示例#1
0
def test_upcoef_reconstruct():
    data = np.arange(3)
    a = pywt.downcoef("a", data, "haar")
    d = pywt.downcoef("d", data, "haar")

    rec = pywt.upcoef("a", a, "haar", take=3) + pywt.upcoef("d", d, "haar", take=3)
    assert_allclose(rec, data)
示例#2
0
    def wavelet_dec(self, wavelet='db1', analyze_level=3):
        sound = self.org_sound
        coeffs = pywt.wavedec(sound, wavelet, level=analyze_level)
        coef_a = coeffs[0]
        coef_d = coeffs[1:]
        approx_array = pywt.upcoef('a', coef_a, wavelet, level=analyze_level)
        approx_array = [approx_array]

        detail_array = list()

        for ii in range(analyze_level):
            detail_array.append(
                pywt.upcoef('d',
                            coef_d[ii],
                            wavelet,
                            level=(analyze_level - ii)))

        self.approx_array = approx_array
        self.detail_array = detail_array
        self.wave_mode = 'wavelet_dec'
        self.level = analyze_level

        approx = ['a' + str(self.level)]
        detail = ['d' + str(self.level - ii) \
                  for ii in np.arange(self.level)]

        col_name = approx + detail
        self.col_name = col_name
        return approx_array, detail_array
示例#3
0
    def wavelet_tree(self, wavelet='db1', analyze_level=6):
        sound = self.org_sound
        # 进行小波包分解
        wp = pywt.WaveletPacket(data=sound, wavelet=wavelet, mode='sym')
        # 获取小波包分解树的各个节点名称
        node_names = [
            node.path for node in wp.get_level(analyze_level, 'natural')
        ]
        # 获取 概要部分节点名称 和 细节部分节点名称
        node_names_approx = node_names[:(2**analyze_level // 2)]
        node_names_detail = node_names[(2**analyze_level // 2):]
        # 分别获取 概要部分的信号 和 细节部分的信号
        approx_array = [pywt.upcoef('a', wp[node].data, wavelet, level=analyze_level) \
                        for node in node_names_approx]
        detail_array = [pywt.upcoef('d', wp[node].data, wavelet, level=analyze_level) \
                        for node in node_names_detail]

        self.approx_array = approx_array
        self.detail_array = detail_array
        self.wave_mode = 'wavelet_tree'
        self.level = analyze_level

        self.col_name = [node.path for node in \
                         wp.get_level(analyze_level, 'natural')]
        return approx_array, detail_array
示例#4
0
def py_wt(str, x, y):
    signal = np.array(df.iloc[:, x:y]).reshape(1, -1)
    signal_wt = pywt.wavedec(signal, 'db5', level=3)
    signal_cA3, signal_cD3, signal_cD2, signal_cD1 = signal_wt

    signal_cA3 = np.array(signal_cA3).flatten()
    signal_cD3 = np.array(signal_cD3).flatten()
    signal_cD2 = np.array(signal_cD2).flatten()
    signal_cD1 = np.array(signal_cD1).flatten()

    signal_cA3_ = pywt.upcoef('a', signal_cA3, 'db5', level=3, take=311)
    signal_cD1_ = pywt.upcoef('d', signal_cD1, 'db5', level=1, take=311)
    signal_cD2_ = pywt.upcoef('d', signal_cD2, 'db5', level=2, take=311)
    signal_cD3_ = pywt.upcoef('d', signal_cD3, 'db5', level=3, take=311)

    signal_cA3_ = signal_cA3_.tolist()
    signal_cD1_ = signal_cD1_.tolist()
    signal_cD2_ = signal_cD2_.tolist()
    signal_cD3_ = signal_cD3_.tolist()
    print("signal_cA3:")
    print(signal_cA3)

    df_signal = pd.DataFrame({
        str + "_cA3": list(signal_cA3_),
        str + "_cD3": list(signal_cD3_),
        str + "_cD2": list(signal_cD2_),
        str + "_cD1": list(signal_cD1_),
    })
    print("df_signal")
    print(df_signal)
    return df_signal
示例#5
0
def test_upcoef_reconstruct():
    data = np.arange(3)
    a = pywt.downcoef('a', data, 'haar')
    d = pywt.downcoef('d', data, 'haar')

