示例#1
0
from pyxvis.io.data import load_features
from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import cross_validation

# List of classifiers
ss_cl = [
    'dmin', 'lda', 'qda', 'maha', 'knn3', 'knn5', 'knn7', 'knn11', 'knn15',
    'bayes-naive', 'bayes-kde', 'adaboost', 'lr', 'rf', 'tree', 'svm-lin',
    'svm-rbf(0.1,1)', 'svm-rbf(0.1,0.5)', 'svm-rbf(0.5,1)',
    'svm-pol(0.05,0.1,2)', 'svm-pol(0.05,0.5,2)', 'svm-pol(0.05,0.5,3)',
    'svm-sig(0.1,1)', 'svm-sig(0.1,0.5)', 'svm-sig(0.5,1)', 'nn(10,)',
    'nn(20,)', 'nn(12,6)', 'nn(20,10,4)'
]

(X, d) = load_features('../data/G3/G3',
                       full=1)  # load training and testing data

n = len(ss_cl)
folds = 10
acc = np.zeros((n, ))
for k in range(n):
    (name, params) = clf_model(ss_cl[k])  # function name and parameters
    acc[k] = cross_validation([name, params], X, d, folds=folds)
    print(f'{k:3d}' + ') ' + f'{ss_cl[k]:20s}' + ': ' +
          f'CV-Accuracy = {acc[k]:.4f}')
ks = np.argmax(acc)

print('-----------------------------------------------')
print('Best Classifier:')
print(f'{ks:3d}' + ') ' + f'{ss_cl[ks]:20s}' + ': ' +
      f'CV-Accuracy = {acc[ks]:.4f}')
示例#2
0
from sklearn.model_selection import train_test_split

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_confusion_matrix
from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import hold_out

# load available dataset
(X0, d0) = load_features('../data/F2/F2', full=1)

# definition of training and testing data
X, Xt, d, dt = train_test_split(X0, d0, test_size=0.2, stratify=d0)

# definition of the classifier
cl_name = 'svm-rbf(0.1,1)'  # generic name of the classifier
(name, params) = clf_model(cl_name)  # function name and parameters

# Hold-out (train on (X,d), test on (Xt), compare with dt)
ds, acc, _ = hold_out([name, params], X, d, Xt, dt)  # hold out
print(cl_name + ': ' + f'Accuracy = {acc:.4f}')

# display confusion matrix
show_confusion_matrix(dt, ds, 'Testing subset')
示例#3
0
from pyxvis.io.data import load_features
from pyxvis.io.plots import show_confusion_matrix
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X, d, Xt,
 dt) = load_features('../data/F2/F2')  # load training and testing data

# Classifier definition
ss_cl = ['dmin', 'svm-rbf(0.1,1)']
n = len(ss_cl)
for k in range(n):
    (name, params) = clf_model(ss_cl[k])  # function name and parameters
    clf = define_classifier([name, params])  # classifier definition
    clf = train_classifier(clf, X, d)  # classifier training
    ds = test_classifier(clf, Xt)  # classification of testing
    show_confusion_matrix(dt, ds, ss_cl[k])  # display confusion matrix
示例#4
0
import numpy as np
from pyxvis.learning.classifiers import nn_definition
from pyxvis.learning.classifiers import nn_forward_propagation, nn_backward_propagation
from pyxvis.learning.classifiers import nn_parameters_update, nn_loss_function
from pyxvis.io.plots import plot_features_y,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

# Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest)   = load_features('../data/G4/G4',categorical=1)       
plot_features_y(Xtrain,Ytrain,'Training Subset')

# Definitions
N           = Xtrain.shape[1]    # training samples
n_0         = Xtrain.shape[0]    # number of inputs (X)
n_m         = Ytrain.shape[0]    # number of outputs (Y)
tmax        = 1000               # max number of iterations
alpha       = 10                 # learning rate
loss_eps    = 0.01               # stop if loss<loss_eps
nh          = [6,12]             # nodes of hidden layers
n           = [n_0]+nh+[n_m]     # nodes of each layer
m           = len(n)-1
ltrain      = np.zeros([tmax,1]) # training loss

