示例#1
0
def union_exons(refbed):
    '''
	take the union of all exons defined in refbed file and build bitset
	'''
    from qcmodule import BED
    tmp = BED.ParseBED(refbed)
    all_exons = tmp.getExon()
    unioned_exons = BED.unionBed3(all_exons)
    exon_ranges = build_bitsets(unioned_exons)
    return exon_ranges
示例#2
0
def process_gene_model(gene_model):
	print >>sys.stderr, "processing " + gene_model + ' ...',
	obj = BED.ParseBED(gene_model)
	utr_3 = obj.getUTR(utr=3)
	utr_5 = obj.getUTR(utr=5)
	cds_exon = obj.getCDSExon()
	intron = obj.getIntron()
	
	intron = BED.unionBed3(intron)
	cds_exon=BED.unionBed3(cds_exon)
	utr_5 = BED.unionBed3(utr_5)
	utr_3 = BED.unionBed3(utr_3)
	
	utr_5 = BED.subtractBed3(utr_5,cds_exon)
	utr_3 = BED.subtractBed3(utr_3,cds_exon)
	intron = BED.subtractBed3(intron,cds_exon)
	intron = BED.subtractBed3(intron,utr_5)
	intron = BED.subtractBed3(intron,utr_3)
	
	intergenic_up_1kb = obj.getIntergenic(direction="up",size=1000)
	intergenic_down_1kb = obj.getIntergenic(direction="down",size=1000)
	intergenic_up_5kb = obj.getIntergenic(direction="up",size=5000)
	intergenic_down_5kb = obj.getIntergenic(direction="down",size=5000)	
	intergenic_up_10kb = obj.getIntergenic(direction="up",size=10000)
	intergenic_down_10kb = obj.getIntergenic(direction="down",size=10000)
	
	#merge integenic region
	intergenic_up_1kb=BED.unionBed3(intergenic_up_1kb)
	intergenic_up_5kb=BED.unionBed3(intergenic_up_5kb)
	intergenic_up_10kb=BED.unionBed3(intergenic_up_10kb)
	intergenic_down_1kb=BED.unionBed3(intergenic_down_1kb)
	intergenic_down_5kb=BED.unionBed3(intergenic_down_5kb)
	intergenic_down_10kb=BED.unionBed3(intergenic_down_10kb)	
	
	#purify intergenic region
	intergenic_up_1kb=BED.subtractBed3(intergenic_up_1kb,cds_exon)
	intergenic_up_1kb=BED.subtractBed3(intergenic_up_1kb,utr_5)
	intergenic_up_1kb=BED.subtractBed3(intergenic_up_1kb,utr_3)
	intergenic_up_1kb=BED.subtractBed3(intergenic_up_1kb,intron)
	intergenic_down_1kb=BED.subtractBed3(intergenic_down_1kb,cds_exon)
	intergenic_down_1kb=BED.subtractBed3(intergenic_down_1kb,utr_5)
	intergenic_down_1kb=BED.subtractBed3(intergenic_down_1kb,utr_3)
	intergenic_down_1kb=BED.subtractBed3(intergenic_down_1kb,intron)	

	#purify intergenic region
	intergenic_up_5kb=BED.subtractBed3(intergenic_up_5kb,cds_exon)
	intergenic_up_5kb=BED.subtractBed3(intergenic_up_5kb,utr_5)
	intergenic_up_5kb=BED.subtractBed3(intergenic_up_5kb,utr_3)
	intergenic_up_5kb=BED.subtractBed3(intergenic_up_5kb,intron)
	intergenic_down_5kb=BED.subtractBed3(intergenic_down_5kb,cds_exon)
	intergenic_down_5kb=BED.subtractBed3(intergenic_down_5kb,utr_5)
	intergenic_down_5kb=BED.subtractBed3(intergenic_down_5kb,utr_3)
	intergenic_down_5kb=BED.subtractBed3(intergenic_down_5kb,intron)	
	