    rec = (pywt.upcoef('a', a, 'haar', take=3) +
           pywt.upcoef('d', d, 'haar', take=3))
    assert_allclose(rec, data)
示例#6
0
def test_upcoef_complex():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(4) + 1j * rstate.randn(4)
    nlevels = 3
    a = pywt.upcoef('a', r, 'haar', level=nlevels)
    a_ref = pywt.upcoef('a', r.real, 'haar', level=nlevels)
    a_ref = a_ref + 1j * pywt.upcoef('a', r.imag, 'haar', level=nlevels)
    assert_allclose(a, a_ref)
示例#7
0
def test_upcoef_complex():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(4) + 1j*rstate.randn(4)
    nlevels = 3
    a = pywt.upcoef('a', r, 'haar', level=nlevels)
    a_ref = pywt.upcoef('a', r.real, 'haar', level=nlevels)
    a_ref = a_ref + 1j*pywt.upcoef('a', r.imag, 'haar', level=nlevels)
    assert_allclose(a, a_ref)
示例#8
0
文件: test__pywt.py 项目: aaren/pywt
def test_upcoef_reconstruct():
    data = np.arange(3)
    a = pywt.downcoef('a', data, 'haar')
    d = pywt.downcoef('d', data, 'haar')

    rec = (pywt.upcoef('a', a, 'haar', take=3) +
           pywt.upcoef('d', d, 'haar', take=3))
    assert_allclose(rec, data)
示例#9
0
文件: test__pywt.py 项目: wafels/pywt
def test_upcoef_multilevel():
    r = np.random.randn(4)
    nlevels = 3
    # calling with level=1 nlevels times
    a1 = r.copy()
    for i in range(nlevels):
        a1 = pywt.upcoef('a', a1, 'haar', level=1)
    # call with level=nlevels once
    a3 = pywt.upcoef('a', r, 'haar', level=3)
    assert_allclose(a1, a3)
示例#10
0
def test_upcoef_multilevel():
    r = np.random.randn(4)
    nlevels = 3
    # calling with level=1 nlevels times
    a1 = r.copy()
    for i in range(nlevels):
        a1 = pywt.upcoef('a', a1, 'haar', level=1)
    # call with level=nlevels once
    a3 = pywt.upcoef('a', r, 'haar', level=3)
    assert_allclose(a1, a3)
示例#11
0
def wrcoef(X, coef_type, coeffs, wavename, level):
    N = np.array(X).size
    a, ds = coeffs[0], list(reversed(coeffs[1:]))

    if coef_type =='a':
        return pywt.upcoef('a', a, wavename, level=level)[:N]
    elif coef_type == 'd':
        return pywt.upcoef('d', ds[level-1], wavename, level=level)[:N]
    else:
        raise ValueError("Invalid coefficient type: {}".format(coef_type))
示例#12
0
def wavelet_decomposition(y, wavelet_mother="db8", level_wt=3):
    w = pywt.Wavelet(wavelet_mother)
    coeffs = {}
    wd = {}
    coeffs['cA' + str(level_wt)] = pywt.downcoef('a', y, w, mode='sym', level=level_wt)
    wd['cA' + str(level_wt)] = pywt.upcoef('a', coeffs['cA' + str(level_wt)], w, level=level_wt, take=len(y))
    for i in range(level_wt, 0, -1):
        coeffs['cD' + str(i)] = pywt.downcoef('d', y, w, mode='sym', level=i)
        wd['cD' + str(i)] = pywt.upcoef('d', coeffs['cD' + str(i)], w, level=i, take=len(y)) 
    return (w ,wd, coeffs)
示例#13
0
def test_upcoef_docstring():
    data = [1, 2, 3, 4, 5, 6]
    (cA, cD) = pywt.dwt(data, 'db2', 'smooth')
    rec = pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
    expect = [-0.25, -0.4330127, 1., 2., 3., 4., 5.,
              6., 1.78589838, -1.03108891]
    assert_allclose(rec, expect)
    n = len(data)
    rec = (pywt.upcoef('a', cA, 'db2', take=n) +
           pywt.upcoef('d', cD, 'db2', take=n))
    assert_allclose(rec, data)
示例#14
0
def test_upcoef_multilevel():
    rstate = np.random.RandomState(1234)
    r = rstate.randn(4)
    nlevels = 3
    # calling with level=1 nlevels times
    a1 = r.copy()
    for i in range(nlevels):
        a1 = pywt.upcoef("a", a1, "haar", level=1)
    # call with level=nlevels once
    a3 = pywt.upcoef("a", r, "haar", level=nlevels)
    assert_allclose(a1, a3)
示例#15
0
文件: test__pywt.py 项目: aaren/pywt
def test_upcoef_docstring():
    data = [1, 2, 3, 4, 5, 6]
    (cA, cD) = pywt.dwt(data, 'db2', 'smooth')
    rec = pywt.upcoef('a', cA, 'db2') + pywt.upcoef('d', cD, 'db2')
    expect = [-0.25, -0.4330127, 1., 2., 3., 4., 5.,
              6., 1.78589838, -1.03108891]
    assert_allclose(rec, expect)
    n = len(data)
    rec = (pywt.upcoef('a', cA, 'db2', take=n) +
           pywt.upcoef('d', cD, 'db2', take=n))
    assert_allclose(rec, data)
示例#16
0
    def feature_extraction(self, blocks):
        print 'Feature extraction'
        result = {"features": [], "tags": []}
        i = 0
        n = len(blocks)
        level = 4
        wavelet = 'db4'
        for block in blocks:
            feature = []
            electrodes = [block.f3, block.f4, block.af3, block.af4]
            for electrode in electrodes:
                #Se obtienen las caracteristicas en el dominio del tiempo, media y desviacion estandar.
                feature.append(np.mean(electrode))
                feature.append(np.std(electrode))

