def denoise(nblck,filename,mode='sym', wv='sym5' ):
    from statsmodels.robust import mad
    #noisy_coefs = pywt.wavedec(nblck, 'sym5', level=5, mode='per')
    noisy_coefs = pywt.wavedec(nblck, wavelet=wv,   mode=mode) #level=5,  #dwt is for single level decomposition; wavedecoding is for more levels
    sigma = mad(noisy_coefs[-1])
    #uthresh=np.std(ca)/2
    uthresh = sigma*np.sqrt(2*np.log(len(nblck)))
    denoised = noisy_coefs[:]
    denoised[1:] = [pywt.threshold(i, value=uthresh,mode='soft') for i in denoised[1:]]
    signal = pywt.waverec(denoised, wavelet=wv, mode=mode)
    from matplotlib import pyplot as plt
    fig, axes = plt.subplots(1, 2, sharey=True, sharex=True,figsize=(8,4))
    ax1, ax2 = axes
    
    ax1.plot(signal)
    #ax1.set_xlim(0,2**10)
    ax1.set_title("Recovered Signal")
    ax1.margins(.1)
    
    ax2.plot(nblck)
    ax2.set_title("Noisy Signal")
    
    for ax in fig.axes:
        ax.tick_params(labelbottom=False, top=False, bottom=False, left=False,       right=False)
    fig.tight_layout()
    fig.savefig(filename+'_'+wv+'.pdf')
    plt.clf()
    return signal
示例#2
1
def _wavelet_threshold(img, wavelet, threshold=None, sigma=None, mode='soft'):
    """Performs wavelet denoising.

    Parameters
    ----------
    img : ndarray (2d or 3d) of ints, uints or floats
        Input data to be denoised. `img` can be of any numeric type,
        but it is cast into an ndarray of floats for the computation
        of the denoised image.
    wavelet : string
        The type of wavelet to perform. Can be any of the options
        pywt.wavelist outputs. For example, this may be any of ``{db1, db2,
        db3, db4, haar}``.
    sigma : float, optional
        The standard deviation of the noise. The noise is estimated when sigma
        is None (the default) by the method in [2]_.
    threshold : float, optional
        The thresholding value. All wavelet coefficients less than this value
        are set to 0. The default value (None) uses the SureShrink method found
        in [1]_ to remove noise.
    mode : {'soft', 'hard'}, optional
        An optional argument to choose the type of denoising performed. It
        noted that choosing soft thresholding given additive noise finds the
        best approximation of the original image.

    Returns
    -------
    out : ndarray
        Denoised image.

    References
    ----------
    .. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
           thresholding for image denoising and compression." Image Processing,
           IEEE Transactions on 9.9 (2000): 1532-1546.
           DOI: 10.1109/83.862633
    .. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
           by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
           DOI: 10.1093/biomet/81.3.425

    """
    coeffs = pywt.wavedecn(img, wavelet=wavelet)
    detail_coeffs = coeffs[-1]['d' * img.ndim]

    if sigma is None:
        # Estimates via the noise via method in [2]
        sigma = np.median(np.abs(detail_coeffs)) / 0.67448975019608171

    if threshold is None:
        # The BayesShrink threshold from [1]_ in docstring
        threshold = sigma**2 / np.sqrt(max(img.var() - sigma**2, 0))

    denoised_detail = [{key: pywt.threshold(level[key], value=threshold,
                       mode=mode) for key in level} for level in coeffs[1:]]
    denoised_root = pywt.threshold(coeffs[0], value=threshold, mode=mode)
    denoised_coeffs = [denoised_root] + [d for d in denoised_detail]
    return pywt.waverecn(denoised_coeffs, wavelet)
示例#3
0
    def denoise(self, series, configs):
        #perform normalization
        normalized = (series - series.mean()) / (series.max() - series.min())

        #WaveShrink
        cA, cD = pywt.dwt(normalized,
                          configs['preprocessing']['denoise']['wavelet'])
        #threshold selection
        thr = np.std(normalized) / 23
        cA_shrinked = pywt.threshold(
            cA, thr, mode=configs['preprocessing']['denoise']['thr_mode'])
        cD_shrinked = pywt.threshold(
            cD, thr, mode=configs['preprocessing']['denoise']['thr_mode'])
        #reconstructs data from the given shrinked coefficients
        denoised = pywt.idwt(cA_shrinked, cD_shrinked,
                             configs['preprocessing']['denoise']['wavelet'])

        if len(denoised) > len(normalized):
            denoised = denoised[:-1]

        # what???!!!
        if len(denoised.shape) > 1:
            denoised = [x[0] for x in denoised]

        self.normalized = normalized
        self.denoised = denoised
def apply_threshold(output, scaler = 1., input=None):

    """
        output
          approx and detail coefficients, arranged in level value
          exactly as output from swt:
          e.g. [(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]
        scaler
          float to allow runtime tuning of thresholding
        input
          vector with length len(output).  If not None, these values are used for thresholding
          if None, then the vector applies a calculation to estimate the proper thresholding
          given this waveform.
    """

    for j in range(len(output)):
        cA, cD = output[j]
        if input is None:
            dev = np.median(np.abs(cD - np.median(cD)))/0.6745
            thresh = math.sqrt(2*math.log(len(cD)))*dev*scaler
        else:
            threshA = scaler*input[j][0]
            threshD = scaler*input[j][1]
        cA = pywt.threshold(cA, threshA, 'soft')
        cD = pywt.threshold(cD, threshD, 'soft')
        output[j] = (cA, cD)
示例#5
0
def wave(arr):
    return_ = np.diff(arr)
    # return_=return_[1:]
    # close2 / close

    # print(pywt.wavelist())

    #Do the Wavelet Transform for the return and inverse transformation
    #return_ is a dataframe series
    method = 'haar'
    mode_ = "soft"
    (ca, cd) = pywt.dwt(return_, method)
    cat = pywt.threshold(ca, 0.3 * np.std(ca), mode=mode_)
    cdt = pywt.threshold(cd, 0.3 * np.std(cd), mode=mode_)
    tx = pywt.idwt(cat, cdt, method, "smooth")
    # tx=pd.DataFrame(tx,index=return_.index)