	#purify intergenic region
	intergenic_up_10kb=BED.subtractBed3(intergenic_up_10kb,cds_exon)
	intergenic_up_10kb=BED.subtractBed3(intergenic_up_10kb,utr_5)
	intergenic_up_10kb=BED.subtractBed3(intergenic_up_10kb,utr_3)
	intergenic_up_10kb=BED.subtractBed3(intergenic_up_10kb,intron)
	intergenic_down_10kb=BED.subtractBed3(intergenic_down_10kb,cds_exon)
	intergenic_down_10kb=BED.subtractBed3(intergenic_down_10kb,utr_5)
	intergenic_down_10kb=BED.subtractBed3(intergenic_down_10kb,utr_3)
	intergenic_down_10kb=BED.subtractBed3(intergenic_down_10kb,intron)	
	
	#build intervalTree 
	cds_exon_ranges = build_bitsets(cds_exon)
	utr_5_ranges = build_bitsets(utr_5)
	utr_3_ranges = build_bitsets(utr_3)
	intron_ranges = build_bitsets(intron)
	interg_ranges_up_1kb_ranges = build_bitsets(intergenic_up_1kb)
	interg_ranges_up_5kb_ranges = build_bitsets(intergenic_up_5kb)
	interg_ranges_up_10kb_ranges = build_bitsets(intergenic_up_10kb)
	interg_ranges_down_1kb_ranges = build_bitsets(intergenic_down_1kb)
	interg_ranges_down_5kb_ranges = build_bitsets(intergenic_down_5kb)
	interg_ranges_down_10kb_ranges = build_bitsets(intergenic_down_10kb)
	
	exon_size = cal_size(cds_exon)
	intron_size = cal_size(intron)
	utr3_size = cal_size(utr_3)
	utr5_size = cal_size(utr_5)
	int_up1k_size = cal_size(intergenic_up_1kb)
	int_up5k_size = cal_size(intergenic_up_5kb)
	int_up10k_size = cal_size(intergenic_up_10kb)
	int_down1k_size = cal_size(intergenic_down_1kb)
	int_down5k_size = cal_size(intergenic_down_5kb)
	int_down10k_size = cal_size(intergenic_down_10kb)
	
	print >>sys.stderr, "Done"
	return (cds_exon_ranges,intron_ranges,utr_5_ranges,utr_3_ranges,\
			interg_ranges_up_1kb_ranges,interg_ranges_up_5kb_ranges,interg_ranges_up_10kb_ranges,\
			interg_ranges_down_1kb_ranges,interg_ranges_down_5kb_ranges,interg_ranges_down_10kb_ranges,\
			exon_size,intron_size,utr5_size,utr3_size,\
			int_up1k_size,int_up5k_size,int_up10k_size,\
			int_down1k_size,int_down5k_size,int_down10k_size)
def main():
    usage = "%prog [options]"
    parser = OptionParser(usage, version="%prog " + __version__)

    parser.add_option("-i",
                      "--bwfile",
                      action="store",
                      type="string",
                      dest="BigWig_File",
                      help="Input BigWig file. [required]")
    parser.add_option("-o",
                      "--output",
                      action="store",
                      type="string",
                      dest="output_wig",
                      help="Output wig file. [required]")
    parser.add_option(
        "-s",
        "--chromSize",
        action="store",
        type="string",
        dest="chromSize",
        help=
        "Chromosome size file. Tab or space separated text file with 2 columns: first column is chromosome name, second column is size of the chromosome. [required]"
    )
    parser.add_option(
        "-t",
        "--wigsum",
        action="store",
        type="int",
        dest="total_wigsum",
        default=100000000,
        help=
        "Specified wigsum. 100000000 equals to coverage of 1 million 100nt reads. default=%default  [optional]"
    )
    parser.add_option("-r",
                      "--refgene",
                      action="store",
                      type="string",
                      dest="refgene_bed",
                      help="Reference gene model in bed format. [optional]")
    parser.add_option(
        "-c",
        "--chunk",
        action="store",
        type="int",
        dest="chunk_size",
        default=500000,
        help=
        "Chromosome chunk size. Each chomosome will be cut into samll chunks of this size. Decrease chunk size will save more RAM. default=%default (bp) [optional]"
    )
    parser.add_option(
        "-f",
        "--format",
        action="store",
        type="string",
        dest="out_format",
        default="bgr",
        help=
        "Output format. either \"wig\" or \"bgr\". \"bgr\" save disk space but make program slower. default=%default"
    )
    (options, args) = parser.parse_args()