                size = len(electrode)
                #Se aplica la transformada wavelet, para la separacion de las bandas de frecuencia.
                wavelet_result = pywt.wavedec(electrode,
                                              wavelet='db4',
                                              level=level)
                alpha = pywt.upcoef('d',
                                    wavelet_result[2],
                                    wavelet='db4',
                                    level=3,
                                    take=size)
                beta = pywt.upcoef('d',
                                   wavelet_result[3],
                                   wavelet='db4',
                                   level=2,
                                   take=size)
                gamma = pywt.upcoef('d',
                                    wavelet_result[4],
                                    wavelet='db4',
                                    level=1,
                                    take=size)

                #Se obtienen las caracteristicas en el dominio de la frecuencia, media y desviacion estandar.
                #ALPHA
                feature.append(np.mean(self.transf(alpha)))
                feature.append(np.std(self.transf(alpha)))
                #BETA
                feature.append(np.mean(self.transf(beta)))
                feature.append(np.std(self.transf(beta)))
                #GAMMA
                feature.append(np.mean(self.transf(gamma)))
                feature.append(np.std(self.transf(gamma)))

            result['features'].append(feature)
            result['tags'].append(block.tag)
        return result
示例#17
0
 def __dwt(X):
     m, n = X.shape
     for i, x in enumerate(X):
         ca, cd = pywt.dwt(x, 'db1')
         tmp_a = pywt.upcoef('a', ca, 'db1', 1, n)
         X[i, :] = tmp_a
     return X
示例#18
0
    def training(self, file_data="user"):
        raw = RawData(file_data)
        blocks = raw.get_blocks_data()
        block = self.get_block(blocks, 'SAD')
        block_happy = self.get_block(blocks, 'HAPPY')
        block_neutral = self.get_block(blocks, 'NEUTRAL')

        #Definicion de los parametros para la aplicacion de la tranformada wavelet
        level = 4
        wavelet = 'db4'
        sensors = [raw.f3, raw.f4, raw.af3, raw.af4]

        for i in range(4):
            n = len(sensors[i])
            #Aplicacion de la transformada wavelet.
            cA4, cD4, cD3, cD2, cD1 = pywt.wavedec(sensors[i],
                                                   wavelet=wavelet,
                                                   level=level)

            #Extraccion de las 5 bandas de frecuencia.
            delta = pywt.upcoef('a', cA4, wavelet=wavelet, level=level, take=n)
            theta = pywt.upcoef('d', cD4, wavelet=wavelet, level=level, take=n)
            alpha = pywt.upcoef('d', cD3, wavelet=wavelet, level=3, take=n)
            beta = pywt.upcoef('d', cD2, wavelet=wavelet, level=2, take=n)
            gamma = pywt.upcoef('d', cD1, wavelet=wavelet, level=1, take=n)

            #Despligue de la grafica luego de la aplicacion de la transformada
            plt.figure(i, figsize=(20, 10))
            plt.subplot(511)
            plt.plot(self.transf(delta))
            plt.ylabel("delta")
            plt.subplot(512)
            plt.plot(self.transf(theta))
            plt.ylabel("theta")
            plt.subplot(513)
            plt.plot(self.transf(alpha))
            plt.ylabel("alpha")
            plt.subplot(514)
            plt.plot(self.transf(beta))
            plt.ylabel("beta")
            plt.subplot(515)
            plt.plot(self.transf(gamma))
            plt.ylabel("gamma")
            plt.savefig('../../imagenes/F' + str(i + 1) + 'ANEXOS_' + user +
                        '.png')
        plt.show()
示例#19
0
 def plotWavelet(self, wavelet, level):
     coeffs = pywt.wavedec(self.y, wavelet, level=level)
     self.yWavelet = pywt.upcoef('a',
                                 coeffs[0],
                                 wavelet,
                                 level=level,
                                 take=len(self.y))
     name = '{}, level:{}'.format(wavelet, str(level))
     plt.plot(self.x, self.yWavelet, label=name)
示例#20
0
def mydwt(y):
    """離散ウェーブレット分解
    """
    ca, cd = pywt.dwt(y.values, 'db1')
    
