDistribution(
    density=plasma_density,
    rms_velocity=[ion_rms_velocity] * 3,
)

electrons = picmi.Species(
    particle_type='electron',
    name='electron',
    warpx_do_not_deposit=1,
    initial_distribution=elec_dist,
)
ions = picmi.Species(particle_type='H',
                     name='ion',
                     charge='q_e',
                     mass="5*m_e",
                     warpx_do_not_deposit=1,
                     initial_distribution=ion_dist)

#################################
########## COLLISIONS ###########
#################################

collision1 = picmi.CoulombCollisions(name='collisions1',
                                     species=[electrons, ions],
示例#5
0
##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density=1e23,  # number of electrons per m^3
    lower_bound=[-1e-5, -1e-5, -149e-6],
    upper_bound=[1e-5, 1e-5, -129e-6],
    directed_velocity=[0., 0., 2000. * picmi.constants.c
                       ]  # uth the std of the (unitless) momentum
)

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma_elec,
                          warpx_save_particles_at_xhi=1,
                          warpx_save_particles_at_eb=1)

##########################
# numerics components
##########################

grid = picmi.Cartesian3DGrid(
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['none', 'none', 'none'],
    upper_boundary_conditions=['none', 'none', 'none'],
    lower_boundary_conditions_particles=['open', 'open', 'open'],
    upper_boundary_conditions_particles=['open', 'open', 'open'],
示例#6
0
    grid=grid, cfl=1., stencil_order=[em_order, em_order, em_order])

electron_beam = picmi.GaussianBunchDistribution(
    n_physical_particles=total_charge / constants.q_e,
    rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size],
    velocity_divergence=[
        electron_beam_divergence, electron_beam_divergence,
        electron_beam_divergence
    ])

proton_beam = picmi.GaussianBunchDistribution(
    n_physical_particles=total_charge / constants.q_e,
    rms_bunch_size=[beam_rms_size, beam_rms_size, beam_rms_size])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=electron_beam)
protons = picmi.Species(particle_type='proton',
                        name='protons',
                        initial_distribution=proton_beam)

field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=args.fields_to_plot,
    warpx_format=args.diagformat,
    write_dir='.',
    warpx_file_prefix='Python_gaussian_beam_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
示例#7
0
    upper_boundary_conditions_particles=[
        'absorbing', 'absorbing', 'absorbing'
    ])

# Particles
vel_z = 0.5 * c
multiparticles_distribution = picmi.ParticleListDistribution(x=[0.05, 0.],
                                                             y=[0., 0.04],
                                                             z=[0.05, 0.05],
                                                             ux=[0., 0.],
                                                             uy=[0., 0.],
                                                             uz=[vel_z, vel_z],
                                                             weight=[1., 1.])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=multiparticles_distribution)

# Plasma lenses
plasma_lenses = picmi.PlasmaLens(
    period=0.5,
    starts=[0.1, 0.11, 0.12, 0.13],
    lengths=[0.1, 0.11, 0.12, 0.13],
    strengths_E=[600000., 800000., 600000., 200000.],
    strengths_B=[0.0, 0.0, 0.0, 0.0])

# Electromagnetic solver
solver = picmi.ElectromagneticSolver(grid=grid, method='Yee', cfl=0.7)

# Diagnostics
part_diag1 = picmi.ParticleDiagnostic(
示例#8
0
    upper_boundary_conditions_particles = ['absorbing', 'periodic'],
    moving_window_velocity = None,
    warpx_max_grid_size = 32
)

solver = picmi.ElectrostaticSolver(
    grid=grid, method='Multigrid', required_precision=1e-6,
    warpx_self_fields_verbosity=0
)

##########################
# physics components
##########################

electrons = picmi.Species(
    particle_type='electron', name='electrons'
)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = 10,
    data_list = ['phi'],
    write_dir = '.',
    warpx_file_prefix = f'Python_particle_attr_access_plt_{color}'
)
示例#9
0
# Particles: plasma electrons
plasma_density = 2e23
plasma_xmin = -20e-06
plasma_ymin = None
plasma_zmin = 10e-06
plasma_xmax = 20e-06
plasma_ymax = None
plasma_zmax = None
uniform_distribution = picmi.UniformDistribution(
    density=plasma_density,
    lower_bound=[plasma_xmin, plasma_ymin, plasma_zmin],
    upper_bound=[plasma_xmax, plasma_ymax, plasma_zmax],
    fill_in=True)
electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_distribution)