    if not (options.BigWig_File and options.output_wig and options.chromSize):
        parser.print_help()
        sys.exit(0)

    OUT = open(options.output_wig, 'w')
    bw = BigWigFile(file=open(options.BigWig_File))
    chrom_sizes = load_chromsize(options.chromSize)
    exons = []
    WIG_SUM = 0.0
    if (options.refgene_bed):
        print >> sys.stderr, "Extract exons from " + options.refgene_bed
        obj = BED.ParseBED(options.refgene_bed)
        exons = obj.getExon()
        print >> sys.stderr, "Merge overlapping exons ..."
        exons = BED.unionBed3(exons)
        print >> sys.stderr, "Calculate wigsum covered by " + options.refgene_bed + ' only'
        for chrom, st, end in exons:
            try:
                bw.get_as_array(chrom, 0, 1).size
            except:
                continue

            bw_signal = bw.get_as_array(chrom, st, end)
            tmp = numpy.nansum(
                bw_signal
            )  #nan will be ignored. but if all items are 'nan', the result summay is 'nan' NOT 0
            if numpy.isnan(tmp): continue
            WIG_SUM += tmp
        print >> sys.stderr, "Total wigsum is %.2f\n" % WIG_SUM
    else:
        print >> sys.stderr, "Calculate wigsum from " + options.BigWig_File
        for chr_name, chr_size in chrom_sizes.items():  #iterate each chrom
            #if chr_name != "chrY":continue
            try:
                bw.get_as_array(chr_name, 0, 1).size
            except:
                print >> sys.stderr, "Skip " + chr_name + "!"
                continue

            print >> sys.stderr, "Processing " + chr_name + " ..."
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                bw_signal = bw.get_as_array(interval[0], interval[1],
                                            interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                WIG_SUM += tmp
        print >> sys.stderr, "\nTotal wigsum is %.2f\n" % WIG_SUM

    try:
        weight = options.total_wigsum / WIG_SUM
    except:
        "Error, WIG_SUM cannot be 0"
        eys.exit(1)

    #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    print >> sys.stderr, "Normalizing bigwig file ..."
    for chr_name, chr_size in chrom_sizes.items():  #iterate each chrom
        #if chr_name != "chrY":continue
        try:
            bw.get_as_array(chr_name, 0, 1).size
        except:
            print >> sys.stderr, "Skip " + chr_name + "!"
            continue