    #Get back to the Stock price using denoising wavelet transform
    start_price = arr[0]
    # txx=tx.iloc[:,0]
    # txx=np.exp(tx)
    # txx=np.array(txx)
    temp = np.array([start_price])
    np.hstack((temp, tx))
    txx = np.cumsum(tx)
    # txx = pd.Series(txx, index=arr.index)
    # txx=pd.DataFrame(txx,index=return_.index)
    return txx
def wavelet_thresholding(array_of_wavelet_coeff, image, mode_thresholding):
    """
    :param array_of_wavelet_coeff:  wavelet coefficients: Approximation, horizontal detail, vertical detail
            and diagonal detail coefficients respectively
    :param threshold: threshold for Approximation component;
    :param mode_thresholding: {'soft', 'hard', 'greater', 'less'}
    :return: thresholded wavelet coefficients.
    """

    cA = array_of_wavelet_coeff[0]
    denoise_array = [cA]
    for i in range(len(array_of_wavelet_coeff) - 1):
        cH = pywt.threshold(array_of_wavelet_coeff[i + 1][0],
                            threshold_value(
                                array_of_wavelet_coeff[i + 1][2],
                                len(array_of_wavelet_coeff[i + 1][0]), image),
                            mode=mode_thresholding)
        cV = pywt.threshold(array_of_wavelet_coeff[i + 1][1],
                            threshold_value(
                                array_of_wavelet_coeff[i + 1][2],
                                len(array_of_wavelet_coeff[i + 1][1]), image),
                            mode=mode_thresholding)
        cD = pywt.threshold(array_of_wavelet_coeff[i + 1][2],
                            threshold_value(
                                array_of_wavelet_coeff[i + 1][2],
                                len(array_of_wavelet_coeff[i + 1][2]), image),
                            mode=mode_thresholding)
        denoise_array.append((cH, cV, cD))
    return denoise_array
示例#7
0
    def __apply_wavelet_transform(self, x):
        (ca, cd) = pywt.dwt(x, "haar")
        cat = pywt.threshold(ca, np.std(ca), mode="soft")
        cdt = pywt.threshold(cd, np.std(cd), mode="soft")
        tx = pywt.idwt(cat, cdt, "haar")

        return tx
示例#8
0
def test_nonnegative_garotte():
    thresh = 0.3
    data_real = np.linspace(-1, 1, 100)
    for dtype in float_dtypes:
        if dtype in real_dtypes:
            data = np.asarray(data_real, dtype=dtype)
        else:
            data = np.asarray(data_real + 0.1j, dtype=dtype)
        d_hard = pywt.threshold(data, thresh, 'hard')
        d_soft = pywt.threshold(data, thresh, 'soft')
        d_garotte = pywt.threshold(data, thresh, 'garotte')

        # check dtypes
        assert_equal(d_hard.dtype, data.dtype)
        assert_equal(d_soft.dtype, data.dtype)
        assert_equal(d_garotte.dtype, data.dtype)

        # values < threshold are zero
        lt = np.where(np.abs(data) < thresh)
        assert_(np.all(d_garotte[lt] == 0))

        # values > than the threshold are intermediate between soft and hard
        gt = np.where(np.abs(data) > thresh)
        gt_abs_garotte = np.abs(d_garotte[gt])
        assert_(np.all(gt_abs_garotte < np.abs(d_hard[gt])))
        assert_(np.all(gt_abs_garotte > np.abs(d_soft[gt])))
示例#9
0
def test_nonnegative_garotte():
    thresh = 0.3
    data_real = np.linspace(-1, 1, 100)
    for dtype in float_dtypes:
        if dtype in real_dtypes:
            data = np.asarray(data_real, dtype=dtype)
        else:
            data = np.asarray(data_real + 0.1j, dtype=dtype)
        d_hard = pywt.threshold(data, thresh, 'hard')
        d_soft = pywt.threshold(data, thresh, 'soft')
        d_garotte = pywt.threshold(data, thresh, 'garotte')

        # check dtypes
        assert_equal(d_hard.dtype, data.dtype)
        assert_equal(d_soft.dtype, data.dtype)
        assert_equal(d_garotte.dtype, data.dtype)

        # values < threshold are zero
        lt = np.where(np.abs(data) < thresh)
        assert_(np.all(d_garotte[lt] == 0))

        # values > than the threshold are intermediate between soft and hard
        gt = np.where(np.abs(data) > thresh)
        gt_abs_garotte = np.abs(d_garotte[gt])
        assert_(np.all(gt_abs_garotte < np.abs(d_hard[gt])))
        assert_(np.all(gt_abs_garotte > np.abs(d_soft[gt])))
示例#10
0
 def wavelet_denoise(self, wavelet='db1', plot='Y', level=1):
     ### only built for Level 1 decomp
     self.Xtrans = self.XData.transpose()
     self.Xnormtrans = []
     self.wavecoef = []
     self.thresh_wavecoef = []
     self.denoisedXtrans = []
     for i in range(len(self.Xtrans)):
         self.maxwave = pwt.dwt_max_level(len(self.Xtrans[i]), wavelet)
         if level != 'Auto':
             self.level = level
         self.wavecoef.append(
             pwt.wavedec(self.Xtrans[i], wavelet, level=self.level))
         self.thresh_A = (np.average(np.abs(
             self.wavecoef[i][0]))) - (np.std(np.abs(self.wavecoef[i][0])))
         self.thresh_D = (np.average(np.abs(
             self.wavecoef[i][1]))) - (np.std(np.abs(self.wavecoef[i][1])))
         self.thresh_wavecoef.append(
             (pwt.threshold(self.wavecoef[i][0], self.thresh_A),
              (pwt.threshold(self.wavecoef[i][1], self.thresh_D))))
         self.denoisedXtrans.append(
             pwt.idwt(self.thresh_wavecoef[-1][0],
                      self.thresh_wavecoef[-1][1], wavelet))
     self.XDataNT = np.asarray(self.denoisedXtrans)
     self.XData = self.XDataNT.transpose()
     if plot != 'N':
         plt.plot(self.Xtrans[plot])
         plt.plot(self.denoisedXtrans[plot])
         plt.show()
    def encodes(self, o: TSTensor):
        if self.magnitude <= 0: return o
        """
        1. Adapted from waveletSmooth function found here:
        http://connor-johnson.com/2016/01/24/using-pywavelets-to-remove-high-frequency-noise/
        2. Threshold equation and using hard mode in threshold as mentioned
        in section '3.2 denoising based on optimized singular values' from paper by Tomas Vantuch:
        http://dspace.vsb.cz/bitstream/handle/10084/133114/VAN431_FEI_P1807_1801V001_2018.pdf
        """
        seq_len = o.shape[-1]
        # Decompose to get the wavelet coefficients
        coeff = pywt.wavedec(o.cpu(), self.wavelet, mode=self.pad_mode)
        if self.thr is None:
            # Calculate sigma for threshold as defined in http://dspace.vsb.cz/bitstream/handle/10084/133114/VAN431_FEI_P1807_1801V001_2018.pdf
            # As noted by @harshit92 MAD referred to in the paper is Mean Absolute Deviation not Median Absolute Deviation
            sigma = (1 / 0.6745) * maddest(coeff[-self.level])

            # Calculate the univeral threshold
            uthr = sigma * np.sqrt(2 * np.log(seq_len))
            coeff[1:] = (pywt.threshold(c, value=uthr, mode=self.thr_mode)
                         for c in coeff[1:])
        elif self.thr == 'random':
            coeff[1:] = (pywt.threshold(c,
                                        value=np.random.rand(),
                                        mode=self.thr_mode) for c in coeff[1:])
        else:
            coeff[1:] = (pywt.threshold(c, value=self.thr, mode=self.thr_mode)
                         for c in coeff[1:])

        # Reconstruct the signal using the thresholded coefficients
        output = o.new(
            pywt.waverec(coeff, self.wavelet,
                         mode=self.pad_mode)[..., :seq_len])
        if self.ex is not None: output[..., self.ex, :] = o[..., self.ex, :]
        return output
示例#12
0
def w2d(imArray,imagePath):
    mode='db1'
    (ca, cd) = pywt.dwt(imArray,mode)
    cat = pywt.threshold(ca, np.std(ca)/250)
    cdt = pywt.threshold(cd, np.std(cd)/250)
    ts_rec = pywt.idwt(cat, cdt, mode)
    return np.array(cat)
示例#13
0
def _wavelet_threshold(img, wavelet, threshold=None, sigma=None, mode='soft'):
    """Performs wavelet denoising.

