示例#1
0
def l6qc(cf, ds5):
    ds6 = qcio.copy_datastructure(cf, ds5)
    # ds6 will be empty (logical false) if an error occurs in copy_datastructure
    # return from this routine if this is the case
    if not ds6: return ds6
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds6, "L6")
    # parse the control file
    qcrp.ParseL6ControlFile(cf, ds6)
    # check to see if we have any imports
    qcgf.ImportSeries(cf, ds6)
    # check units
    qcutils.CheckUnits(ds6, "Fc", "umol/m2/s", convert_units=True)
    ## filter Fc for night time and ustar threshold, write to ds as "ER"
    #result = qcrp.GetERFromFc(cf,ds6)
    #if result==0: return
    # apply the turbulence filter (if requested)
    qcck.ApplyTurbulenceFilter(cf, ds6)
    qcrp.GetERFromFc2(cf, ds6)
    # estimate ER using SOLO
    qcrp.ERUsingSOLO(cf, ds6)
    # estimate ER using FFNET
    qcrp.ERUsingFFNET(cf, ds6)
    # estimate ER using Lloyd-Taylor
    qcrp.ERUsingLloydTaylor(cf, ds6)
    # estimate ER using Lasslop et al
    qcrp.ERUsingLasslop(cf, ds6)
    # merge the estimates of ER with the observations
    qcts.MergeSeriesUsingDict(ds6, merge_order="standard")
    # calculate NEE from Fc and ER
    qcrp.CalculateNEE(cf, ds6)
    # calculate NEP from NEE
    qcrp.CalculateNEP(cf, ds6)
    # calculate ET from Fe
    qcrp.CalculateET(ds6)
    # partition NEE into GPP and ER
    qcrp.PartitionNEE(cf, ds6)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds6)
    # write the percentage of good data for groups
    qcutils.get_coverage_groups(ds6)
    # do the L6 summary
    qcrp.L6_summary(cf, ds6)

    return ds6
示例#2
0
def l5qc(cf, ds4):
    ds5 = qcio.copy_datastructure(cf, ds4)
    # ds4 will be empty (logical false) if an error occurs in copy_datastructure
    # return from this routine if this is the case
    if not ds5:
        return ds5
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds5, "L5")
    ds5.cf = cf
    # create a dictionary to hold the gap filling data
    ds_alt = {}
    # check to see if we have any imports
    qcgf.ImportSeries(cf, ds5)
    # re-apply the quality control checks (range, diurnal and rules)
    qcck.do_qcchecks(cf, ds5)
    # now do the flux gap filling methods
    label_list = qcutils.get_label_list_from_cf(cf)
    for label in label_list:
        # parse the control file for information on how the user wants to do the gap filling
        qcgf.GapFillParseControlFile(cf, ds5, label, ds_alt)
    # *** start of the section that does the gap filling of the fluxes ***
    # apply the turbulence filter (if requested)
    qcck.ApplyTurbulenceFilter(cf, ds5)
    # fill short gaps using interpolation
    qcgf.GapFillUsingInterpolation(cf, ds5)
    # do the gap filling using SOLO
    qcgfSOLO.GapFillUsingSOLO(cf, ds4, ds5)
    if ds5.returncodes["solo"] == "quit":
        return ds5
    # gap fill using marginal distribution sampling
    qcgfMDS.GapFillFluxUsingMDS(cf, ds5)
    # gap fill using climatology
    qcgf.GapFillFromClimatology(ds5)
    # merge the gap filled drivers into a single series
    qcts.MergeSeriesUsingDict(ds5, merge_order="standard")
    # calculate Monin-Obukhov length
    qcts.CalculateMoninObukhovLength(ds5)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds5)
    # write the percentage of good data for groups
    qcutils.get_coverage_groups(ds5)

    return ds5
示例#3
0
def l2qc(cf, ds1):
    """
        Perform initial QA/QC on flux data
        Generates L2 from L1 data
        * check parameters specified in control file