        if options.out_format.upper() == "WIG":
            print >> sys.stderr, "Writing " + chr_name + " ..."
            OUT.write('variableStep chrom=' + chr_name + '\n')
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                coord = interval[1]
                bw_signal = bw.get_as_array(chr_name, interval[1], interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                bw_signal = numpy.nan_to_num(bw_signal) * weight
                for v in bw_signal:
                    coord += 1
                    if v != 0: print >> OUT, "%d\t%.2f" % (coord, v)
        elif options.out_format.upper() == "BGR":
            print >> sys.stderr, "Writing " + chr_name + " ..."
            #OUT.write('variableStep chrom='+chr_name+'\n')
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                v2p = collections.defaultdict(list)  #value to position
                range2p = {
                }  #coorindate range to value, bedgraph. #[start]=[len,value]
                coord = interval[1]
                bw_signal = bw.get_as_array(chr_name, interval[1], interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                bw_signal = numpy.nan_to_num(bw_signal) * weight
                for v in bw_signal:
                    coord += 1
                    #if v != 0: print >>OUT, "%d\t%.2f" % (coord,v)
                    if v != 0: v2p[v].append(coord)
                for v in v2p:
                    for k, g in groupby(enumerate(v2p[v]), lambda
                                        (i, x): i - x):
                        for l in [map(itemgetter(1), g)]:
                            range2p[l[0] - 1] = [len(l), v]
                for i in sorted(range2p):
                    print >> OUT, chr_name + '\t' + str(i) + '\t' + str(
                        i + range2p[i][0]) + '\t' + str(range2p[i][1])
        else:
            print >> sys.stderr, "unknown output format"
            sys.exit(1)
def main():
	usage="%prog [options]" + '\n' + __doc__ + "\n"
	parser = OptionParser(usage,version="%prog " + __version__)
	parser.add_option("-i","--input-file",action="store",type="string",dest="input_file",help="Alignment file in BAM or SAM format. BAM file should be sorted and indexed.")
	parser.add_option("-r","--genelist",action="store",type="string",dest="gene_list",help="Gene list in bed foramt. All reads hits to exon regions (defined by this gene list) will be saved into one BAM file, the remaining reads will saved into another BAM file.")
	parser.add_option("-o","--out-prefix",action="store",type="string",dest="output_prefix",help="Prefix of output BAM files. \"prefix.in.bam\" file contains reads mapped to the gene list specified by \"-r\", \"prefix.ex.bam\" contains reads that cannot mapped to gene list. \"prefix.junk.bam\" contains qcfailed or unmapped reads.")
	(options,args)=parser.parse_args()
		
	if not (options.input_file and options.gene_list):
		parser.print_help()
		sys.exit(0)
	if not os.path.exists(options.gene_list):
		print >>sys.stderr, '\n\n' + options.gene_list + " does NOT exists" + '\n'
		#parser.print_help()
		sys.exit(0)
	if not os.path.exists(options.input_file):
		print >>sys.stderr, '\n\n' + options.input_file + " does NOT exists" + '\n'
		sys.exit(0)		
	
	#build bitset for gene list
	print >>sys.stderr, 'reading ' + options.gene_list + ' ... ',
	obj = BED.ParseBED(options.gene_list)
	exons = obj.getExon()
	exon_ranges = build_bitsets(exons)
	print >>sys.stderr, 'Done'
	
	samfile = pysam.Samfile(options.input_file,'rb')
	out1 = pysam.Samfile(options.output_prefix + '.in.bam','wb',template=samfile)	#bam file containing reads hit to exon region
	out2 = pysam.Samfile(options.output_prefix + '.ex.bam','wb',template=samfile)	#bam file containing reads not hit to exon region
	out3 = pysam.Samfile(options.output_prefix + '.junk.bam','wb',template=samfile)	#bam file containing reads not hit to exon region
	
	total_alignment = 0
	in_alignment = 0
	ex_alignment = 0
	bad_alignment = 0
	print >>sys.stderr, "spliting " + options.input_file + " ...",
	try:
		while(1):
			aligned_read = samfile.next()
			total_alignment += 1
			
			if aligned_read.is_qcfail:
				bad_alignment +=1
				out3.write(aligned_read)
				continue
			if aligned_read.is_unmapped:
				bad_alignment +=1
				out3.write(aligned_read)
				continue
			
			chrom = samfile.getrname(aligned_read.tid)
			chrom=chrom.upper()	
			read_start = aligned_read.pos
			mate_start = aligned_read.mpos
				