    Parameters
    ----------
    img : ndarray (2d or 3d) of ints, uints or floats
        Input data to be denoised. `img` can be of any numeric type,
        but it is cast into an ndarray of floats for the computation
        of the denoised image.
    wavelet : string
        The type of wavelet to perform. Can be any of the options
        pywt.wavelist outputs. For example, this may be any of ``{db1, db2,
        db3, db4, haar}``.
    sigma : float, optional
        The standard deviation of the noise. The noise is estimated when sigma
        is None (the default) by the method in [2]_.
    threshold : float, optional
        The thresholding value. All wavelet coefficients less than this value
        are set to 0. The default value (None) uses the SureShrink method found
        in [1]_ to remove noise.
    mode : {'soft', 'hard'}, optional
        An optional argument to choose the type of denoising performed. It
        noted that choosing soft thresholding given additive noise finds the
        best approximation of the original image.

    Returns
    -------
    out : ndarray
        Denoised image.

    References
    ----------
    .. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
           thresholding for image denoising and compression." Image Processing,
           IEEE Transactions on 9.9 (2000): 1532-1546.
           DOI: 10.1109/83.862633
    .. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
           by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
           DOI: 10.1093/biomet/81.3.425

    """
    coeffs = pywt.wavedecn(img, wavelet=wavelet)
    detail_coeffs = coeffs[-1]['d' * img.ndim]

    if sigma is None:
        # Estimates via the noise via method in [2]
        sigma = np.median(np.abs(detail_coeffs)) / 0.67448975019608171

    if threshold is None:
        # The BayesShrink threshold from [1]_ in docstring
        threshold = sigma**2 / np.sqrt(max(img.var() - sigma**2, 0))

    denoised_detail = [{
        key: pywt.threshold(level[key], value=threshold, mode=mode)
        for key in level
    } for level in coeffs[1:]]
    denoised_root = pywt.threshold(coeffs[0], value=threshold, mode=mode)
    denoised_coeffs = [denoised_root] + [d for d in denoised_detail]
    return pywt.waverecn(denoised_coeffs, wavelet)
def wavelet_tansform(raw):
    (ca, cd) = pywt.dwt(raw, "haar")                
    cat = pywt.threshold(ca, np.std(ca), mode="soft")                
    cdt = pywt.threshold(cd, np.std(cd), mode="soft")               
    trans_raw = pywt.idwt(cat, cdt, "haar")
    if np.isnan(trans_raw).any():
        return raw
    return trans_raw
示例#15
0
def haar(img):
    coefs = pywt.wavedec2(img, 'haar', level=2)
    coefs[1] = pywt.threshold(coefs[1], 5, 'soft', 0)
    coefs[2] = pywt.threshold(coefs[2], 5, 'soft', 0)
    print(coefs[1], coefs[2])
    con_img = pywt.waverec2(coefs, 'haar')
    con_img = con_img.astype(np.uint8)  # 进行类型转换
    return con_img
def FISTA_Thick(P, W, K, phi, lambda2, lambda2_ref, m, n, lambda_threshold,
                delta_noise, tol):
    db4 = pywt.Wavelet('db4')
    dirty_F = form_F_dirty(K, W, P, phi, lambda2, lambda2_ref, n)
    X_temp = dirty_F
    X = X_temp
    t_new = 1
    niter = int(np.floor(lambda_threshold / delta_noise))
    for i in range(0, niter):
        X_old = X_temp
        t_old = t_new
        #Gradient
        comb = X
        F_comb = form_P_meas(W, comb, phi, lambda2, lambda2_ref, m)
        D = F_comb - P
        if i % 1000 == 0:
            objf = 0.5 * np.sqrt(np.sum(np.abs(D)**2))
            print("Iteration - ", i, ": ", objf)
        comb = comb - form_F_li(K, D, phi, lambda2, lambda2_ref, n)

        aux_Xreal = comb.real
        aux_Ximag = comb.imag

        re_coeffs = pywt.wavedec(aux_Xreal, db4, level=3, mode='zpd')
        im_coeffs = pywt.wavedec(aux_Ximag, db4, level=3, mode='zpd')

        thres_re_coeffs = []
        for j in re_coeffs:
            thres_j = pywt.threshold(j, lambda_threshold, 'soft')
            thres_re_coeffs.append(thres_j)

        thres_im_coeffs = []
        for k in im_coeffs:
            thres_k = pywt.threshold(k, lambda_threshold, 'soft')
            thres_im_coeffs.append(thres_k)

        aux_Xreal = pywt.waverec(thres_re_coeffs, 'db4', mode='zpd')
        aux_Ximag = pywt.waverec(thres_im_coeffs, 'db4', mode='zpd')

        X_temp = aux_Xreal + 1j * aux_Ximag

        norm = np.sum(np.abs(X_temp - X_old))
        if norm <= tol:
            print("Iterations: ", i)
            print("Exit due to tolerance: ", norm, "<= ", tol)
            break

        #Step using the Lipschitz constant
        t_new = (1 + np.sqrt(1 + 4 * t_old**2)) / 2
        aux_Xreal = X_temp.real + (t_old - 1) / t_new * (X_temp.real -
                                                         X_old.real)
        aux_Ximag = X_temp.imag + (t_old - 1) / t_new * (X_temp.imag -
                                                         X_old.imag)
        X = aux_Xreal + 1j * aux_Ximag
        lambda_threshold = lambda_threshold - delta_noise
    print("Max iterations reached")
    return X_temp
示例#17
0
def denoise(X):
    print('denoising')
    X_denoised = []
    for x in X:
        thd = np.empty(x.shape)
        thd[0] = pywt.threshold(x[0], np.median(x[0]), 'hard')
        thd[1] = pywt.threshold(x[1], np.median(x[1]), 'hard')
        X_denoised.append(thd)
    return X_denoised
def wavelet_transformation(audio_data):
    (ca, cd) = pywt.dwt(audio_data, 'haar')

    cat = pywt.threshold(ca, np.std(ca) / 2, 'soft')
    cdt = pywt.threshold(cd, np.std(cd) / 2, 'soft')

    audio_data_transformed = pywt.idwt(cat, cdt, 'haar')

    return audio_data_transformed
示例#19
0
def DWT(series):
    ca, cb = pywt.dwt(series, 'haar')
    cat = pywt.threshold(ca, np.std(ca) / 2, mode='soft')
    cbt = pywt.threshold(cb, np.std(cb) / 2, mode='soft')

    signal = pywt.idwt(cat, cbt, 'haar')