        Functions performed:
            qcck.do_rangecheck*
            qcck.do_CSATcheck
            qcck.do_7500check
            qcck.do_diurnalcheck*
            qcck.do_excludedates*
            qcck.do_excludehours*
            qcts.albedo
        """
    # make a copy of the L1 data
    ds2 = copy.deepcopy(ds1)
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds2, "L2")
    ds2.globalattributes['Functions'] = ''
    # put the control file name into the global attributes
    ds2.globalattributes['controlfile_name'] = cf['controlfile_name']
    # apply the quality control checks (range, diurnal, exclude dates and exclude hours
    qcck.do_qcchecks(cf, ds2)
    # do the CSAT diagnostic check
    qcck.do_SONICcheck(cf, ds2)
    # do the IRGA diagnostic check
    qcck.do_IRGAcheck(cf, ds2)
    # constrain albedo estimates to full sun angles
    #qcts.albedo(cf,ds2)
    #log.info(' Finished the albedo constraints')    # apply linear corrections to the data
    #log.info(' Applying linear corrections ...')
    qcck.do_linear(cf, ds2)
    # check missing data and QC flags are consistent
    qcutils.CheckQCFlags(ds2)
    # write series statistics to file
    qcio.get_seriesstats(cf, ds2)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds2)

    return ds2
示例#4
0
def l4qc(cf, ds3):

    # !!! code here to use existing L4 file
    # logic
    # if the L4 doesn't exist
    #  - create ds4 by using copy.deepcopy(ds3)
    # if the L4 does exist and the "UseExistingL4File" option is False
    #  - create ds4 by using copy.deepcopy(ds3)
    # if the L4 does exist and the "UseExistingL4File" option is True
    #  - read the contents of the L4 netCDF file
    #  - check the start and end dates of the L3 and L4 data
    #     - if these are the same then tell the user there is nothing to do
    #  - copy the L3 data to the L4 data structure
    #  - replace the L3 data with the L4 data
    #ds4 = copy.deepcopy(ds3)
    ds4 = qcio.copy_datastructure(cf, ds3)
    # ds4 will be empty (logical false) if an error occurs in copy_datastructure
    # return from this routine if this is the case
    if not ds4: return ds4
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds4, "L4")
    ds4.cf = cf
    # calculate the available energy
    if "Fa" not in ds4.series.keys():
        qcts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # create a dictionary to hold the gap filling data
    ds_alt = {}
    # check to see if we have any imports
    qcgf.ImportSeries(cf, ds4)
    # re-apply the quality control checks (range, diurnal and rules)
    qcck.do_qcchecks(cf, ds4)
    # now do the meteorological driver gap filling
    for ThisOne in cf["Drivers"].keys():
        if ThisOne not in ds4.series.keys():
            log.error("Series " + ThisOne + " not in data structure")
            continue
        # parse the control file for information on how the user wants to do the gap filling
        qcgf.GapFillParseControlFile(cf, ds4, ThisOne, ds_alt)
    # *** start of the section that does the gap filling of the drivers ***
    # fill short gaps using interpolation
    qcgf.GapFillUsingInterpolation(cf, ds4)
    # gap fill using climatology
    qcgf.GapFillFromClimatology(ds4)
    # do the gap filling using the ACCESS output
    qcgf.GapFillFromAlternate(cf, ds4, ds_alt)
    if ds4.returncodes["alternate"] == "quit": return ds4
    # gap fill using SOLO
    qcgf.GapFillUsingSOLO(cf, ds3, ds4)
    if ds4.returncodes["solo"] == "quit": return ds4
    # merge the first group of gap filled drivers into a single series
    qcts.MergeSeriesUsingDict(ds4, merge_order="prerequisite")
    # re-calculate the ground heat flux but only if requested in control file
    opt = qcutils.get_keyvaluefromcf(cf, ["Options"],
                                     "CorrectFgForStorage",
                                     default="No",
                                     mode="quiet")
    if opt.lower() != "no":
        qcts.CorrectFgForStorage(cf,
                                 ds4,
                                 Fg_out='Fg',
                                 Fg_in='Fg_Av',
                                 Ts_in='Ts',
                                 Sws_in='Sws')
    # re-calculate the net radiation
    qcts.CalculateNetRadiation(cf,
                               ds4,
                               Fn_out='Fn',
                               Fsd_in='Fsd',
                               Fsu_in='Fsu',
                               Fld_in='Fld',
                               Flu_in='Flu')
    # re-calculate the available energy
    qcts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # merge the second group of gap filled drivers into a single series
    qcts.MergeSeriesUsingDict(ds4, merge_order="standard")
    # re-calculate the water vapour concentrations
    qcts.CalculateHumiditiesAfterGapFill(ds4)
    # re-calculate the meteorological variables
    qcts.CalculateMeteorologicalVariables(ds4)
    # the Tumba rhumba
    qcts.CalculateComponentsFromWsWd(ds4)
    # check for any missing data
    qcutils.get_missingingapfilledseries(ds4)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds4)
    # write the percentage of good data for groups
    qcutils.get_coverage_groups(ds4)

    return ds4
示例#5
0
def l3qc(cf, ds2):
    """
        Corrections
        Generates L3 from L2 data
        