    n = len(y)
    columns = ['dwt_approx', 'dwt_detail']
    y_dwt = pd.DataFrame(np.zeros([n,len(columns)]), columns=columns, index=y.index)
    
    y_dwt['dwt_approx'] = pywt.upcoef('a', ca, 'db1')
    y_dwt['dwt_detail'] = pywt.upcoef('d', cd, 'db1')
    
    #y_dwt.columns = [columns[0] + '_' + columns[1] for i in range(len(columns))]
    
    #feature_labels = [[y.name, columns[i]] for i in range(len(columns))]
    feature_labels = [[str(y.name), columns[i]] for i in range(len(columns))]
    
    y_dwt.columns = [str(y.name) + '_' + columns[i] for i in range(len(columns))]
    
    return y_dwt, feature_labels
示例#21
0
def reconstruct_without_approx(xs, labels, level, fig=None):
    # reconstruct
    rs = [pywt.upcoef('d', x, 'db4', level=level) for x in xs]

    # generate plot
    if fig is None:
        fig = plt.figure()
    for i, x in enumerate(xs):
        plt.plot((np.abs(x))**2, label="Power of reconstructed signal ({})".format(labels[i]))

    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    return rs, fig
示例#22
0
def py_wt(str, x, y):
    signal = np.array(df.iloc[:, x:y]).reshape(1, -1)
    signal_wt = pywt.wavedec(signal, 'db5', level=3)
    signal_cA3, signal_cD3, signal_cD2, signal_cD1 = signal_wt
    
    signal_cA3 = np.array(signal_cA3).flatten()
    signal_cD3 = np.array(signal_cD3).flatten()
    signal_cD2 = np.array(signal_cD2).flatten()
    signal_cD1 = np.array(signal_cD1).flatten()
    
    signal_cA3_ = pywt.upcoef('a', signal_cA3, 'db5', level=3, take=311)
    signal_cD1_ = pywt.upcoef('d', signal_cD1, 'db5', level=1, take=311)
    signal_cD2_ = pywt.upcoef('d', signal_cD2, 'db5', level=2, take=311)
    signal_cD3_ = pywt.upcoef('d', signal_cD3, 'db5', level=3, take=311)
    
    signal_cA3_ = signal_cA3_.tolist()
    signal_cD1_ = signal_cD1_.tolist()
    signal_cD2_ = signal_cD2_.tolist()
    signal_cD3_ = signal_cD3_.tolist()
    
    return signal_cA3_,signal_cD3_,signal_cD2_,signal_cD1_
示例#23
0
文件: ikmeans.py 项目: rh01/TSWC
    def next_lvl(self) -> None:
        i = self.start_lvl - self.curr_lvl
        self.cur_cA = self.cur_cA + self.cD[i]
        self.cur_cA = pywt.upcoef('a',
                                  self.cur_cA,
                                  self.filter_type,
                                  take=len(self.cD[i + 1]))
        self.curr_lvl -= 1

        self.recunstruct = 2**self.curr_lvl
        self.k *= 2
        return
def wavelet_transform(wave, wavelet, level):
    # Wavelet Transform
    wavelet = pywt.Wavelet(wavelet)
    coeffs = pywt.wavedec(wave, wavelet=wavelet, level=level)
    details_reconstructed = np.zeros(len(wave))
    for i in range(level):
        details_reconstructed = np.vstack((details_reconstructed,
                                           pywt.upcoef(part='d',
                                                       coeffs=coeffs[i + 1],
                                                       wavelet=wavelet,
                                                       level=level - (i),
                                                       take=len(wave))))

    return details_reconstructed[1:]
示例#25
0
def wavelet_packet_rec(X, wavelet, max_level=3):
    """Return the node wise reconstructions of a full wavelet decompositions.

