示例#1
0
 def test_site_nc(self):
     '''Pull met data using the nc files
     '''
     attributes = ["power", "wind_direction", "wind_speed", "temperature",
                   "pressure","density"]
     leap_day = True
     utc = True
     start = pandas.Timestamp('2007-08-01', tz='utc')
     end = pandas.Timestamp('2007-08-15', tz='utc')
     wind_data = get_nc_data("102445", start, end, attributes=attributes, leap_day=leap_day, utc=utc, nc_dir=WIND_MET_NC_DIR)
     expected = [9.53277647e-01, 2.16432190e+02, 4.99592876e+00, 2.92580750e+02,
                 1.01280258e+05, 1.17889750e+00]
     numpy.testing.assert_allclose(expected, wind_data.ix[0].values)
     self.assertEqual(14*24*12+1, len(wind_data)) # End is inclusive of midnight
     utc = False
     start = pandas.Timestamp('2007-08-01', tz='America/New_York')
     end = pandas.Timestamp('2007-08-15', tz='America/New_York')
     # The files return Standard Time rather than Daylight Savings time
     #2007,7,31,23,0,1.176,2.7840000000000003,101219.832,290.957,251.209,6.839
     #2007,8,1,0,0,1.177,2.458,101206.096,290.874,248.353,6.595
     # Testing as though local time should use DST where appropriate
     expected = [2.78404403e+00, 2.51209885e+02, 6.83912182e+00, 2.90957336e+02,
                 1.01219828e+05, 1.17690361e+00]
     wind_data = get_nc_data("102445", start, end, attributes=attributes, leap_day=leap_day, utc=utc, nc_dir=WIND_MET_NC_DIR)
     numpy.testing.assert_allclose(expected, wind_data.ix[0].values)
     self.assertEqual(14*24*12+1, len(wind_data)) # End is inclusive of midnight
示例#2
0
 def test_partial_year(self):
     '''Match site data from forecast nc files
     '''
     # UTC
     start = pandas.Timestamp('2007-01-01', tz='utc')
     end = pandas.Timestamp('2007-01-02', tz='utc')
     fcst_data = get_nc_data("53252",
                             start,
                             end,
                             utc=True,
                             nc_dir=WIND_FCST_DIR)
     self.assertEqual(start, fcst_data.index[0])
     # From ncdump, all values are float32 which do not compare easily to
     # python floats which are float64
     expected = numpy.array([
         6.2671943, 8.6079865, 6.7353525, 6.384234, 0.26309761, 3.6874273,
         1.4196928, 0.53551841, 10.572015, 13.249797, 10.526829, 10.306773
     ],
                            dtype='float32')
     self.assertEqual(25, len(fcst_data))
     self.assertTrue(numpy.array_equal(expected, list(fcst_data.ix[0])))
     ex_dict = dict(zip(FORECAST_ATTRS, expected))
     # Verify column names are correct
     for k, v in ex_dict.items():
         self.assertEqual(v, fcst_data.ix[0][k])
     # Local
     #start = pandas.Timestamp('2007-01-01', tz='America/Denver')
     #end = pandas.Timestamp('2007-01-02', tz='America/Denver')
     fcst_data = get_nc_data("53252",
                             start,
                             end,
                             utc=False,
                             nc_dir=WIND_FCST_DIR)
     self.assertEqual(start, fcst_data.index[0])
     # From ncdump, all values are float32 which do not compare easily to
     # python floats which are float64
     expected = numpy.array([
         6.2671943, 8.6079865, 6.7353525, 6.384234, 0.26309761, 3.6874273,
         1.4196928, 0.53551841, 10.572015, 13.249797, 10.526829, 10.306773
     ],
                            dtype='float32')
     self.assertEqual(25, len(fcst_data))
     self.assertTrue(numpy.array_equal(expected, list(fcst_data.ix[0])))
     ex_dict = dict(zip(FORECAST_ATTRS, expected))
     # Verify column names are correct
     for k, v in ex_dict.items():
         self.assertEqual(v, fcst_data.ix[0][k])
示例#3
0
 def test_multiple_years(self):
     '''Match site data from forecast nc files for multiple years
     '''
     # UTC
     start = pandas.Timestamp('2007-01-01', tz='utc')
     end = pandas.Timestamp('2008-08-02', tz='utc')
     fcst_data = get_nc_data("53252",
                             start,
                             end,
                             utc=True,
                             nc_dir=WIND_FCST_DIR)
     self.assertEqual(start, fcst_data.index[0])
     self.assertEqual(end, fcst_data.index[-1])
示例#4
0
 def test_aws_wind_data(self):
     '''Pull nc data from AWS
     '''
     #filename = os.path.join(os.path.dirname(__file__), "53252.nc")
     nc_dir = "s3://nrel-pds-wtk/wtk-techno-economic/pywtk-data/met_data"
     #wkt = "POINT(-103.128662109375 40.24179856487036)"
     attributes = [
         "power", "wind_direction", "wind_speed", "temperature", "pressure",
         "density"
     ]
     #attributes = ["power"]
     #names = ["2011"]
     leap_day = False
     utc = False
     start = pandas.Timestamp('2011-01-01', tz='America/Denver')
     end = pandas.Timestamp('2011-12-31 23:59:59', tz='America/Denver')
     #wind_data = get_nc_data_from_file(filename, start, end, attributes=attributes, leap_day=leap_day, utc=utc)
     wind_data = get_nc_data("53252",
                             start,
                             end,
                             attributes=attributes,
                             leap_day=leap_day,
                             utc=utc,
                             nc_dir=nc_dir)
     #wind_data = wind_dict["53252"]
     #Year,Month,Day,Hour,Minute,density at hub height (kg/m^3),power (MW),surface air pressure (Pa),air temperature at 2m (K),wind direction at 100m (deg),wind speed at 100m (m/s)
     #first_line = [2011,1,1,0,0,1.1320000000000001,15.359,85467.688,259.591,318.124,11.844]
     # Match to the higher accuracy of the nc dataset
     expected = [
         15.35958480834961, 318.1243896484375, 11.844223022460938,
         259.5919494628906, 85467.6875, 1.132704496383667
     ]
     #expected_dict = dict(zip(["density", "power", "pressure", "temperature", "wind_direction", "wind_speed"], first_line[5:]))
     expected_dict = dict(
         zip([
             'power', 'wind_direction', 'wind_speed', 'temperature',
             'pressure', 'density'
         ], expected))
     self.assertEqual(expected_dict, wind_data.iloc[0].to_dict())
     #print map(float, wind_data.ix[0].values)
     #print wind_data.columns.values
     self.assertEqual(365 * 24 * 12, len(wind_data))
示例#5
0
文件: flask_wtk.py 项目: NREL/pywtk
def met_data():
    '''Return met data from the nc files as to_json representation of pandas
    dataframe.