    DWT8 = ca[:, :-8]  #sorted in Ascending

    return DWT8
示例#20
0
    def dwt_smooth(x, wavelet):
        cA, cD = pywt.dwt(x, wavelet)

        def make_threshold(x):
            return np.std(x) * np.sqrt(1 * np.log(x.size))

        cAt = pywt.threshold(cA, make_threshold(cA), mode="soft")
        cDt = pywt.threshold(cD, make_threshold(cD), mode="soft")
        tx = pywt.idwt(cAt, cDt, wavelet)
        return tx
示例#21
0
def dwt_smoother(x, wavelet, smooth_factor: float = 1.) -> np.ndarray:
    cA, cD = pywt.dwt(x, wavelet)
    cAt = pywt.threshold(cA,
                         smoothing_threshold(cA, smooth_factor),
                         mode='soft')
    cDt = pywt.threshold(cD,
                         smoothing_threshold(cD, smooth_factor),
                         mode='soft')
    tx = pywt.idwt(cAt, cDt, wavelet)
    return tx
示例#22
0
def softthreshold_bandas(listpatches, umbrales, t):
    listsearch = listpatches.copy()
    n = 4 * t**2  # Lenght of the patches in wavelet domain (n = 4xtxt)
    auxHV = range(n / 4, 3 * n / 4)  # Positions of WH and WV bands
    auxD = range(3 * n / 4, n)  # Positions of WD band
    HVbands = listsearch[:, :, auxHV, :]
    listsearch[:, :, auxHV, :] = pywt.threshold(HVbands, umbrales[0], 'soft')

    Dbands = listsearch[:, :, auxD, :]
    listsearch[:, :, auxD, :] = pywt.threshold(Dbands, umbrales[1], 'soft')

    return listsearch
def main(file_name):
    d = 0
    #take d also as input
    #load a data y
    y = []
    """
	with open(file_name,'r+') as f:
	    reader = csv.reader(f,delimiter = ' ', quotechar='|')
	    for number in reader:
	       y.append(number[d])
	ts=y
	(ca, cd) = pywt.dwt(ts,'haar')
	"""

    series = read_csv(file_name, header=0, index_col=0, squeeze=True)
    series.columns = ['a', 'b', 'c', 'd']
    series['e'] = pow((series['a'] * series['a'] + series['b'] * series['b'] +
                       series['c'] * series['c']), 0.5)

    df1 = pd.DataFrame({'$a': series['e']})
    df = df1.iloc[:, 0]
    #print(df)
    (ca, cd) = pywt.dwt(df, 'haar')

    cat = pywt.threshold(ca, np.std(ca) / 2, 'soft')
    cdt = pywt.threshold(cd, np.std(cd) / 2, 'soft')

    ts_rec = pywt.idwt(cat, cdt, 'haar')

    plt.close('all')

    plt.subplot(211)
    # Original coefficients
    plt.plot(ca, '--*b')
    plt.plot(cd, '--*r')
    # Thresholded coefficients
    plt.plot(cat, '--*c')
    plt.plot(cdt, '--*m')
    plt.legend(['ca', 'cd', 'ca_thresh', 'cd_thresh'], loc=0)
    plt.grid(True)

    plt.subplot(212)

    #plt.plot(ts)

    plt.plot(df)
    #plt.hold('on')
    plt.plot(ts_rec, 'r')
    plt.legend(['original signal', 'reconstructed signal'])
    plt.grid(True)
    plt.show()
示例#24
0
def waveletSmooth(x,
                  wavelet="db4",
                  level=None,
                  sigma_type='donoho',
                  plot=False,
                  title=None,
                  mode='per'):
    if level:
        if len(x) < 2**level:
            ''' you don't have enough data to proceed. no smoothing'''
            return x

    try:
        # coeff = pywt.wavedec(x, wavelet=wavelet,mode=mode)
        coeff = pywt.wavedec(x, wavelet=wavelet, level=level, mode=mode)
    except:
        ''' too little info for specific level. just default max_level and donoho'''
        coeff = pywt.wavedec(x, wavelet=wavelet, mode=mode)
        sigma_type = 'donoho'

    if sigma_type and (sigma_type == 'donoho'):
        coeff[1:] = (pywt.threshold(i, value=_sigma_est_dwt(i), mode="soft")
                     for i in coeff[1:])
    elif sigma_type and (sigma_type == 'mad'):
        sigma = mad(coeff[1])
        uthresh = sigma * np.sqrt(2 * np.log(len(x)))
        coeff[1:] = (pywt.threshold(i, value=uthresh, mode="soft")
                     for i in coeff[1:])
    elif sigma_type and (sigma_type == 'SURE'):
        ''' Stein’s Unbiased Risk Estimate(SURE) '''
        n = len(x)
        uthresh = np.sqrt(2 * np.log(n * np.log2(n)))
        coeff[1:] = (pywt.threshold(i, value=uthresh, mode="soft")
                     for i in coeff[1:])
    else:
        coeff[1:] = (pywt.threshold(i, value=np.std(i) / 2, mode='soft')
                     for i in coeff[1:])

    y = pywt.waverec(coeff, wavelet=wavelet, mode=mode)

    if plot:
        f, ax = plt.subplots()
        plt.plot(x, color="b", alpha=0.5)
        plt.plot(y, color="b")
        if title:
            ax.set_title(title)
        ax.set_xlim((0, len(y)))

    return y
 def wavelet_denosing_6_levels(self,data):
     coeffs = pywt.wavedec(data, 'coif5', mode='symmetric',
                           level=6)  # 将波分为6层,这行代码是一个参数是数据,第二个参数选择小波基这里选coif5,第三个点是模型默认是symmetric,第四个参数是分的层数
     cA6, cD6, cD5, cD4, cD3, cD2, cD1 = coeffs
     sD6 = pywt.threshold(cD6, 0.014, 'soft')
     sD5 = pywt.threshold(cD5, 0.014, 'soft')
     sD4 = pywt.threshold(cD4, 0.014, 'soft')
     sD3 = pywt.threshold(cD3, 0.014, 'soft')
     sD2 = np.zeros(len(cD2))
     sD1 = np.zeros(len(cD1))
     coeffs2 = [cA6, sD6, sD5, sD4, sD3, sD2, sD1]
     meta = pywt.waverec(coeffs2, 'coif5')
     if len(meta) > len(data):
         meta = meta[:-1]
     return meta
def _wavelet(diff, c):

    import pywt
    coeffs = pywt.wavedec2(diff, 'db1')