        Functions performed:
            qcts.AddMetVars (optional)
            qcts.CorrectSWC (optional*)
            qcck.do_linear (all sites)
            qcutils.GetMergeList + qcts.MergeSeries Ah_EC (optional)x
            qcts.TaFromTv (optional)
            qcutils.GetMergeList + qcts.MergeSeries Ta_EC (optional)x
            qcts.CoordRotation2D (all sites)
            qcts.MassmanApprox (optional*)y
            qcts.Massman (optional*)y
            qcts.CalculateFluxes (used if Massman not optioned)x
            qcts.CalculateFluxesRM (used if Massman optioned)y
            qcts.FhvtoFh (all sites)
            qcts.Fe_WPL (WPL computed on fluxes, as with Campbell algorithm)+x
            qcts.Fc_WPL (WPL computed on fluxes, as with Campbell algorithm)+x
            qcts.Fe_WPLcov (WPL computed on kinematic fluxes (ie, covariances), as with WPL80)+y
            qcts.Fc_WPLcov (WPL computed on kinematic fluxes (ie, covariances), as with WPL80)+y
            qcts.CalculateNetRadiation (optional)
            qcutils.GetMergeList + qcts.MergeSeries Fsd (optional)
            qcutils.GetMergeList + qcts.MergeSeries Fn (optional*)
            qcts.InterpolateOverMissing (optional)
            AverageSeriesByElements (optional)
            qcts.CorrectFgForStorage (all sites)
            qcts.Average3SeriesByElements (optional)
            qcts.CalculateAvailableEnergy (optional)
            qcck.do_qcchecks (all sites)
            qcck.gaps (optional)
            
            *:  requires ancillary measurements for paratmerisation
            +:  each site requires one pair, either Fe_WPL & Fc_WPL (default) or Fe_WPLCov & FcWPLCov
            x:  required together in option set
            y:  required together in option set
        """
    # make a copy of the L2 data
    ds3 = copy.deepcopy(ds2)
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds3, "L3")
    # initialise the global attribute to document the functions used
    ds3.globalattributes['Functions'] = ''
    # put the control file name into the global attributes
    ds3.globalattributes['controlfile_name'] = cf['controlfile_name']
    # check to see if we have any imports
    qcgf.ImportSeries(cf, ds3)
    # correct measured soil water content using empirical relationship to collected samples
    qcts.CorrectSWC(cf, ds3)
    # apply linear corrections to the data
    qcck.do_linear(cf, ds3)
    # merge whatever humidities are available
    qcts.MergeHumidities(cf, ds3, convert_units=True)
    # get the air temperature from the CSAT virtual temperature
    qcts.TaFromTv(cf, ds3)
    # merge the HMP and corrected CSAT data
    qcts.MergeSeries(cf, ds3, 'Ta', [0, 10], convert_units=True)
    qcutils.CheckUnits(ds3, "Ta", "C", convert_units=True)
    # calculate humidities (absolute, specific and relative) from whatever is available
    qcts.CalculateHumidities(ds3)
    # merge the 7500 CO2 concentration
    qcts.MergeSeries(cf, ds3, 'Cc', [0, 10], convert_units=True)
    qcutils.CheckUnits(ds3, "Cc", "mg/m3", convert_units=True)
    # add relevant meteorological values to L3 data
    qcts.CalculateMeteorologicalVariables(ds3)
    # check to see if the user wants to use the fluxes in the L2 file
    if not qcutils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False):
        # check the covariancve units and change if necessary
        qcts.CheckCovarianceUnits(ds3)
        # do the 2D coordinate rotation
        qcts.CoordRotation2D(cf, ds3)
        # do the Massman frequency attenuation correction
        qcts.MassmanStandard(cf, ds3)
        # calculate the fluxes
        qcts.CalculateFluxes(cf, ds3)
        # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual)
        qcts.FhvtoFh(cf, ds3)
        # correct the H2O & CO2 flux due to effects of flux on density measurements
        qcts.Fe_WPL(cf, ds3)
        qcts.Fc_WPL(cf, ds3)
    # convert CO2 units if required
    qcutils.ConvertCO2Units(cf, ds3, Cc='Cc')
    # calculate Fc storage term - single height only at present
    qcts.CalculateFcStorage(cf, ds3)
    # convert Fc and Fc_storage units if required
    qcutils.ConvertFcUnits(cf, ds3, Fc='Fc', Fc_storage='Fc_storage')
    # correct Fc for storage term - only recommended if storage calculated from profile available
    qcts.CorrectFcForStorage(cf, ds3)
    # merge the incoming shortwave radiation
    qcts.MergeSeries(cf, ds3, 'Fsd', [0, 10])
    # calculate the net radiation from the Kipp and Zonen CNR1
    qcts.CalculateNetRadiation(cf,
                               ds3,
                               Fn_out='Fn_KZ',
                               Fsd_in='Fsd',
                               Fsu_in='Fsu',
                               Fld_in='Fld',
                               Flu_in='Flu')
    qcts.MergeSeries(cf, ds3, 'Fn', [0, 10])
    # combine wind speed from the Wind Sentry and  the CSAT
    qcts.MergeSeries(cf, ds3, 'Ws', [0, 10])
    # combine wind direction from the Wind Sentry and  the CSAT
    qcts.MergeSeries(cf, ds3, 'Wd', [0, 10])
    # correct soil heat flux for storage
    #    ... either average the raw ground heat flux, soil temperature and moisture
    #        and then do the correction (OzFlux "standard")
    qcts.AverageSeriesByElements(cf, ds3, 'Ts')
    qcts.AverageSeriesByElements(cf, ds3, 'Sws')
    if qcutils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'):
        #    ... or correct the individual ground heat flux measurements (James' method)
        qcts.CorrectIndividualFgForStorage(cf, ds3)
        qcts.AverageSeriesByElements(cf, ds3, 'Fg')
    else:
        qcts.AverageSeriesByElements(cf, ds3, 'Fg')
        qcts.CorrectFgForStorage(cf,
                                 ds3,
                                 Fg_out='Fg',
                                 Fg_in='Fg',
                                 Ts_in='Ts',
                                 Sws_in='Sws')
    # calculate the available energy
    qcts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # create new series using MergeSeries or AverageSeries
    qcck.CreateNewSeries(cf, ds3)
    # create a series of daily averaged soil moisture interpolated back to the time step
    #qcts.DailyAverageSws_Interpolated(cf,ds3,Sws_out='Sws_daily',Sws_in='Sws')
    # re-apply the quality control checks (range, diurnal and rules)
    qcck.do_qcchecks(cf, ds3)
    # coordinate gaps in the three main fluxes
    qcck.CoordinateFluxGaps(cf, ds3)
    # coordinate gaps in Ah_7500_Av with Fc
    qcck.CoordinateAh7500AndFcGaps(cf, ds3)
    # get the statistics for the QC flags and write these to an Excel spreadsheet
    qcio.get_seriesstats(cf, ds3)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds3)
    # write the percentage of good data for groups
    qcutils.get_coverage_groups(ds3)