# Particles: beam electrons
q_tot = 1e-12
x_m = 0.
y_m = 0.
z_m = -28e-06
x_rms = 0.5e-06
y_rms = 0.5e-06
z_rms = 0.5e-06
ux_m = 0.
uy_m = 0.
uz_m = 500.
ux_th = 2.
uy_th = 2.
示例#10
0
##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density = 1e15, # number of electrons per m^3
    lower_bound = [-1e-5, -1e-5, -125e-6],
    upper_bound = [1e-5, 1e-5, -120e-6],
    directed_velocity = [0., 0., 5e6] # uth the std of the (unitless) momentum
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec,
    warpx_save_particles_at_zhi=1,
    warpx_save_particles_at_zlo=1,
    warpx_reflection_model_zhi="0.5"
)

##########################
# diagnostics
##########################

field_diag = picmi.ParticleDiagnostic(
    species=electrons,
    name = 'diag1',
    data_list=['previous_positions'],
    period = 10,
    write_dir = '.',
    warpx_file_prefix = 'Python_particle_reflection_plt'
)

##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density = 1e15,
    upper_bound = [None] * 3,
    rms_velocity = [np.sqrt(constants.kb * 1e3 / constants.m_e)] * 3,
    directed_velocity = [0.] * 3
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec,
    warpx_save_previous_position=True
)

##########################
# diagnostics
##########################

field_diag = picmi.ParticleDiagnostic(
    species=electrons,
    name = 'diag1',
    data_list=['previous_positions'],
    period = 10,
    write_dir = '.',
    warpx_file_prefix = 'Python_prev_positions_plt'
)
示例#12
0
    def setup_run(self):
        """Setup simulation components."""

        #######################################################################
        # Set geometry and boundary conditions                                #
        #######################################################################

        self.grid = picmi.Cartesian1DGrid(
            number_of_cells=[self.nz],
            warpx_max_grid_size=128,
            lower_bound=[0],
            upper_bound=[self.gap],
            lower_boundary_conditions=['dirichlet'],
            upper_boundary_conditions=['dirichlet'],
            lower_boundary_conditions_particles=['absorbing'],
            upper_boundary_conditions_particles=['absorbing'],
            warpx_potential_hi_z=self.voltage,
        )

        #######################################################################
        # Field solver                                                        #
        #######################################################################

        self.solver = picmi.ElectrostaticSolver(grid=self.grid,
                                                method='Multigrid',
                                                required_precision=1e-12,
                                                warpx_self_fields_verbosity=0)

        #######################################################################
        # Particle types setup                                                #
        #######################################################################

        self.electrons = picmi.Species(
            particle_type='electron',
            name='electrons',
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.elec_temp / constants.m_e)
                ] * 3,
            ))
        self.ions = picmi.Species(
            particle_type='He',
            name='he_ions',
            charge='q_e',
            mass=self.m_ion,
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.gas_temp / self.m_ion)
                ] * 3,
            ))

        #######################################################################
        # Collision  initialization                                           #
        #######################################################################

        cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
        mcc_electrons = picmi.MCCCollisions(
            name='coll_elec',
            species=self.electrons,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            background_mass=self.ions.mass,
            scattering_processes={
                'elastic': {
                    'cross_section':
                    cross_sec_direc + 'electron_scattering.dat'
                },
                'excitation1': {
                    'cross_section': cross_sec_direc + 'excitation_1.dat',
                    'energy': 19.82
                },
                'excitation2': {
                    'cross_section': cross_sec_direc + 'excitation_2.dat',
                    'energy': 20.61
                },
                'ionization': {
                    'cross_section': cross_sec_direc + 'ionization.dat',
                    'energy': 24.55,
                    'species': self.ions
                },
            })

        mcc_ions = picmi.MCCCollisions(
            name='coll_ion',
            species=self.ions,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            scattering_processes={
                'elastic': {
                    'cross_section': cross_sec_direc + 'ion_scattering.dat'
                },
                'back': {
                    'cross_section': cross_sec_direc + 'ion_back_scatter.dat'
                },
                # 'charge_exchange' : {
                #    'cross_section' : cross_sec_direc+'charge_exchange.dat'
                # }
            })

        #######################################################################
        # Initialize simulation                                               #
        #######################################################################

        self.sim = picmi.Simulation(
            solver=self.solver,
            time_step_size=self.dt,
            max_steps=self.max_steps,
            warpx_collisions=[mcc_electrons, mcc_ions],
            warpx_load_balance_intervals=self.max_steps // 5000,
            verbose=self.test)

        self.sim.add_species(self.electrons,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))
        self.sim.add_species(self.ions,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))

        #######################################################################
        # Add diagnostics for the CI test to be happy                         #
        #######################################################################

        field_diag = picmi.FieldDiagnostic(
            name='diag1',
            grid=self.grid,
            period=0,
            data_list=['rho_electrons', 'rho_he_ions'],
            write_dir='.',
            warpx_file_prefix='Python_background_mcc_1d_plt')
        self.sim.add_diagnostic(field_diag)