    for index, coef in enumerate(coeffs):
        if type(coef) == tuple:
            coef = list(coef)
            coef = [pywt.threshold(array, lambda1 * theta1) for array in coef]
            coef = tuple(coef)
            coeffs[index] = coef
        else:
            coef = pywt.threshold(coef, c)
            coeffs[index] = coef
    return pywt.waverec2(coeffs, 'db1')
def VISUshrink_T(filterdim, LL, HH, tscale=1 / 3):
    """
    VISUShrink thresholding
    :param filterdim: shape of the image
    :param LL: 2x low pass
    :param HH: 2x high pass
    :param tscale: scaling factor for threshold
    :return: updated LL(LL1) and HH(HH1)
    """
    number = filterdim[0] * filterdim[1]
    TLL = np.sqrt((np.std(LL)**2) * (np.log(number)))
    THH = np.sqrt((np.std(HH)**2) * (np.log(number)))
    LL1 = pywt.threshold(LL, TLL * tscale, 'soft')
    HH1 = pywt.threshold(HH, THH * tscale, 'soft')
    return LL1, HH1
示例#28
0
def wavelet(data):
    thresh = math.sqrt(2 * math.log10(len(data)))  #固定阈值处理,WLSTM2
    wavelet_result = []
    for i in range(data.shape[1]):
        if i >= 1:
            data_test = data[:, i]
            coeffs = pywt.wavedec(data_test, "haar", level=2)  #二级小波变换
            thresh1 = threshhold(coeffs[-1])  #无偏风险估计阈值
            thresh2 = threshhold(coeffs[-2])  #无偏风险估计阈值
            #coeffs[-2] = pywt.threshold(coeffs[-2], thresh, 'soft')
            #coeffs[-1] = pywt.threshold(coeffs[-1], thresh, 'soft')
            coeffs[-2] = pywt.threshold(coeffs[-2], thresh2, 'soft')
            coeffs[-1] = pywt.threshold(coeffs[-1], thresh1,
                                        'soft')  #无偏风险估计阈值处理,WLSTM1
            #coeffs[-2] = np.zeros_like(coeffs[-2])
            #coeffs[-1] = np.zeros_like(coeffs[-1])
            #x = np.arange(len(data_test))
            result = pywt.waverec(coeffs, "haar")  #小波重构
            wavelet_result.append(result[:len(data)])
        else:
            result = np.zeros((len(data), ))
            wavelet_result.append(result)

    wavelet_result = np.array(wavelet_result)
    data = np.transpose(wavelet_result)

    #第二次小波变换
    wavelet_result2 = []
    for j in range(data.shape[1]):
        if i >= 1:
            data_test = data[:, j]
            coeffs = pywt.wavedec(data_test, "haar", level=2)
            thresh1 = threshhold(coeffs[-1])
            thresh2 = threshhold(coeffs[-2])
            #coeffs[-2] = pywt.threshold(coeffs[-2], thresh, 'soft')
            #coeffs[-1] = pywt.threshold(coeffs[-1], thresh, 'soft')
            coeffs[-2] = pywt.threshold(coeffs[-2], thresh2, 'soft')
            coeffs[-1] = pywt.threshold(coeffs[-1], thresh1, 'soft')
            #coeffs[-2] = np.zeros_like(coeffs[-2])
            #coeffs[-1] = np.zeros_like(coeffs[-1])
            result = pywt.waverec(coeffs, "haar")
            wavelet_result2.append(result[:len(result)])
        else:
            result = np.zeros((len(data), ))
            wavelet_result2.append(result)

    wavelet_result2 = np.transpose(np.array(wavelet_result2))
    return wavelet_result2
示例#29
0
def lowpassfilter(signal, thresh=0.50, wavelet="db4"):
    thresh = thresh * np.nanmax(signal)
    coeff = pywt.wavedec(signal, wavelet, mode="per")
    coeff[1:] = (pywt.threshold(i, value=thresh, mode="soft")
                 for i in coeff[1:])
    reconstructed_signal = pywt.waverec(coeff, wavelet, mode="per")
    return reconstructed_signal
    def _global_threshold(self, coeffs, mode ):

        threshold = self._threshold( self._sigma_image, self._image )

        coeffs[1:] = [ [ pywt.threshold( detail, value=threshold, mode=mode ) for detail in coeff ] for coeff in coeffs[1:] ]

        return coeffs
    def _levels_threshold( self, coeffs, mode ):

        thresholds = self._threshold( self._sigma_image, self._image, coeffs )

        coeffs[1:] = [ tuple([ pywt.threshold( detail, value=thresholds[i][j], mode=mode ) for detail, j in zip( coeff, range(3) ) ]) for coeff, i in zip( coeffs[1:], range( len( coeffs ) - 1 ) ) ]

        return coeffs
示例#32
0
def wavelet(image, scale = 1):
    # This thresholds the data based on db1 wavelet.
    coeffs2 = pywt.dwt2(image[:, :, 0], 'db1')

    # This assigns the directionality thresholded arrays to variables.
    LL, (LH, HL, HH) = coeffs2

    # This line helps eliminate the cloud but...
    coeffs2 = LL * 0, (LH * 1, HL * 1, HH * 1)

    # Reconstruct the image based on our removal of the LL (low frequency) component.
    new_img = pywt.idwt2(coeffs2, 'db1')

    # Print statements for evaluation purposes.
    print("Reconstructed image parameters")
    print("Standard Deviations: ", np.std(new_img))
    print("Means: ", np.mean(new_img))
    print("Maxima: ", np.amax(new_img))

    # Thresholding based on the mean and std of the image..
    thresholded_image = pywt.threshold(new_img, np.mean(new_img) + scale * np.std(new_img), substitute=0, mode='greater')

    # For image viewing purposes.
    # plt.subplot(131)
    # plt.imshow(image[:, :, 0], cmap=plt.cm.gray)
    # plt.title("Original")
    # plt.subplot(132)
    # plt.imshow(new_img, cmap=plt.cm.gray)
    # plt.title("After")
    # plt.subplot(133)
    # plt.imshow(thresholded_image, cmap=plt.cm.gray)
    # plt.title("Thresholded")
    # plt.show()

    return thresholded_image
示例#33
0
def dwt_denoise_line_in_time(signal_in: np.ndarray,
                             im_index: int,
                             threshold_function: bool,
                             padding: str,
                             wavelet_conf) -> np.ndarray:
    """
    Definition of the temporal denoising for DWT.

    Parameters
    ----------
    signal_in : np.ndarray
        1D input signal.