    :param X: Array of size (n, d), where `d` is the number of different signals;
        each will be decomposed separately.
    :param wavelet: Wavelet to use; string will be passed on to PyWavelets.
    :param max_level: Maximum depth of the resulting packet tree.
    :returns: Array of size `(n, d * 2**3)`.
    """
    res = []
    for i in range(X.shape[1]):
        x = X[:, i]
        wp = pywt.WaveletPacket(x, wavelet, maxlevel=max_level)
        for node in wp.get_leaf_nodes(True):
            res.append(pywt.upcoef(node.path[-1], node.data, wavelet, node.level))
    return np.concatenate([i[:, np.newaxis] for i in res], axis=1)
示例#26
0
def get_feature_2(data):
    # fluc, seasonal_c, local_c
    logging.info('get feature v2')
    feature = np.empty((data.shape[0], 3 * config.x_dim), dtype=np.float)
    for i in range(config.x_dim):
        col = data[:, i]
        fluc = col.std() / col.mean() if col.mean() > 0 else col.std()
        diff = col[1440:] - col[:-1440]
        seasonal_c = diff.std()
        cA1, cD1 = pywt.dwt(col, 'db2')
        D1 = pywt.upcoef('d', cD1, 'db2', 1)
        local_c = D1.std()

        feature[:, i * 3] = [fluc] * len(data)
        feature[:, i * 3 + 1] = [seasonal_c] * len(data)
        feature[:, i * 3 + 2] = [local_c] * len(data)
    return feature
示例#27
0
def ReconUsingUpcoef(signal, wname='db4', level=3):

    w = Wavelet(wname)
    X = signal
    #coeffs = wavedec(a, w, mode='symmetric', level=level, axis=-1)
    coeffs = []

    for i in range(level):
        a, d = dwt(X, w, mode='symmetric', axis=-1)
        coeffs.append(d)

    coeffs.append(a)
    coeffs.reverse()

    ca = coeffs[0]
    n = len(X)
    return upcoef('a', ca, w, take=n, level=level)
示例#28
0
def DwtRec(signal, wavelet, level):
    # 返回的是每一层的分量,即将原始信号进行了频带分解,时间长度与原始序列signal等长
    # 每一层对应一行
    CoeffsRev = []
    Coeffs = DWT(signal, wavelet=wavelet, level=level)
    for row in range(level + 1):
        if row == 0:
            # 重构近似系数,即低频分量
            leveltype = level
            part = 'a'
        else:
            # 重构细节系数,即高频分量
            leveltype = level - row + 1
            part = 'd'
        EachLevelRev = pywt.upcoef(part,
                                   Coeffs[row],
                                   wavelet=wavelet,
                                   level=leveltype,
                                   take=len(signal))
        CoeffsRev.append(EachLevelRev)
    return np.array(CoeffsRev)
示例#29
0
 def wv_signal_decomprs(self, signal_df):
     """
     Make a compression of the input signals with a discrete wavelet
     transform.
     """
     signal_wv_list = []
     # and decompress data effectively. take=self.original_signal_len
     for signal_name in self.signals_names:
         temp_wv_list = pywt.upcoef('a',
                                    signal_df[signal_name],
                                    self.wv_sel,
                                    level=self.wv_order).tolist()
         signal_wv_list.append(temp_wv_list)
         print("Signal length after decompression: {}".format(
             len(signal_wv_list[0])))
     # Create and return the output dataframe with the compressed signals
     output_df = pd.DataFrame()
     for i, signal in enumerate(self.signals_names):
         output_df[signal] = \
                     self.correct_deco_len(self.original_signal_df[signal],
                                           signal_wv_list[i])
     return output_df
# For the scaling function, we need to compute the inverse DWT with a delta
# for the approximation coefficients. (All detail coefficients are set 
# to zero.)

# EY : 20150703 note on using PyWavelets
# to make a custom Wavelet, you need to specify lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters for a Filter Bank
# how do we get the lowpass and highpass decomposition filters from the highpass reconstruction filters?
# see my note in my pdf/LaTeX writeup, note on Sec. 6.2. of Strang and Nguyen
# the answer is to just reverse the order cf. http://www.pybytes.com/pywavelets/regression/wavelet.html
c = f0[::-1] 
d = f1[::-1]
dec_lo, dec_hi, rec_lo, rec_hi = np.hstack(c), np.hstack(d), np.hstack(f0), np.hstack(f1)
filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi ]
DaubechiesWavelet = pywt.Wavelet(name="DaubechiesWavelet", filter_bank=filter_bank)

y =  pywt.upcoef('a', [1.,0.], DaubechiesWavelet, numlevels)
phi = M*np.append(0, y[0:L])

# For the wavelet, we need to compute the inverse DWT with a delta for the 
# detail coefficients. (All approximation coefficients and all detail
# coefficients at finer scales are set to zero.)
y = pywt.upcoef('d', [1.,0.], DaubechiesWavelet, numlevels)                       # Inverse DWT
w = M*np.append(0,y[0:L])