			#read_exons = bam_cigar.fetch_exon(chrom, aligned_read.pos, aligned_read.cigar)
			if aligned_read.mate_is_unmapped:	#only one end mapped
				if chrom not in exon_ranges:
					out2.write(aligned_read)
					ex_alignment += 1
					continue		
				else:		
					if len(exon_ranges[chrom].find(read_start, read_start +1)) >= 1:
						out1.write(aligned_read)
						in_alignment += 1
						continue
					elif len(exon_ranges[chrom].find(read_start, read_start +1)) == 0:
						out2.write(aligned_read)
						ex_alignment += 1
						continue
			else:							#both end mapped
				if chrom not in exon_ranges:
					out2.write(aligned_read)
					ex_alignment += 1
					continue
				else:
					if (len(exon_ranges[chrom].find(read_start, read_start +1)) >= 1) or (len(exon_ranges[chrom].find(mate_start, mate_start +1)) >= 1):
						out1.write(aligned_read)
						in_alignment += 1
					else:
						out2.write(aligned_read)
						ex_alignment += 1
				
	except StopIteration:
		print >>sys.stderr, "Done"
				
	print "%-55s%d" % ("Total records:",total_alignment)
	print "%-55s%d" % (options.output_prefix + '.in.bam (Reads consumed by input gene list):',in_alignment)
	print "%-55s%d" % (options.output_prefix + '.ex.bam (Reads not consumed by input gene list):',ex_alignment)
	print "%-55s%d" % (options.output_prefix + '.junk.bam (qcfailed, unmapped reads):',bad_alignment)
示例#5
0
def main():
    usage = "%prog [options]"
    parser = OptionParser(usage, version="%prog " + __version__)

    parser.add_option("-i",
                      "--bwfile",
                      action="store",
                      type="string",
                      dest="BigWig_File",
                      help="Input BigWig file. [required]")
    parser.add_option("-o",
                      "--output",
                      action="store",
                      type="string",
                      dest="output_wig",
                      help="Output wig file. [required]")
    parser.add_option(
        "-s",
        "--chromSize",
        action="store",
        type="string",
        dest="chromSize",
        help=
        "Chromosome size file. Tab or space separated text file with 2 columns: first column is chromosome name, second column is size of the chromosome. [required]"
    )
    parser.add_option(
        "-t",
        "--wigsum",
        action="store",
        type="int",
        dest="total_wigsum",
        default=100000000,
        help=
        "Specified wigsum. 100000000 equals to coverage of 1 million 100nt reads. default=%default  [optional]"
    )
    parser.add_option("-r",
                      "--refgene",
                      action="store",
                      type="string",
                      dest="refgene_bed",
                      help="Reference gene model in bed format. [optional]")
    parser.add_option(
        "-c",
        "--chunk",
        action="store",
        type="int",
        dest="chunk_size",
        default=100000,
        help=
        "Chromosome chunk size. Each chomosome will be cut into samll chunks of this size. Decrease chunk size will save more RAM. default=%default (bp) [optional]"
    )
    (options, args) = parser.parse_args()

    if not (options.BigWig_File and options.output_wig and options.chromSize):
        parser.print_help()
        sys.exit(0)

    OUT = open(options.output_wig, 'w')
    bw = BigWigFile(file=open(options.BigWig_File))
    chrom_sizes = load_chromsize(options.chromSize)
    exons = []
    WIG_SUM = 0.0
    if (options.refgene_bed):
        print >> sys.stderr, "Extract exons from " + options.refgene_bed
        obj = BED.ParseBED(options.refgene_bed)
        exons = obj.getExon()
        print >> sys.stderr, "Merge overlapping exons ..."
        exons = BED.unionBed3(exons)
        print >> sys.stderr, "Calculate wigsum covered by " + options.refgene_bed + ' only'
        for chrom, st, end in exons:
            try:
                bw.get_as_array(chrom, 0, 1).size
            except:
                continue