    Returns
    -------
    np.ndarray
        Multilevel 1D inverse discrete wavelet transform.
    """

    if threshold_function:
        threshold_mode = 'soft'
    else:
        threshold_mode = 'hard'

    coef = pywt.wavedec(signal_in, wavelet=wavelet_conf.m_wavelet, level=None, mode=padding)

    sigma = mad(coef[-1])

    threshold = sigma * np.sqrt(2 * np.log(len(signal_in)))

    denoised = coef[:]

    denoised[1:] = (pywt.threshold(i, value=threshold, mode=threshold_mode) for i in denoised[1:])

    return pywt.waverec(denoised, wavelet=wavelet_conf.m_wavelet, mode=padding)
def apply_threshold(output, scaler = 1., input=None):
   """ 
       output is a list of vectors (cA and cD, approximation
       and detail coefficients) exactly as you would expect
       from swt decomposition.  
          e.g. [(cA1, cD1), (cA2, cD2), ..., (cAn, cDn)]

       If input is none, this function will calculate the
       tresholds automatically for each waveform.
       Otherwise it will use the tresholds passed in, assuming
       that the length of the input is the same as the length
       of the output list.
       input looks like:
          [threshold1, threshold2, ..., thresholdn]

       scaler is a tuning parameter that will be multiplied on
       all thresholds.  Default = 1 (0.8?)
   """
      
   for j in range(len(output)):
      cA, cD = output[j]
      if input is None:
        dev = np.median(np.abs(cD - np.median(cD)))/0.6745
        thresh = math.sqrt(2*math.log(len(cD)))*dev*scaler
      else: thresh = scaler*input[j]
      cD = pywt.threshold(cD, thresh, mode='hard')
      output[j] = (cA, cD)
示例#35
0
def denoise(noisy_img, mode, level, noiseSigma):
    coeffs = pywt.wavedec2(noisy_img, mode, level=level)
    # Thresholding the detail (i.e. high frequency) coefficiens
    # using a Donoho-Johnstone universal threshold
    threshold = noiseSigma * np.sqrt(2 * np.log2(noisy_img.size))
    rec_coeffs = coeffs
    rec_coeffs[1:] = (pywt.threshold(i, value=threshold, mode="soft") for i in rec_coeffs[1:])
    return rec_coeffs
示例#36
0
def thresh_median(triangle, trind):
    newtri=np.zeros(triangle.shape,dtype=np.int16)
    for b in range(trind.shape[0]-1):
        band=get_band(triangle,trind,b)
        med=np.median(np.abs(band))
        thresh_band=pywt.threshold(band,med)
        print med
        triangle=set_band(triangle,trind,thresh_band,b)
    return triangle
示例#37
0
def wavelet(input_signal, wavelet_shape, threshold):
    import pywt
    # we have to pad the signal to make it a power of two
    next_power_of_two = int(numpy.floor(numpy.log2(len(input_signal))) + 1)
    padded_input_signal = _pad(input_signal, 2**next_power_of_two)
    wt_coeffs = pywt.wavedec(padded_input_signal, wavelet_shape, level=None, mode='per')
    denoised_coeffs = wt_coeffs[:]
    denoised_coeffs[1:] = (pywt.threshold(i, value=threshold) for i in denoised_coeffs[1:])
    recon = pywt.waverec(denoised_coeffs, wavelet_shape, mode='per')
    start_offset = (len(padded_input_signal) - len(input_signal)) / 2.0
    return recon[start_offset:(start_offset + len(input_signal))]
示例#38
0
def test_threshold_firm():
    thresh = 0.2
    thresh2 = 3 * thresh
    data_real = np.linspace(-1, 1, 100)
    for dtype in float_dtypes:
        if dtype in real_dtypes:
            data = np.asarray(data_real, dtype=dtype)
        else:
            data = np.asarray(data_real + 0.1j, dtype=dtype)
        if data.real.dtype == np.float32:
            rtol = atol = 1e-6
        else:
            rtol = atol = 1e-14
        d_hard = pywt.threshold(data, thresh, 'hard')
        d_soft = pywt.threshold(data, thresh, 'soft')
        d_firm = pywt.threshold_firm(data, thresh, thresh2)

        # check dtypes
        assert_equal(d_hard.dtype, data.dtype)
        assert_equal(d_soft.dtype, data.dtype)
        assert_equal(d_firm.dtype, data.dtype)

        # values < threshold are zero
        lt = np.where(np.abs(data) < thresh)
        assert_(np.all(d_firm[lt] == 0))

        # values > than the threshold are equal to hard-thresholding
        gt = np.where(np.abs(data) >= thresh2)
        assert_allclose(np.abs(d_hard[gt]), np.abs(d_firm[gt]),
                        rtol=rtol, atol=atol)

        # other values are intermediate between soft and hard thresholding
        mt = np.where(np.logical_and(np.abs(data) > thresh,
                                     np.abs(data) < thresh2))
        mt_abs_firm = np.abs(d_firm[mt])
        assert_(np.all(mt_abs_firm < np.abs(d_hard[mt])))
        assert_(np.all(mt_abs_firm > np.abs(d_soft[mt])))
示例#39
0
    def coeffs_process(self,coeffs):
       # coeffs_out = coeffs
        for level in range(len(coeffs)):
            if level == 0:
                continue
            if level == 1:
                std = np.std(coeffs[level])
                #coeffs[level]=self.retain_nmax_coeffs(3,coeffs[level])
                coeffs[level]=pywt.threshold(coeffs[level],std,'hard')

                continue
            if level == 2:
                #coeffs[level] = self.retain_nmax_coeffs(3, coeffs[level])
                std = np.std(coeffs[level])
                coeffs[level] = pywt.threshold(coeffs[level], std*2, 'hard')
                continue
            # if level == 3:
            #     # coeffs[level] = self.retain_nmax_coeffs(3, coeffs[level])
            #     std = np.std(coeffs[level])
            #     coeffs[level] = pywt.threshold(coeffs[level], std*2, 'hard')
            #     continue
            else:
                coeffs[level] = self.retain_nmax_coeffs(0, coeffs[level])
        return coeffs
示例#40
0
def _wavelet_threshold(img, wavelet, threshold=None, sigma=None, mode='soft',
                       wavelet_levels=None):
    """Perform wavelet denoising.

    Parameters
    ----------
    img : ndarray (2d or 3d) of ints, uints or floats
        Input data to be denoised. `img` can be of any numeric type,
        but it is cast into an ndarray of floats for the computation
        of the denoised image.
    wavelet : string
        The type of wavelet to perform. Can be any of the options
        pywt.wavelist outputs. For example, this may be any of ``{db1, db2,
        db3, db4, haar}``.
    sigma : float, optional
        The standard deviation of the noise. The noise is estimated when sigma
        is None (the default) by the method in [2]_.
    threshold : float, optional
        The thresholding value. All wavelet coefficients less than this value
        are set to 0. The default value (None) uses the BayesShrink method
        found in [1]_ to remove noise.
    mode : {'soft', 'hard'}, optional
        An optional argument to choose the type of denoising performed. It
        noted that choosing soft thresholding given additive noise finds the
        best approximation of the original image.
    wavelet_levels : int or None, optional
        The number of wavelet decomposition levels to use.  The default is
        three less than the maximum number of possible decomposition levels
        (see Notes below).

    Returns
    -------
    out : ndarray
        Denoised image.