# Determine the time vector.
t = np.vstack(np.array(range(L+1)))/M

# Plot the results.
plt.figure(1)
plt.plot(t,phi,'-',label="Scaling function")
plt.plot(t,w,'--',label="Wavelet")
示例#31
0
import pywt
#--信号data---
cA, cD1, cD2, cD3 = pywt.wavedec(data, 'haar', level=3)  #分解
data = pywt.waverec([cA, cD1, cD2, cD3], 'haar')  #重构
x1 = pywt.upcoef('a', cA, 'haar', level=3, take=N)  #计算第3层尺度系数的信号,长度为N
x2 = pywt.upcoef('d', cD1, 'haar', level=3, take=N)  #计算第3层细节系数的信号,长度为N
示例#32
0
def Beat_analysis_preproc(*args):
    nargin = len(args)
    if nargin == 0:
        print('pas d' 'entree correcte pour la location de l' 'onde R')
        return
    elif nargin == 1:
        signal = args[0]
        level_max_BLD = 8
        wavelet_BLD = 'sym4'
        build_level_BLD = 8
        level_max_DEN = 3
        wavelet_DEN = 'sym4'
    elif nargin == 2:
        signal = args[0]
        level_max_BLD = args[1]
        wavelet_BLD = 'sym4'
        build_level_BLD = args[1]
        level_max_DEN = 3
        wavelet_DEN = 'sym4'
    elif nargin == 3:
        signal = args[0]
        level_max_BLD = args[1]
        wavelet_BLD = args[2]
        build_level_BLD = args[1]
        level_max_DEN = 3
        wavelet_DEN = 'sym4'
    elif nargin == 4:
        signal = args[0]
        level_max_BLD = args[1]
        wavelet_BLD = args[2]
        build_level_BLD = args[3]
        level_max_DEN = 3
        wavelet_DEN = 'sym4'
    elif nargin == 5:
        signal = args[0]
        level_max_BLD = args[1]
        wavelet_BLD = args[2]
        build_level_BLD = args[3]
        level_max_DEN = args[4]
        wavelet_DEN = 'sym4'
    else:
        signal = args[0]
        level_max_BLD = args[1]
        wavelet_BLD = args[2]
        build_level_BLD = args[3]
        level_max_DEN = args[4]
        wavelet_DEN = args[5]
    varargout = list()
    if level_max_BLD:
        coeffs = pywt.wavedec(signal, wavelet_BLD, 'sym', level_max_BLD)
        baseline = pywt.upcoef('a', coeffs[0], 'sym4', 8,
                               take=len(signal) + 6)[:int(len(signal))]
        signal_basrem = signal - baseline

        varargout.append(signal_basrem)
        varargout.append(baseline)
    else:
        signal_basrem = signal
        varargout.append(signal_basrem)
        varargout.append(np.zeros((len(signal))))

    if level_max_DEN:
        deb = signal[0]
        sig_basrem_d1 = WDen.wden(signal_basrem - deb, 'sqtwolog', 'soft',
                                  'sln', level_max_DEN, wavelet_DEN) + deb
        sig_basrem_d2 = WDen.wden(signal_basrem - deb, 'minimaxi', 'soft',
                                  'sln', level_max_DEN, wavelet_DEN) + deb
        varargout.append(sig_basrem_d1)
        varargout.append(sig_basrem_d2)
    else:
        varargout.append(signal_basrem)
        varargout.append(signal_basrem)

    return varargout[0], varargout[1], varargout[2], varargout[3]
示例#33
0
df_day_of_week = df.iloc[:, 7:8]
df_holiday = df.iloc[:, 8:9]
df_load = df.iloc[:, 9:10]

printc("用db5小波进行yes_ave 3层分解")
yes_ave = np.array(df.iloc[:, 1:2]).reshape(1, -1)
# print(ML.shape)
yes_ave_wt = pywt.wavedec(yes_ave, 'db5', level=3)
yes_ave_cA3, yes_ave_cD3, yes_ave_cD2, yes_ave_cD1 = yes_ave_wt

yes_ave_cA3 = np.array(yes_ave_cA3).flatten()
yes_ave_cD3 = np.array(yes_ave_cD3).flatten()
yes_ave_cD2 = np.array(yes_ave_cD2).flatten()
yes_ave_cD1 = np.array(yes_ave_cD1).flatten()

yes_ave_cA3_ = pywt.upcoef('a', yes_ave_cA3, 'db5', level=3, take=311)
yes_ave_cD1_ = pywt.upcoef('d', yes_ave_cD1, 'db5', level=1, take=311)
yes_ave_cD2_ = pywt.upcoef('d', yes_ave_cD2, 'db5', level=2, take=311)
yes_ave_cD3_ = pywt.upcoef('d', yes_ave_cD3, 'db5', level=3, take=311)

yes_ave_cA3_ = yes_ave_cA3_.tolist()
yes_ave_cD1_ = yes_ave_cD1_.tolist()
yes_ave_cD2_ = yes_ave_cD2_.tolist()
yes_ave_cD3_ = yes_ave_cD3_.tolist()

print(yes_ave_cA3)

printc("用db5小波进行yes_load 3层分解")
yes_load = np.array(df.iloc[:, 2:3]).reshape(1, -1)
# print(ML.shape)
yes_load_wt = pywt.wavedec(yes_load, 'db5', level=3)
示例#34
0
# to zero.)