# Training
t     = -1
train =  1
W,b   = nn_definition(n,N)                            # (step 1)
while train:
    t         = t+1
    a         = nn_forward_propagation(Xtrain,W,b)    # (step 2)
    dW,db     = nn_backward_propagation(Ytrain,a,W,b) # (step 3)
示例#5
0
from sklearn.neural_network import MLPClassifier
from pyxvis.io.plots import plot_features2,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

# Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest)   = load_features('../data/G4/G4')       
plot_features2(Xtrain,Ytrain,'Training+Testing Subsets')

# Definitions
alpha       = 1e-5     # learning rate
nh          = (6,12)   # nodes of hidden layers
tmax        = 2000     # max number of iterations
solver      = 'adam'   # optimization approach ('lbfgs','sgd', 'adam') 

# Training
net = MLPClassifier(solver=solver, alpha=alpha,hidden_layer_sizes=nh, 
                    random_state=1,max_iter=tmax)
print(Xtrain.shape)
print(Ytrain.shape)
net.fit(Xtrain, Ytrain)

# Evaluation
Ym  = net.predict(Xtrain)
show_confusion_matrix(Ym,Ytrain,'Training')

Ys  = net.predict(Xtest)
show_confusion_matrix(Ys,Ytest,'Testing')
示例#6
0
from pyxvis.learning.evaluation import best_features_classifier

dataname = 'fbdata'  # prefix of npy files of training and testing data
fxnew = 1  # the features are (0) loaded or (1) extracted and saved
if fxnew:
    # features to extract
    fx = ['basicint', 'gabor-ri', 'lbp-ri', 'haralick-2', 'fourier', 'hog']
    # feature extraction in training images
    path = '../images/fishbones/'
    X, d = extract_features_labels(fx, path + 'train', 'jpg')
    # feature extraction in testing images
    Xt, dt = extract_features_labels(fx, path + 'test', 'jpg')
    # backup of extracted features
    save_features(X, d, Xt, dt, dataname)
else:
    X, d, Xt, dt = load_features(dataname)

X, sclean, a, b = clean_norm(X)
Xt = clean_norm_transform(Xt, sclean, a, b)

# Classifiers to evaluate
ss_cl = [
    'maha', 'bayes-kde', 'svm-lin', 'svm-rbf', 'qda', 'lda', 'knn3', 'knn7',
    'nn'
]

# Number of features to select
ff = [3, 5, 10, 12, 15]

# Feature selectors to evaluate
ss_fs = ['fisher', 'qda', 'svm-lin', 'svm-rbf']
示例#7
0
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

# List of classifiers
ss_cl = [
    'dmin', 'lda', 'qda', 'maha', 'knn3', 'knn5', 'knn7', 'knn11', 'knn15',
    'bayes-naive', 'bayes-kde', 'adaboost', 'lr', 'rf', 'tree', 'svm-lin',
    'svm-rbf(0.1,1)', 'svm-rbf(0.1,0.5)', 'svm-rbf(0.5,1)',
    'svm-pol(0.05,0.1,2)', 'svm-pol(0.05,0.5,2)', 'svm-pol(0.05,0.5,3)',
    'svm-sig(0.1,1)', 'svm-sig(0.1,0.5)', 'svm-sig(0.5,1)', 'nn(10,)',
    'nn(20,)', 'nn(12,6)', 'nn(20,10,4)'
]