    Notes
    -----
    Reference [1]_ used four levels of wavelet decomposition.  To be more
    flexible for a range of input sizes, the implementation here stops 3 levels
    prior to the maximum level of decomposition for `img` (the exact # of
    levels thus depends on `img.shape` and the chosen wavelet). BayesShrink
    variance estimation doesn't work well on levels with extremely small
    coefficient arrays.  This is the rationale for skipping a few of the
    coarsest levels.  The user can override the automated setting by explicitly
    specifying `wavelet_levels`.

    References
    ----------
    .. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
           thresholding for image denoising and compression." Image Processing,
           IEEE Transactions on 9.9 (2000): 1532-1546.
           DOI: 10.1109/83.862633
    .. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
           by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
           DOI: 10.1093/biomet/81.3.425

    """
    wavelet = pywt.Wavelet(wavelet)

    # Determine the number of wavelet decomposition levels
    if wavelet_levels is None:
        # Determine the maximum number of possible levels for img
        dlen = wavelet.dec_len
        wavelet_levels = np.min(
            [pywt.dwt_max_level(s, dlen) for s in img.shape])

        # Skip coarsest wavelet scales (see Notes in docstring).
        wavelet_levels = max(wavelet_levels - 3, 1)

    coeffs = pywt.wavedecn(img, wavelet=wavelet, level=wavelet_levels)
    # Detail coefficients at each decomposition level
    dcoeffs = coeffs[1:]

    if sigma is None:
        # Estimate the noise via the method in [2]_
        detail_coeffs = dcoeffs[-1]['d' * img.ndim]
        sigma = _sigma_est_dwt(detail_coeffs, distribution='Gaussian')

    if threshold is None:
        # The BayesShrink thresholds from [1]_ in docstring
        var = sigma**2
        threshold = [{key: _bayes_thresh(level[key], var) for key in level}
                     for level in dcoeffs]

    if np.isscalar(threshold):
        # A single threshold for all coefficient arrays
        denoised_detail = [{key: pywt.threshold(level[key],
                                                value=threshold,
                                                mode=mode) for key in level}
                           for level in dcoeffs]
    else:
        # Dict of unique threshold coefficients for each detail coeff. array
        denoised_detail = [{key: pywt.threshold(level[key],
                                                value=thresh[key],
                                                mode=mode) for key in level}
                           for thresh, level in zip(threshold, dcoeffs)]
    denoised_coeffs = [coeffs[0]] + denoised_detail
    return pywt.waverecn(denoised_coeffs, wavelet)
示例#41
0
def test_threshold():
    # soft
    data = np.linspace(1, 4, 7)
    soft_result = [0., 0., 0., 0.5, 1., 1.5, 2.]
    assert_allclose(pywt.threshold(data, 2, 'soft'),
                    np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'soft'),
                    -np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'soft'),
                    [[0, 1]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'soft'),
                    [[0, 0]] * 2, rtol=1e-12)

    # hard
    data = np.linspace(1, 4, 7)
    hard_result = [0., 0., 2., 2.5, 3., 3.5, 4.]
    assert_allclose(pywt.threshold(data, 2, 'hard'),
                    np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'hard'),
                    -np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'hard'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'hard'),
                    [[0, 2]] * 2, rtol=1e-12)

    # greater
    data = np.linspace(1, 4, 7)
    assert_allclose(pywt.threshold(data, 2, 'greater'),
                    np.array([0., 0., 2., 2.5, 3., 3.5, 4.]), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'greater'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'greater'),
                    [[0, 2]] * 2, rtol=1e-12)

    # less
    data = np.linspace(1, 4, 7)
    assert_allclose(pywt.threshold(data, 2, 'less'),
                    np.array([1., 1.5, 2., 0., 0., 0., 0.]), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'less'),
                    [[1, 0]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'less'),
                    [[1, 2]] * 2, rtol=1e-12)
示例#42
0
def test_threshold():
    data = np.linspace(1, 4, 7)

    # soft
    soft_result = [0.0, 0.0, 0.0, 0.5, 1.0, 1.5, 2.0]
    assert_allclose(pywt.threshold(data, 2, "soft"), np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, "soft"), -np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, "soft"), [[0, 1]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, "soft"), [[0, 0]] * 2, rtol=1e-12)

    # hard
    hard_result = [0.0, 0.0, 2.0, 2.5, 3.0, 3.5, 4.0]
    assert_allclose(pywt.threshold(data, 2, "hard"), np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, "hard"), -np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, "hard"), [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, "hard"), [[0, 2]] * 2, rtol=1e-12)

    # greater
    greater_result = [0.0, 0.0, 2.0, 2.5, 3.0, 3.5, 4.0]
    assert_allclose(pywt.threshold(data, 2, "greater"), np.array(greater_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, "greater"), [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, "greater"), [[0, 2]] * 2, rtol=1e-12)

    # less
    assert_allclose(pywt.threshold(data, 2, "less"), np.array([1.0, 1.5, 2.0, 0.0, 0.0, 0.0, 0.0]), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, "less"), [[1, 0]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, "less"), [[1, 2]] * 2, rtol=1e-12)

    # invalid
    assert_raises(ValueError, pywt.threshold, data, 2, "foo")
def apply_dwt_filter(y, dwt_type, dwt_level, dwt_thresh_func, dwt_thresh_type):
  coeffs = pywt.wavedecn(y, dwt_type, level=dwt_level)
  for i in range(1,dwt_level+1):
    coeffs[i]["d"] = pywt.threshold(coeffs[i]["d"], thselect(coeffs[i]["d"], dwt_thresh_type), dwt_thresh_func)
  return(pywt.waverecn(coeffs, dwt_type))
示例#44
-1
def _wavelet_threshold(image, wavelet, method=None, threshold=None,
                       sigma=None, mode='soft', wavelet_levels=None):
    """Perform wavelet thresholding.

    Parameters
    ----------
    image : ndarray (2d or 3d) of ints, uints or floats
        Input data to be denoised. `image` can be of any numeric type,
        but it is cast into an ndarray of floats for the computation
        of the denoised image.
    wavelet : string
        The type of wavelet to perform. Can be any of the options
        pywt.wavelist outputs. For example, this may be any of ``{db1, db2,
        db3, db4, haar}``.
    method : {'BayesShrink', 'VisuShrink'}, optional
        Thresholding method to be used. The currently supported methods are
        "BayesShrink" [1]_ and "VisuShrink" [2]_. If it is set to None, a
        user-specified ``threshold`` must be supplied instead.
    threshold : float, optional
        The thresholding value to apply during wavelet coefficient
        thresholding. The default value (None) uses the selected ``method`` to
        estimate appropriate threshold(s) for noise removal.
    sigma : float, optional
        The standard deviation of the noise. The noise is estimated when sigma
        is None (the default) by the method in [2]_.
    mode : {'soft', 'hard'}, optional
        An optional argument to choose the type of denoising performed. It
        noted that choosing soft thresholding given additive noise finds the
        best approximation of the original image.
    wavelet_levels : int or None, optional
        The number of wavelet decomposition levels to use.  The default is
        three less than the maximum number of possible decomposition levels
        (see Notes below).

    Returns
    -------
    out : ndarray
        Denoised image.