            bw_signal = bw.get_as_array(chrom, st, end)
            tmp = numpy.nansum(
                bw_signal
            )  #nan will be ignored. but if all items are 'nan', the result summay is 'nan' NOT 0
            if numpy.isnan(tmp): continue
            WIG_SUM += tmp
        print >> sys.stderr, "Total wigsum is %.2f\n" % WIG_SUM
    else:
        print >> sys.stderr, "Calculate wigsum from " + options.BigWig_File
        for chr_name, chr_size in chrom_sizes.items():  #iterate each chrom

            try:
                bw.get_as_array(chr_name, 0, 1).size
            except:
                print >> sys.stderr, "Skip " + chr_name + "!"
                continue

            print >> sys.stderr, "Processing " + chr_name + " ..."
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                bw_signal = bw.get_as_array(interval[0], interval[1],
                                            interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                WIG_SUM += tmp
        print >> sys.stderr, "\nTotal wigsum is %.2f\n" % WIG_SUM

    try:
        weight = options.total_wigsum / WIG_SUM
    except:
        "Error, WIG_SUM cannot be 0"
        eys.exit(1)

    #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    print >> sys.stderr, "Normalizing bigwig file, output wiggle file"
    for chr_name, chr_size in chrom_sizes.items():  #iterate each chrom

        try:
            bw.get_as_array(chr_name, 0, 1).size
        except:
            print >> sys.stderr, "Skip " + chr_name + "!"
            continue

        print >> sys.stderr, "Writing " + chr_name + " ..."
        OUT.write('variableStep chrom=' + chr_name + '\n')
        for interval in BED.tillingBed(chrName=chr_name,
                                       chrSize=chr_size,
                                       stepSize=options.chunk_size):
            coord = interval[1]
            bw_signal = bw.get_as_array(chr_name, interval[1], interval[2])
            tmp = numpy.nansum(bw_signal)
            if numpy.isnan(tmp): continue
            bw_signal = numpy.nan_to_num(bw_signal)
            for v in bw_signal:
                coord += 1
                if v != 0: print >> OUT, "%d\t%.4f" % (coord, v * weight)
示例#6
0
def main():
    usage = "%prog [options]"
    parser = OptionParser(usage, version="%prog " + __version__)

    parser.add_option("-i",
                      "--bwfile",
                      action="store",
                      type="string",
                      dest="BigWig_File",
                      help="Input BigWig file. [required]")
    parser.add_option("-o",
                      "--output",
                      action="store",
                      type="string",
                      dest="output_wig",
                      help="Output wig file. [required]")
    parser.add_option(
        "-t",
        "--wigsum",
        action="store",
        type="int",
        dest="total_wigsum",
        default=100000000,
        help=
        "Specified wigsum. 100000000 equals to coverage of 1 million 100nt reads. default=%default  [optional]"
    )
    parser.add_option("-r",
                      "--refgene",
                      action="store",
                      type="string",
                      dest="refgene_bed",
                      help="Reference gene model in bed format. [optional]")
    parser.add_option(
        "-c",
        "--chunk",
        action="store",
        type="int",
        dest="chunk_size",
        default=500000,
        help=
        "Chromosome chunk size. Each chomosome will be cut into samll chunks of this size. Decrease chunk size will save more RAM. default=%default (bp) [optional]"
    )
    parser.add_option(
        "-f",
        "--format",
        action="store",
        type="string",
        dest="out_format",
        default="bgr",
        help=
        "Output format. either \"wig\" or \"bgr\". \"bgr\" save disk space but make program slower. default=%default"
    )
    (options, args) = parser.parse_args()

    if not (options.BigWig_File and options.output_wig):
        parser.print_help()
        sys.exit(0)