# EY : 20150703 note on using PyWavelets
# to make a custom Wavelet, you need to specify lowpass and highpass decomposition filters and lowpass and highpass reconstruction filters for a Filter Bank
# how do we get the lowpass and highpass decomposition filters from the highpass reconstruction filters?
# see my note in my pdf/LaTeX writeup, note on Sec. 6.2. of Strang and Nguyen
# the answer is to just reverse the order cf. http://www.pybytes.com/pywavelets/regression/wavelet.html
c = f0[::-1]
d = f1[::-1]
dec_lo, dec_hi, rec_lo, rec_hi = np.hstack(c), np.hstack(d), np.hstack(
    f0), np.hstack(f1)
filter_bank = [dec_lo, dec_hi, rec_lo, rec_hi]
DaubechiesWavelet = pywt.Wavelet(name="DaubechiesWavelet",
                                 filter_bank=filter_bank)

y = pywt.upcoef('a', [1., 0.], DaubechiesWavelet, numlevels)
phi = M * np.append(0, y[0:L])

# For the wavelet, we need to compute the inverse DWT with a delta for the
# detail coefficients. (All approximation coefficients and all detail
# coefficients at finer scales are set to zero.)
y = pywt.upcoef('d', [1., 0.], DaubechiesWavelet, numlevels)  # Inverse DWT
w = M * np.append(0, y[0:L])

# Determine the time vector.
t = np.vstack(np.array(range(L + 1))) / M

# Plot the results.
plt.figure(1)
plt.plot(t, phi, '-', label="Scaling function")
plt.plot(t, w, '--', label="Wavelet")
示例#35
0
# df.to_excel("cjp2.xlsx",sheet_name="xcjp",index=False,header=True)

##########################################################################
##########################################################################
printc("用db5小波进行日前发电量3层分解")
DAG = np.array(df.iloc[:, 5:6]).reshape(1, -1)
# print(ML.shape)
DAG_wt = pywt.wavedec(DAG, 'db5', level=3)
DAG_cA3, DAG_cD3, DAG_cD2, DAG_cD1 = DAG_wt

DAG_cA3 = np.array(DAG_cA3).flatten()
DAG_cD3 = np.array(DAG_cD3).flatten()
DAG_cD2 = np.array(DAG_cD2).flatten()
DAG_cD1 = np.array(DAG_cD1).flatten()

DAG_cA3_ = pywt.upcoef('a', DAG_cA3, 'db5', level=3, take=311)
DAG_cD1_ = pywt.upcoef('d', DAG_cD1, 'db5', level=1, take=311)
DAG_cD2_ = pywt.upcoef('d', DAG_cD2, 'db5', level=2, take=311)
DAG_cD3_ = pywt.upcoef('d', DAG_cD3, 'db5', level=3, take=311)

DAG_cA3_ = DAG_cA3_.tolist()
DAG_cD1_ = DAG_cD1_.tolist()
DAG_cD2_ = DAG_cD2_.tolist()
DAG_cD3_ = DAG_cD3_.tolist()

printc("用db5小波进行周前发电量3层分解")
WC = np.array(df.iloc[:, 4:5]).reshape(1, -1)
WC_wt = pywt.wavedec(WC, 'db5', level=3)
WC_cA3, WC_cD3, WC_cD2, WC_cD1 = WC_wt

WC_cA3 = np.array(WC_cA3).flatten()
def wavelet_transform(data, wavelet='db2', mode='reflect'):
    (cA, cD) = pywt.dwt(data, wavelet, mode)
    return pywt.upcoef('a',cA,wavelet,take = len(data)), \
            pywt.upcoef('d',cD,wavelet,take = len(data))
示例#37
0
def progressive_lowcut_series(series):
    """Progressively remove low-frequency components of 1D series.

    Yields sequence in which the low-frequency (large-scale) components
    of `series` are progressively removed.  The sequence is obtained
    from reconstrution of a multilevel discrete haar wavelet
    decompositon of `series`.

    N.B.: The length of `series` is assumed to be a power of 2
    (does not check!)