(X, d, Xt,
 dt) = load_features('../data/G3/G3')  # load training and testing data

n = len(ss_cl)
acc_train = np.zeros((n, ))
acc_test = np.zeros((n, ))
for k in range(n):
    (name, params) = clf_model(ss_cl[k])  # function name and parameters
    clf = define_classifier([name, params])  # classifier definition
    clf = train_classifier(clf, X, d)  # classifier training
    d0 = test_classifier(clf, X)  # classification of training
    ds = test_classifier(clf, Xt)  # classification of testing
    acc_train[k] = accuracy_score(d, d0)  # accuracy in training
    acc_test[k] = accuracy_score(dt, ds)  # accuracy in testing
    print(f'{k:3d}' + ') ' + f'{ss_cl[k]:20s}' + ': ' +
          f'Acc-Train = {acc_train[k]:.4f}' + '   ' +
          f'Acc-Test = {acc_test[k]:.4f}')
示例#8
0
         Xt : matrix of testing features, one sample per row
         dt : vector of testing labels
         s  : string with the name of the model
         p  : number of features to be selected
[OUTPUT] q  : indices of selected features (columns)
         X  : new matrix of training features
         Xt : new matrix of testing features
"""

from sklearn.neighbors import KNeighborsClassifier as KNN
from pyxvis.features.selection import fse_model, fsel
from pyxvis.io.data import load_features
from pyxvis.io.plots import print_confusion

# Definition of input variables
(X, d, Xt, dt) = load_features('../data/F40/F40')
s = 'lda'
p = 5

# Feature selection
(name, params) = fse_model(s)
q = fsel([name, params], X, d, p, cv=5, show=1)
print(str(len(q)) + ' from ' + str(X.shape[1]) + ' features selected.')

# New training and testing data
X = X[:, q]
Xt = Xt[:, q]

# Classification and Evaluation
clf = KNN(n_neighbors=5)
clf.fit(X, d)
示例#9
0
"""
[INPUT]  X  : training features (matrix of N x p elements)
         d  : vector of training labels (vector of N elements)
         Xt : testing features (matrix of Nt x p elements)
         dt : vector of training labels (vector of Nt elements)
         s  : string with the name of the model
[OUTPUT] ds : classification (vector of Nt elements)
         clf: trained classifier
"""
from pyxvis.io.data import load_features
from pyxvis.io.plots import print_confusion
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

# Definition of input variables
(X, d, Xt, dt) = load_features('../data/G3/G3')
s = 'knn5'

# Training and Testing
(name, params) = clf_model(s)  # function name and parameters
clf = define_classifier([name, params])  # classifier definition
clf = train_classifier(clf, X, d)  # classifier training
ds = test_classifier(clf, Xt)  # classification on testing

# Evaluation of performance
print_confusion(dt, ds)
示例#10
0
from sklearn.metrics import precision_recall_curve, average_precision_score
from sklearn.metrics import roc_curve, roc_auc_score

from pyxvis.io.data import load_features
from pyxvis.io.plots import plot_features, plot_ROC, plot_precision_recall
from pyxvis.learning.classifiers import clf_model, define_classifier, train_classifier

(X, d, Xt, dt) = load_features('../data/F2/F2')  # load train/test data
plot_features(X, d, 'F2 dataset')  # plot of feature space

ss_cl = ['nn(3,)', 'nn(4,)', 'nn(8,)']  # classifiers to evaluate

curve = 1  # 0 = ROC curve, 1 = precision/recall curve
n = len(ss_cl)  # number of models

for k in range(n):
    cl_name = ss_cl[k]
    name, params = clf_model(cl_name)  # function name and parameters
    clf = define_classifier([name, params])  # classifier definition
    clf = train_classifier(clf, X, d)  # classifier training
    p = clf.predict_proba(Xt)[:, 1]  # classification probabilities

    if curve == 0:  # ROC curve
        auc = roc_auc_score(dt, p)  # area under curve
        fpr, tpr, _ = roc_curve(dt, p)  # false and true positive rates
        plot_ROC(fpr, tpr, cl_name, auc, (k, n))  # ROC curve
    else:  # precision/recall curve
        ap = average_precision_score(dt, p)  # area under curve
        pr, re, _ = precision_recall_curve(dt,
                                           p)  # precision and recall values
        plot_precision_recall(pr, re, cl_name, ap,