    References
    ----------
    .. [1] Chang, S. Grace, Bin Yu, and Martin Vetterli. "Adaptive wavelet
           thresholding for image denoising and compression." Image Processing,
           IEEE Transactions on 9.9 (2000): 1532-1546.
           :DOI:`10.1109/83.862633`
    .. [2] D. L. Donoho and I. M. Johnstone. "Ideal spatial adaptation
           by wavelet shrinkage." Biometrika 81.3 (1994): 425-455.
           :DOI:`10.1093/biomet/81.3.425`

    """
    wavelet = pywt.Wavelet(wavelet)
    if not wavelet.orthogonal:
        warn(("Wavelet thresholding was designed for use with orthogonal "
              "wavelets. For nonorthogonal wavelets such as {}, results are "
              "likely to be suboptimal.").format(wavelet.name))

    # original_extent is used to workaround PyWavelets issue #80
    # odd-sized input results in an image with 1 extra sample after waverecn
    original_extent = tuple(slice(s) for s in image.shape)

    # Determine the number of wavelet decomposition levels
    if wavelet_levels is None:
        # Determine the maximum number of possible levels for image
        dlen = wavelet.dec_len
        wavelet_levels = np.min(
            [pywt.dwt_max_level(s, dlen) for s in image.shape])

        # Skip coarsest wavelet scales (see Notes in docstring).
        wavelet_levels = max(wavelet_levels - 3, 1)

    coeffs = pywt.wavedecn(image, wavelet=wavelet, level=wavelet_levels)
    # Detail coefficients at each decomposition level
    dcoeffs = coeffs[1:]

    if sigma is None:
        # Estimate the noise via the method in [2]_
        detail_coeffs = dcoeffs[-1]['d' * image.ndim]
        sigma = _sigma_est_dwt(detail_coeffs, distribution='Gaussian')

    if method is not None and threshold is not None:
        warn(("Thresholding method {} selected.  The user-specified threshold "
              "will be ignored.").format(method))

    if threshold is None:
        var = sigma**2
        if method is None:
            raise ValueError(
                "If method is None, a threshold must be provided.")
        elif method == "BayesShrink":
            # The BayesShrink thresholds from [1]_ in docstring
            threshold = [{key: _bayes_thresh(level[key], var) for key in level}
                         for level in dcoeffs]
        elif method == "VisuShrink":
            # The VisuShrink thresholds from [2]_ in docstring
            threshold = _universal_thresh(image, sigma)
        else:
            raise ValueError("Unrecognized method: {}".format(method))

    if np.isscalar(threshold):
        # A single threshold for all coefficient arrays
        denoised_detail = [{key: pywt.threshold(level[key],
                                                value=threshold,
                                                mode=mode) for key in level}
                           for level in dcoeffs]
    else:
        # Dict of unique threshold coefficients for each detail coeff. array
        denoised_detail = [{key: pywt.threshold(level[key],
                                                value=thresh[key],
                                                mode=mode) for key in level}
                           for thresh, level in zip(threshold, dcoeffs)]
    denoised_coeffs = [coeffs[0]] + denoised_detail
    return pywt.waverecn(denoised_coeffs, wavelet)[original_extent]
示例#45
-1
def test_threshold():
    data = np.linspace(1, 4, 7)

    # soft
    soft_result = [0., 0., 0., 0.5, 1., 1.5, 2.]
    assert_allclose(pywt.threshold(data, 2, 'soft'),
                    np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'soft'),
                    -np.array(soft_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'soft'),
                    [[0, 1]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'soft'),
                    [[0, 0]] * 2, rtol=1e-12)

    # soft thresholding complex values
    assert_allclose(pywt.threshold([[1j, 2j]] * 2, 1, 'soft'),
                    [[0j, 1j]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1+1j, 2+2j]] * 2, 6, 'soft'),
                    [[0, 0]] * 2, rtol=1e-12)
    complex_data = [[1+2j, 2+2j]]*2
    for thresh in [1, 2]:
        assert_allclose(pywt.threshold(complex_data, thresh, 'soft'),
                        _soft(complex_data, thresh), rtol=1e-12)

    # test soft thresholding with non-default substitute argument
    s = 5
    assert_allclose(pywt.threshold([[1j, 2]] * 2, 1.5, 'soft', substitute=s),
                    [[s, 0.5]] * 2, rtol=1e-12)

    # soft: no divide by zero warnings when input contains zeros
    assert_allclose(pywt.threshold(np.zeros(16), 2, 'soft'),
                    np.zeros(16), rtol=1e-12)

    # hard
    hard_result = [0., 0., 2., 2.5, 3., 3.5, 4.]
    assert_allclose(pywt.threshold(data, 2, 'hard'),
                    np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold(-data, 2, 'hard'),
                    -np.array(hard_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'hard'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'hard'),
                    [[0, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'hard', substitute=s),
                    [[s, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1+1j, 2+2j]] * 2, 2, 'hard'),
                    [[0, 2+2j]] * 2, rtol=1e-12)

    # greater
    greater_result = [0., 0., 2., 2.5, 3., 3.5, 4.]
    assert_allclose(pywt.threshold(data, 2, 'greater'),
                    np.array(greater_result), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'greater'),
                    [[1, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'greater'),
                    [[0, 2]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'greater', substitute=s),
                    [[s, 2]] * 2, rtol=1e-12)
    # greater doesn't allow complex-valued inputs
    assert_raises(ValueError, pywt.threshold, [1j, 2j], 2, 'greater')

    # less
    assert_allclose(pywt.threshold(data, 2, 'less'),
                    np.array([1., 1.5, 2., 0., 0., 0., 0.]), rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'less'),
                    [[1, 0]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 1, 'less', substitute=s),
                    [[1, s]] * 2, rtol=1e-12)
    assert_allclose(pywt.threshold([[1, 2]] * 2, 2, 'less'),
                    [[1, 2]] * 2, rtol=1e-12)

    # less doesn't allow complex-valued inputs
    assert_raises(ValueError, pywt.threshold, [1j, 2j], 2, 'less')

    # invalid
    assert_raises(ValueError, pywt.threshold, data, 2, 'foo')
import numpy as np
import math
from PIL import Image

x = []
f = open('../fft/image1.png_hor.txt', 'r')
for line in f:
	x.append(float(line))

wavelet = pywt.Wavelet('bior2.8')
#levels  = int( math.floor( math.log(image.shape[0], 2) ) )
WaveletCoeffs = pywt.wavedec( x, wavelet, level=None)

#threshold = noiseSigma*math.sqrt(2*math.log(image.size, 2))
threshold = 100*math.sqrt(2*math.log(len(x),2))
NewWaveletCoeffs = map (lambda x: pywt.threshold(x,threshold), WaveletCoeffs)
result = pywt.waverec( NewWaveletCoeffs, wavelet)

plt.figure(1)
plt.subplot(211)
plt.plot(x)
plt.subplot(212)
plt.plot(result)
plt.show()





'''
wavelet = pywt.Wavelet('haar')