for model in g.config['detection_sequence']: # instaniate the right model # after instantiation run all files with it, # so no need to do 2x instantiations t_start = datetime.datetime.now() if model == 'object': if g.config['ml_gateway']: m = ObjectRemote() else: # print ("G LOGGER {}".format(g.logger)) m = object_detection.Object(logger=g.logger, options=g.config) elif model == 'hog': m = hog.Hog(options=g.config) elif model == 'face': if g.config['ml_gateway']: m = FaceRemote() else: try: import pyzm.ml.face as face except ImportError: g.logger.Error( 'Error importing face recognition. Make sure you did sudo -H pip3 install face_recognition' ) raise m = face.Face(logger=g.logger, options=g.config, upsample_times=g.config['face_upsample_times'], num_jitters=g.config['face_num_jitters'], model=g.config['face_model'])
def main_handler(): # set up logging to syslog # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument('-c', '--config', help='config file with path') ap.add_argument('-e', '--eventid', help='event ID to retrieve') ap.add_argument('-p', '--eventpath', help='path to store object image file', default='') ap.add_argument('-m', '--monitorid', help='monitor id - needed for mask') ap.add_argument('-v', '--version', help='print version and quit', action='store_true') ap.add_argument( '-o', '--output-path', help='internal testing use only - path for debug images to be written') ap.add_argument('-f', '--file', help='internal testing use only - skips event download') ap.add_argument('-r', '--reason', help='reason for event (notes field in ZM)') ap.add_argument('-n', '--notes', help='updates notes field in ZM with detections', action='store_true') ap.add_argument('-d', '--debug', help='enables debug on console', action='store_true') args, u = ap.parse_known_args() args = vars(args) if args.get('version'): print('hooks:{} pyzm:{}'.format(hooks_version, pyzm_version)) exit(0) if not args.get('config'): print('--config required') exit(1) if not args.get('file') and not args.get('eventid'): print('--eventid required') exit(1) utils.get_pyzm_config(args) if args.get('debug'): g.config['pyzm_overrides']['dump_console'] = True if args.get('monitorid'): log.init(name='zmesdetect_' + 'm' + args.get('monitorid'), override=g.config['pyzm_overrides']) else: log.init(name='zmesdetect', override=g.config['pyzm_overrides']) g.logger = log es_version = '(?)' try: es_version = subprocess.check_output( ['/usr/bin/zmeventnotification.pl', '--version']).decode('ascii') except: pass try: import cv2 except ImportError as e: g.logger.Fatal( f'{e}: You might not have installed OpenCV as per install instructions. Remember, it is NOT automatically installed' ) g.logger.Info( '---------| pyzm version: {}, ES version: {} , OpenCV version: {}|------------' .format(__version__, es_version, cv2.__version__)) # load modules that depend on cv2 try: import zmes_hook_helpers.image_manip as img import pyzm.ml.alpr as alpr except Exception as e: g.logger.Error(f'{e}') exit(1) g.polygons = [] # process config file g.ctx = ssl.create_default_context() utils.process_config(args, g.ctx) # misc came later, so lets be safe if not os.path.exists(g.config['base_data_path'] + '/misc/'): try: os.makedirs(g.config['base_data_path'] + '/misc/') except FileExistsError: pass # if two detects run together with a race here if not g.config['ml_gateway']: g.logger.Info('Importing local classes for Object/Face') import pyzm.ml.object as object_detection import pyzm.ml.hog as hog else: g.logger.Info('Importing remote shim classes for Object/Face') from zmes_hook_helpers.apigw import ObjectRemote, FaceRemote, AlprRemote # now download image(s) if not args.get('file'): try: filename1, filename2, filename1_bbox, filename2_bbox = utils.download_files( args) except Exception as e: g.logger.Error(f'Error downloading files: {e}') g.logger.Fatal('error: Traceback:{}'.format( traceback.format_exc())) # filename_alarm will be the first frame to analyze (typically alarm) # filename_snapshot will be the second frame to analyze only if the first fails (typically snapshot) else: g.logger.Debug( 1, 'TESTING ONLY: reading image from {}'.format(args.get('file'))) filename1 = args.get('file') filename1_bbox = g.config['image_path'] + '/' + append_suffix( filename1, '-bbox') filename2 = None filename2_bbox = None start = datetime.datetime.now() obj_json = [] # Read images to analyze image2 = None image1 = cv2.imread(filename1) if image1 is None: # can't have this None, something went wrong g.logger.Error( 'Error reading {}. It either does not exist or is invalid'.format( filename1)) raise ValueError( 'Error reading file {}. It either does not exist or is invalid'. format(filename1)) oldh, oldw = image1.shape[:2] if filename2: # may be none image2 = cv2.imread(filename2) if image2 is None: g.logger.Error( 'Error reading {}. It either does not exist or is invalid'. format(filename2)) raise ValueError( 'Error reading file {}. It either does not exist or is invalid' .format(filename2)) # create a scaled polygon for object intersection checks if not g.polygons and g.config['only_triggered_zm_zones'] == 'no': g.polygons.append({ 'name': 'full_image', 'value': [(0, 0), (oldw, 0), (oldw, oldh), (0, oldh)], 'pattern': g.config.get('object_detection_pattern') }) g.logger.Debug( 1, 'No polygon area specfied, so adding a full image polygon:{}'. format(g.polygons)) if g.config['resize'] != 'no': g.logger.Debug( 1, 'resizing to {} before analysis...'.format(g.config['resize'])) image1 = imutils.resize(image1, width=min(int(g.config['resize']), image1.shape[1])) if image2 is not None: image2 = imutils.resize(image2, width=min(int(g.config['resize']), image2.shape[1])) newh, neww = image1.shape[:2] utils.rescale_polygons(neww / oldw, newh / oldh) # Apply all configured models to each file matched_file = None bbox = [] label = [] conf = [] classes = [] use_alpr = True if 'alpr' in g.config['detection_sequence'] else False g.logger.Debug(1, 'User ALPR if vehicle found: {}'.format(use_alpr)) # labels that could have license plates. See https://github.com/pjreddie/darknet/blob/master/data/coco.names for model in g.config['detection_sequence']: # instaniate the right model # after instantiation run all files with it, # so no need to do 2x instantiations t_start = datetime.datetime.now() if model == 'object': if g.config['ml_gateway']: m = ObjectRemote() else: # print ("G LOGGER {}".format(g.logger)) m = object_detection.Object(logger=g.logger, options=g.config) elif model == 'hog': m = hog.Hog(options=g.config) elif model == 'face': if g.config['ml_gateway']: m = FaceRemote() else: try: import pyzm.ml.face as face except ImportError: g.logger.Error( 'Error importing face recognition. Make sure you did sudo -H pip3 install face_recognition' ) raise m = face.Face(logger=g.logger, options=g.config, upsample_times=g.config['face_upsample_times'], num_jitters=g.config['face_num_jitters'], model=g.config['face_model']) elif model == 'alpr': if g.config['alpr_use_after_detection_only'] == 'yes': #g.logger.Debug (1,'Skipping ALPR as it is configured to only be used after object detection') continue # we would have handled it after object else: g.logger.Info( 'Standalone ALPR is not supported today. Please use after object' ) continue else: g.logger.Error('Invalid model {}'.format(model)) raise ValueError('Invalid model {}'.format(model)) #g.logger.Debug(1,'|--> model:{} init took: {}s'.format(model, (datetime.datetime.now() - t_start).total_seconds())) # read the detection pattern we need to apply as a filter pat = model + '_detection_pattern' try: g.logger.Debug( 2, 'using g.config[\'{}\']={}'.format(pat, g.config[pat])) r = re.compile(g.config[pat]) except re.error: g.logger.Error('invalid pattern {} in {}, using .*'.format( pat, g.config[pat])) r = re.compile('.*') t_start = datetime.datetime.now() try_next_image = False # take the best of both images, currently used only by alpr # temporary holders, incase alpr is used but not found saved_bbox = [] saved_labels = [] saved_conf = [] saved_classes = [] saved_image = None saved_file = None # Apply the model to all files remote_failed = False # default order is alarm, snapshot frame_order = [ filename2, filename1 ] if g.config['bestmatch_order'] == 's,a' else [filename1, filename2] for filename in frame_order: if filename is None: continue #filename = './car.jpg' if matched_file and filename != matched_file: # this will only happen if we tried model A, we found a match # and then we looped to model B to find more matches (that is, detection_mode is all) # in this case, we only want to match more models to the file we found a first match g.logger.Debug( 1, 'Skipping {} as we earlier matched {}'.format( filename, matched_file)) continue g.logger.Debug(1, 'Using model: {} with {}'.format(model, filename)) image = image1 if filename == filename1 else image2 original_image = image.copy() if g.config['ml_gateway'] and not remote_failed: try: b, l, c = remote_detect(original_image, model) except Exception as e: g.logger.Error('Error executing remote API: {}'.format(e)) if g.config['ml_fallback_local'] == 'yes': g.logger.Info('Falling back to local execution...') remote_failed = True if model == 'object': import pyzm.ml.object as object_detection m = object_detection.Object(logger=g.logger, options=g.config) elif model == 'hog': import pyzm.ml.hog as hog m = hog.Hog(options=g.config) elif model == 'face': import pyzm.ml.face as face m = face.Face( options=g.config, upsample_times=g.config['face_upsample_times'], num_jitters=g.config['face_num_jitters'], model=g.config['face_model']) b, l, c = m.detect(original_image) else: raise else: b, l, c = m.detect(original_image) #g.logger.Debug(1,'|--> model:{} detection took: {}s'.format(model,(datetime.datetime.now() - t_start).total_seconds())) t_start = datetime.datetime.now() # Now look for matched patterns in bounding boxes match = list(filter(r.match, l)) # If you want face recognition, we need to add the list of found faces # to the allowed list or they will be thrown away during the intersection # check if model == 'face': match = match + [g.config['unknown_face_name']] # unknown face if g.config['ml_gateway'] and not remote_failed: data_file = g.config[ 'base_data_path'] + '/misc/known_face_names.json' if os.path.exists(data_file): g.logger.Debug( 1, 'Found known faces list remote gateway supports. If you have trained new faces in the remote gateway, please delete this file' ) with open(data_file) as json_file: data = json.load(json_file) g.logger.Debug( 2, 'Read from existing names: {}'.format( data['names'])) m.set_classes(data['names']) else: g.logger.Debug( 1, 'Fetching known names from remote gateway') api_url = g.config[ 'ml_gateway'] + '/detect/object?type=face_names' r = requests.post(url=api_url, headers=auth_header, params={}) data = r.json() with open(data_file, 'w') as json_file: wdata = {'names': data['names']} json.dump(wdata, json_file) ''' for cls in m.get_classes(): if not cls in match: match = match + [cls] ''' # now filter these with polygon areas #g.logger.Debug (1,"INTERIM BOX = {} {}".format(b,l)) b, l, c = img.processFilters(b, l, c, match, model) if use_alpr: vehicle_labels = ['car', 'motorbike', 'bus', 'truck', 'boat'] if not set(l).isdisjoint(vehicle_labels) or try_next_image: # if this is true, that ,means l has vehicle labels # this happens after match, so no need to add license plates to filter g.logger.Debug( 1, 'Invoking ALPR as detected object is a vehicle or, we are trying hard to look for plates...' ) if g.config['ml_gateway']: alpr_obj = AlprRemote() else: alpr_obj = alpr.Alpr(logger=g.logger, options=g.config) if g.config['ml_gateway'] and not remote_failed: try: alpr_b, alpr_l, alpr_c = remote_detect( original_image, 'alpr') except Exception as e: g.logger.Error( 'Error executing remote API: {}'.format(e)) if g.config['ml_fallback_local'] == 'yes': g.logger.Info( 'Falling back to local execution...') remote_failed = True alpr_obj = alpr.Alpr(logger=g.logger, options=g.config) alpr_b, alpr_l, alpr_c = alpr_obj.detect( original_image) else: raise else: # not ml_gateway alpr_b, alpr_l, alpr_c = alpr_obj.detect( original_image) alpr_b, alpr_l, alpr_c = img.getValidPlateDetections( alpr_b, alpr_l, alpr_c) if len(alpr_l): #g.logger.Debug (1,'ALPR returned: {}, {}, {}'.format(alpr_b, alpr_l, alpr_c)) try_next_image = False # First get non plate objects for idx, t_l in enumerate(l): otype = 'face' if model == 'face' else 'object' obj_json.append({ 'type': otype, 'label': t_l, 'box': b[idx], 'confidence': "{:.2f}%".format(c[idx] * 100) }) # Now add plate objects for i, al in enumerate(alpr_l): g.logger.Debug( 2, 'ALPR Found {} at {} with score:{}'.format( al, alpr_b[i], alpr_c[i])) b.append(alpr_b[i]) l.append(al) c.append(alpr_c[i]) obj_json.append({ 