    Required parameters:
        sites | wkt - string of comma-separated site_ids or Well known text geometry
        start - unix timestamp of start time
        end - unix timestamp of end time

    Optional parameters:
        orient - Pandas dataframe to_json orientation, defaults to records:
            split, records, index, columns or values
            See Pandas documentation for more info
        max_point_return - Maximum number of closest sites to a POINT wkt, defaults
            to 1.  Will be ignored for all other cases.
        attributes - string attributes separated by commas to return, will fail
                     if attribute is not valid for the data set
        leap_day - Bool to include leap day.  Defaults to True
        utc - Bool to use UTC rather than site local time.  Defaults to True

    Returns:
        dict of site id to json representation of dataframes
    '''
    if len(request.args) == 0:
        return send_from_directory('static', 'met.html')
    try:
        sites = get_sites_from_request(request)
        start = pandas.Timestamp(request.args.get('start', type=int),
                                 unit="s",
                                 tz='utc')
        end = pandas.Timestamp(request.args.get('end', type=int),
                               unit="s",
                               tz='utc')
        orient = request.args.get("orient", "records")
        if orient not in ["split", "records", "index", "columns", "values"]:
            return jsonify({
                "success":
                False,
                "message":
                "Orient must be one of split, records, index, columns or values"
            }), 400
        if "attributes" in request.args:
            attributes = request.args.get("attributes", "").split(",")
            if not set(attributes) <= set(MET_ATTRS):
                return jsonify({
                    "success":
                    False,
                    "message":
                    "Attributes must be a subset of %s" % MET_ATTRS
                }), 400
        else:
            attributes = MET_ATTRS
        ret_dict = {}
        for site_id in sites['site_id']:
            #ret_dict[site_id] = get_wind_data(site_id, start, end).to_json()
            ret_dict[str(site_id)] = json.loads(
                get_nc_data(
                    site_id,
                    start,
                    end,
                    attributes=attributes,
                    leap_day=True,
                    utc=False,
                    nc_dir=MET_LOC).reset_index().to_json(orient=orient))
        return jsonify(ret_dict)
    except Exception as e:
        return jsonify({"success": False, "message": str(e)}), 400