示例#1
0
    def test_with_nonstorage_load(self, model):
        """Test load from dict with 'storage_node' key."""
        m = model
        s = m.nodes["Storage"]
        l = Link(m, "Link")
        # Connect the link node to the network to create a valid model
        o = m.nodes["Output"]
        s.connect(l)
        l.connect(o)

        data = {
            "type": "controlcurve",
            "control_curve": 0.8,
            "values": [10.0, 0.0],
            "storage_node": "Storage",
        }

        l.cost = p = load_parameter(model, data)
        assert isinstance(p, ControlCurveParameter)

        @assert_rec(m, l.cost)
        def expected_func(timestep, scenario_index):
            v = s.initial_volume
            if v >= 80.0:
                expected = 10.0
            else:
                expected = 0.0
            return expected

        for initial_volume in (90, 70):
            s.initial_volume = initial_volume
            m.run()
示例#2
0
    def test_with_nonstorage(self, model):
        """Test usage on non-`Storage` node."""
        # Now test if the parameter is used on a non storage node
        m = model
        s = m.nodes["Storage"]

        l = Link(m, "Link")
        # Connect the link node to the network to create a valid model
        o = m.nodes["Output"]
        s.connect(l)
        l.connect(o)

        cc = ConstantParameter(model, 0.8)
        l.cost = ControlCurveParameter(model, s, cc, [10.0, 0.0])

        @assert_rec(m, l.cost)
        def expected_func(timestep, scenario_index):
            v = s.initial_volume
            if v >= 80.0:
                expected = 10.0
            else:
                expected = 0.0
            return expected

        for initial_volume in (90, 70):
            s.initial_volume = initial_volume
            m.run()
示例#3
0
def create_model():
    # create a model
    model = Model(start="2016-01-01", end="2019-12-31", timestep=7)

    # create three nodes (an input, a link, and an output)
    A = Input(model, name="A", max_flow=10.0)
    B = Link(model, name="B", cost=1.0)
    C = Output(model, name="C", max_flow=5.0, cost=-2.0)

    # connect nodes
    A.connect(B)
    B.connect(C)

    return model
示例#4
0
def simple_linear_model(request, solver):
    """
    Make a simple model with a single Input and Output.

    Input -> Link -> Output

    """
    model = Model(solver=solver)
    inpt = Input(model, name="Input")
    lnk = Link(model, name="Link", cost=1.0)
    inpt.connect(lnk)
    otpt = Output(model, name="Output")
    lnk.connect(otpt)

    return model
示例#5
0
def create_model(harmonic=True):
    # import flow timeseries for catchments
    flow = pd.read_csv(os.path.join('data', 'thames_stochastic_flow.gz'))

    flow['Date'] = flow['Date'].apply(pd.to_datetime)
    flow.set_index('Date', inplace=True)
    # resample input to weekly average
    flow = flow.resample('7D', how='mean')

    model = InspyredOptimisationModel(
        solver='glpk',
        start=flow.index[0],
        end=flow.index[365*10],  # roughly 10 years
        timestep=datetime.timedelta(7),  # weekly time-step
    )

    flow_parameter = ArrayIndexedParameter(model, flow['flow'].values)

    catchment1 = Input(model, 'catchment1', min_flow=flow_parameter, max_flow=flow_parameter)
    catchment2 = Input(model, 'catchment2', min_flow=flow_parameter, max_flow=flow_parameter)

    reservoir1 = Storage(model, 'reservoir1', min_volume=3000, max_volume=20000, initial_volume=16000)
    reservoir2 = Storage(model, 'reservoir2', min_volume=3000, max_volume=20000, initial_volume=16000)

    if harmonic:
        control_curve = AnnualHarmonicSeriesParameter(model, 0.5, [0.5], [0.0], mean_upper_bounds=1.0, amplitude_upper_bounds=1.0)
    else:
        control_curve = MonthlyProfileParameter(model, np.array([0.0]*12), lower_bounds=0.0, upper_bounds=1.0)

    control_curve.is_variable = True
    controller = ControlCurveParameter(model, reservoir1, control_curve, [0.0, 10.0])
    transfer = Link(model, 'transfer', max_flow=controller, cost=-500)

    demand1 = Output(model, 'demand1', max_flow=45.0, cost=-101)
    demand2 = Output(model, 'demand2', max_flow=20.0, cost=-100)

    river1 = Link(model, 'river1')
    river2 = Link(model, 'river2')

    # compensation flows from reservoirs
    compensation1 = Link(model, 'compensation1', max_flow=5.0, cost=-9999)
    compensation2 = Link(model, 'compensation2', max_flow=5.0, cost=-9998)

    terminator = Output(model, 'terminator', cost=1.0)

    catchment1.connect(reservoir1)
    catchment2.connect(reservoir2)
    reservoir1.connect(demand1)
    reservoir2.connect(demand2)
    reservoir2.connect(transfer)
    transfer.connect(reservoir1)
    reservoir1.connect(river1)
    reservoir2.connect(river2)
    river1.connect(terminator)
    river2.connect(terminator)

    reservoir1.connect(compensation1)
    reservoir2.connect(compensation2)
    compensation1.connect(terminator)
    compensation2.connect(terminator)

    r1 = TotalDeficitNodeRecorder(model, demand1)
    r2 = TotalDeficitNodeRecorder(model, demand2)
    r3 = AggregatedRecorder(model, [r1, r2], agg_func="mean")
    r3.is_objective = 'minimise'
    r4 = TotalFlowNodeRecorder(model, transfer)
    r4.is_objective = 'minimise'

    return model