'type': 'licenseplate', 'label': al, 'box': alpr_b[i], #'confidence': alpr_c[i] 'confidence': "{:.2f}%".format(alpr_c[i] * 100) }) elif filename == filename1 and filename2: # no plates, but another image to try g.logger.Debug( 1, 'We did not find license plates in vehicles, but there is another image to try' ) saved_bbox = b saved_labels = l saved_conf = c saved_classes = m.get_classes() saved_image = image.copy() saved_file = filename try_next_image = True else: # no plates, no more to try g.logger.Info( 'We did not find license plates, and there are no more images to try' ) if saved_bbox: g.logger.Debug( 2, 'Going back to matches in first image') b = saved_bbox l = saved_labels c = saved_conf image = saved_image filename = saved_file # store non plate objects otype = 'face' if model == 'face' else 'object' for idx, t_l in enumerate(l): obj_json.append({ 'type': otype, 'label': t_l, 'box': b[idx], 'confidence': "{:.2f}%".format(c[idx] * 100) }) try_next_image = False else: # objects, no vehicles if filename == filename1 and filename2: g.logger.Debug( 1, 'There was no vehicle detected by object detection in this image' ) ''' # For now, don't force ALPR in the next (snapshot image) # only do it if object_detection gets a vehicle there # may change this later try_next_image = True saved_bbox = b saved_labels = l saved_conf = c saved_classes = m.get_classes() saved_image = image.copy() saved_file = filename ''' else: g.logger.Debug( 1, 'No vehicle detected, and no more images to try') if saved_bbox: g.logger.Debug( 1, 'Going back to matches in first image') b = saved_bbox l = saved_labels c = saved_conf image = saved_image filename = saved_file try_next_image = False otype = 'face' if model == 'face' else 'object' for idx, t_l in enumerate(l): obj_json.append({ 'type': 'object', 'label': t_l, 'box': b[idx], 'confidence': "{:.2f}%".format(c[idx] * 100) }) else: # usealpr g.logger.Debug( 2, 'ALPR not in use, no need for look aheads in processing') # store objects otype = 'face' if model == 'face' else 'object' for idx, t_l in enumerate(l): obj_json.append({ 'type': otype, 'label': t_l, 'box': b[idx], 'confidence': "{:.2f}%".format(c[idx] * 100) }) if b: # g.logger.Debug (1,'ADDING {} and {}'.format(b,l)) if not try_next_image: bbox.extend(b) label.extend(l) conf.extend(c) classes.append(m.get_classes()) g.logger.Info('labels found: {}'.format(l)) g.logger.Debug( 2, 'match found in {}, breaking file loop...'.format( filename)) matched_file = filename break # if we found a match, no need to process the next file else: g.logger.Debug( 2, 'Going to try next image before we decide the best one to use' ) else: g.logger.Debug( 1, 'No match found in {} using model:{}'.format( filename, model)) # file loop # model loop if matched_file and g.config['detection_mode'] == 'first': g.logger.Debug( 2, 'detection mode is set to first, breaking out of model loop...' ) break # all models loops, all files looped #g.logger.Debug (1,'FINAL LIST={} AND {}'.format(bbox,label)) # Now create prediction string pred = '' if not matched_file: g.logger.Info('No patterns found using any models in all files') else: # we have matches if matched_file == filename1: #image = image1 bbox_f = filename1_bbox else: #image = image2 bbox_f = filename2_bbox # let's remove past detections first, if enabled if g.config['match_past_detections'] == 'yes' and args.get( 'monitorid'): # point detections to post processed data set g.logger.Info('Removing matches to past detections') bbox_t, label_t, conf_t = img.processPastDetection( bbox, label, conf, args.get('monitorid')) # save current objects for future comparisons g.logger.Debug( 1, 'Saving detections for monitor {} for future match'.format( args.get('monitorid'))) try: mon_file = g.config['image_path'] + '/monitor-' + args.get( 'monitorid') + '-data.pkl' f = open(mon_file, "wb") pickle.dump(bbox, f) pickle.dump(label, f) pickle.dump(conf, f) f.close() except Exception as e: g.logger.Error( f'Error writing to {mon_file}, past detections not recorded:{e}' ) bbox = bbox_t label = label_t conf = conf_t # now we draw boxes g.logger.Debug(2, "Drawing boxes around objects") out = img.draw_bbox(image, bbox, label, classes, conf, None, g.config['show_percent'] == 'yes') image = out if g.config['frame_id'] == 'bestmatch': if matched_file == filename1: prefix = '[a] ' # we will first analyze alarm frame_type = 'alarm' else: prefix = '[s] ' frame_type = 'snapshot' else: prefix = '[x] ' frame_type = g.config['frame_id'] if g.config['write_debug_image'] == 'yes': g.logger.Debug( 1, 'Writing out debug bounding box image to {}...'