    Parameters
    ----------
    series : array_like
        1D data series with a length that is a power of 2

    Yields
    -------
    lowcut_series : array
        Sequence of progressively lowcut filtered data `series`. The
        yielded series have the same length as `series`.

    Notes
    -----
    After an N level discrete wavelet decomposition, a data series S can
    be reconstructed in terms of wavelet 'approximations' (A) and
    'details' (D)::

        S = A(N) + D(N) + D(N-1) ... D(2) + D(1)
          = A(N-1) + D(N-1) + ... D(2) + D(1)        [A(N-1) = A(N) + D(N)]
            ...
          = A(1) + D(1)                              [(A(1) = A(2) + D(2)]

    where A(N) represents the 'lowest' level approximation [e.g., for
    the haar wavelet and a complete decomposition of dyadic length data,
    A(N) is equal to mean(S)]

    The sequence returned by this function is::

        S - A(N),
        S - A(N-1),
        S - A(N-2),
        ...,
        S - A(1)

    This sequence is computed by the equivalent::

        S - A(N),
        S - A(N) - D(N),
        S - A(N) - D(N) - D(N-1),
        ...,
        S - A(N) - D(N) - D(N-1) - ... - D(2),

    i.e. the details are removed in sequence::

        lowcut = S - A(N)
        for j = N to 2
            lowcut = lowcut - D(j)

    """

    series_data = np.asarray(series)
    wavelet = pywt.Wavelet('haar')
    nlevel = pywt.dwt_max_level(series_data.size, wavelet.dec_len)
    decomp_coef = pywt.wavedec(series_data, wavelet=wavelet, level=nlevel)
    cAn, cD = decomp_coef[0], decomp_coef[1:]
    lowcut_series = series_data - pywt.upcoef('a', cAn, wavelet, level=nlevel)
    yield lowcut_series
    for j, cDj in enumerate(cD[:-1]):
        Dj = pywt.upcoef('d', cDj, wavelet, level=nlevel - j)
        lowcut_series -= Dj
        yield lowcut_series
示例#38
0
def approx(x, wavelet, level):
    ca = pywt.wavedec(x, wavelet, level=level)
    ca = ca[0]
    return pywt.upcoef('a', ca, wavelet, level, take=len(x))  
示例#39
0
def progressive_lowcut_series(series):
    """Progressively remove low-frequency components of 1D series.

    Yields sequence in which the low-frequency (large-scale) components
    of `series` are progressively removed.  The sequence is obtained
    from reconstruction of a multilevel discrete haar wavelet
    decomposition of `series`.

    N.B.: The length of `series` is assumed to be a power of 2
    (does not check!)

    Parameters
    ----------
    series : array_like
        1D data series with a length that is a power of 2

    Yields
    -------
    lowcut_series : array
        Sequence of progressively lowcut filtered data `series`. The
        yielded series have the same length as `series`.

    Notes
    -----
    After an N level discrete wavelet decomposition, a data series S can
    be reconstructed in terms of wavelet 'approximations' (A) and
    'details' (D)::

        S = A(N) + D(N) + D(N-1) ... D(2) + D(1)
          = A(N-1) + D(N-1) + ... D(2) + D(1)     [A(N-1) = A(N) + D(N)]
            ...
          = A(1) + D(1)                           [(A(1) = A(2) + D(2)]

    where A(N) represents the 'lowest' level approximation. For
    the haar wavelet and data S having a length that is a power of 2,
    A(N) is equal to mean(S)]

    The sequence returned by this function is::

        S - A(N),
        S - A(N-1),
        S - A(N-2),
        ...,
        S - A(1)

    This sequence is computed by the equivalent::

        S - A(N),
        S - A(N) - D(N),
        S - A(N) - D(N) - D(N-1),
        ...,
        S - A(N) - D(N) - D(N-1) - ... - D(2),

    i.e. the details are removed in sequence::

        lowcut = S - A(N)
        for j = N to 2
            lowcut -= D(j)

    """

    series_data = np.asarray(series)
    wavelet = pywt.Wavelet("haar")
    nlevel = pywt.dwt_max_level(series_data.size, wavelet.dec_len)
    decomp_coef = pywt.wavedec(series_data, wavelet=wavelet, level=nlevel)
    cAn, cD = decomp_coef[0], decomp_coef[1:]
    lowcut_series = series_data - pywt.upcoef("a", cAn, wavelet, level=nlevel)
    yield lowcut_series
    for j, cDj in enumerate(cD[:-1]):
        Dj = pywt.upcoef("d", cDj, wavelet, level=nlevel - j)
        lowcut_series -= Dj
        yield lowcut_series