    OUT = open(options.output_wig, 'w')
    bw = pyBigWig.open(options.BigWig_File)

    if bw.isBigWig():
        pass
    else:
        print("%s is not a bigwig file!" % options.BigWig_File,
              file=sys.stderr)
        sys.exit(0)

    print("Get chromosome sizes from BigWig header ...", file=sys.stderr)
    chrom_sizes = {}
    for chr, size in bw.chroms().items():
        chrom_sizes[chr] = size

    exons = []
    WIG_SUM = 0.0
    if (options.refgene_bed):
        print("Extract exons from " + options.refgene_bed, file=sys.stderr)
        obj = BED.ParseBED(options.refgene_bed)
        exons = obj.getExon()
        print("Merge overlapping exons ...", file=sys.stderr)
        exons = BED.unionBed3(exons)
        print("Calculate wigsum covered by " + options.refgene_bed + ' only',
              file=sys.stderr)
        for chrom, st, end in exons:
            if bw.stats(chrom, st, end)[0] is None:
                continue
            bw_signal = bw.values(chrom, st, end)
            tmp = numpy.nansum(
                bw_signal
            )  #nan will be ignored. but if all items are 'nan', the result summay is 'nan' NOT 0
            if numpy.isnan(tmp): continue
            WIG_SUM += tmp
        print("Total wigsum is %.2f\n" % WIG_SUM, file=sys.stderr)
    else:
        print("Calculate wigsum from " + options.BigWig_File, file=sys.stderr)
        for chr_name, chr_size in list(
                chrom_sizes.items()):  #iterate each chrom
            if bw.stats(chr_name, 0, chr_size)[0] is None:
                print("Skip " + chr_name + "!", file=sys.stderr)
                continue

            print("Processing " + chr_name + " ...", file=sys.stderr)
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                if bw.stats(interval[0], interval[1], interval[2])[0] is None:
                    continue
                bw_signal = bw.values(interval[0], interval[1], interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                WIG_SUM += tmp
        print("\nTotal wigsum is %.2f\n" % WIG_SUM, file=sys.stderr)

    try:
        weight = options.total_wigsum / WIG_SUM
    except:
        "Error, WIG_SUM cannot be 0"
        sys.exit(1)

    #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    print("Normalizing bigwig file ...", file=sys.stderr)
    for chr_name, chr_size in list(chrom_sizes.items()):  #iterate each chrom

        if bw.stats(chr_name, 0, chr_size)[0] is None:
            print("Skip " + chr_name + "!", file=sys.stderr)
            continue

        if options.out_format.upper() == "WIG":
            print("Writing " + chr_name + " ...", file=sys.stderr)
            OUT.write('variableStep chrom=' + chr_name + '\n')
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                coord = interval[1]
                bw_signal = bw.values(chr_name, interval[1], interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                bw_signal = numpy.nan_to_num(bw_signal) * weight
                for v in bw_signal:
                    coord += 1
                    if v != 0: print("%d\t%.2f" % (coord, v), file=OUT)
        elif options.out_format.upper() == "BGR":
            print("Writing " + chr_name + " ...", file=sys.stderr)
            #OUT.write('variableStep chrom='+chr_name+'\n')
            for interval in BED.tillingBed(chrName=chr_name,
                                           chrSize=chr_size,
                                           stepSize=options.chunk_size):
                v2p = collections.defaultdict(list)  #value to position
                range2p = {
                }  #coorindate range to value, bedgraph. #[start]=[len,value]
                coord = interval[1]
                bw_signal = bw.values(chr_name, interval[1], interval[2])
                tmp = numpy.nansum(bw_signal)
                if numpy.isnan(tmp): continue
                bw_signal = numpy.nan_to_num(bw_signal) * weight
                for v in bw_signal:
                    coord += 1
                    if v != 0: v2p[v].append(coord)
                for v in v2p:
                    for k, g in groupby(enumerate(v2p[v]),
                                        lambda i_x: i_x[0] - i_x[1]):
                        for l in [list(map(itemgetter(1), g))]:
                            range2p[l[0] - 1] = [len(l), v]
                for i in sorted(range2p):
                    print(chr_name + '\t' + str(i) + '\t' +
                          str(i + range2p[i][0]) + '\t' + str(range2p[i][1]),
                          file=OUT)
        else:
            print("unknown output format", file=sys.stderr)
            sys.exit(1)