.format(bbox_f)) cv2.imwrite(bbox_f, image) # Do this after match past detections so we don't create an objdetect if images were discarded if g.config['write_image_to_zm'] == 'yes': if (args.get('eventpath') and len(bbox)): g.logger.Debug( 1, 'Writing detected image to {}/objdetect.jpg'.format( args.get('eventpath'))) cv2.imwrite(args.get('eventpath') + '/objdetect.jpg', image) jf = args.get('eventpath') + '/objects.json' final_json = {'frame': frame_type, 'detections': obj_json} g.logger.Debug(1, 'Writing JSON output to {}'.format(jf)) try: with open(jf, 'w') as jo: json.dump(final_json, jo) jo.close() except Exception as e: g.logger.Error(f'Error creating {jf}:{e}') if g.config['create_animation'] == 'yes': g.logger.Debug(1, 'animation: Creating burst...') try: img.createAnimation( frame_type, args.get('eventid'), args.get('eventpath') + '/objdetect', g.config['animation_types']) except Exception as e: g.logger.Error('Error creating animation:{}'.format(e)) g.logger.Error('animation: Traceback:{}'.format( traceback.format_exc())) else: if not len(bbox): g.logger.Debug( 1, 'Not writing image, as no objects recorded') else: g.logger.Error( 'Could not write image to ZoneMinder as eventpath not present' ) detections = [] seen = {} if not obj_json: # if we broke out early/first match otype = 'face' if model == 'face' else 'object' for idx, t_l in enumerate(label): #print (idx, t_l) obj_json.append({ 'type': otype, 'label': t_l, 'box': bbox[idx], 'confidence': "{:.2f}%".format(conf[idx] * 100) }) #g.logger.Debug (1,'CONFIDENCE ARRAY:{}'.format(conf)) for idx, l in enumerate(label): if l not in seen: if g.config['show_percent'] == 'no': pred = pred + l + ',' else: pred = pred + l + ':{:.0%}'.format(conf[idx]) + ' ' seen[l] = 1 if pred != '': pred = pred.rstrip(',') pred = prefix + 'detected:' + pred g.logger.Info('Prediction string:{}'.format(pred)) # g.logger.Error (f"Returning THIS IS {obj_json}") jos = json.dumps(obj_json) g.logger.Debug(1, 'Prediction string JSON:{}'.format(jos)) print(pred + '--SPLIT--' + jos) # end of matched_file if g.config['delete_after_analyze'] == 'yes': try: if filename1: os.remove(filename1) if filename2: os.remove(filename2) except Exception as e: g.logger.Error(f'Could not delete file(s):{e}') if args.get('notes') and pred: # We want to update our DB notes with the detection string g.logger.Debug(1, 'Updating notes for EID:{}'.format(args.get('eventid'))) import pyzm.api as zmapi api_options = { 'apiurl': g.config['api_portal'], 'portalurl': g.config['portal'], 'user': g.config['user'], 'password': g.config['password'], 'logger': g.logger # We connect the API to zmlog #'logger': None, # use none if you don't want to log to ZM, #'disable_ssl_cert_check': True } try: myapi = zmapi.ZMApi(options=api_options) except Exception as e: g.logger.Error('Error during login: {}'.format(str(e))) g.logger.Debug(2, traceback.format_exc()) exit(0) # Let's continue with zmdetect url = '{}/events/{}.json'.format(g.config['api_portal'], args['eventid']) try: ev = myapi._make_request(url=url, type='get') except Exception as e: g.logger.Error('Error during event notes retrieval: {}'.format( str(e))) g.logger.Debug(2, traceback.format_exc()) exit(0) # Let's continue with zmdetect new_notes = pred if ev.get('event', {}).get('Event', {}).get('Notes'): old_notes = ev['event']['Event']['Notes'] old_notes_split = old_notes.split('Motion:') old_d = old_notes_split[0] # old detection try: old_m = old_notes_split[1] except IndexError: old_m = '' new_notes = pred + 'Motion:' + old_m g.logger.Debug( 1, 'Replacing old note:{} with new note:{}'.format( old_notes, new_notes)) payload = {} payload['Event[Notes]'] = new_notes try: ev = myapi._make_request(url=url, payload=payload, type='put') except Exception as e: g.logger.Error('Error during notes update: {}'.format(str(e))) g.logger.Debug(2, traceback.format_exc()) exit(0) # Let's continue with zmdetect