    return ds3
示例#6
0
def l3qc(cf, ds2):
    """
    """
    # make a copy of the L2 data
    ds3 = copy.deepcopy(ds2)
    # set some attributes for this level
    qcutils.UpdateGlobalAttributes(cf, ds3, "L3")
    # put the control file name into the global attributes
    ds3.globalattributes['controlfile_name'] = cf['controlfile_name']
    # check to see if we have any imports
    qcgf.ImportSeries(cf, ds3)
    # apply linear corrections to the data
    qcck.do_linear(cf, ds3)
    # ************************
    # *** Merge humidities ***
    # ************************
    # merge whatever humidities are available
    qcts.MergeHumidities(cf, ds3, convert_units=True)
    # **************************
    # *** Merge temperatures ***
    # **************************
    # get the air temperature from the CSAT virtual temperature
    qcts.TaFromTv(cf, ds3)
    # merge the HMP and corrected CSAT data
    qcts.MergeSeries(cf, ds3, "Ta", convert_units=True)
    qcutils.CheckUnits(ds3, "Ta", "C", convert_units=True)
    # ***************************
    # *** Calcuate humidities ***
    # ***************************
    # calculate humidities (absolute, specific and relative) from whatever is available
    qcts.CalculateHumidities(ds3)
    # ********************************
    # *** Merge CO2 concentrations ***
    # ********************************
    # merge the 7500 CO2 concentration
    # PRI 09/08/2017 possibly the ugliest thing I have done yet
    # This needs to be abstracted to a general alias checking routine at the
    # start of the L3 processing so that possible aliases are mapped to a single
    # set of variable names.
    if "CO2" in cf["Variables"]:
        CO2 = "CO2"
    elif "Cc" in cf["Variables"]:
        CO2 = "Cc"
    else:
        msg = "Label for CO2 ('CO2','Cc') not found in control file"
        logger.error(msg)
        return
    qcts.MergeSeries(cf, ds3, CO2, convert_units=True)
    # ******************************************
    # *** Calculate meteorological variables ***
    # ******************************************
    # Update meteorological variables
    qcts.CalculateMeteorologicalVariables(ds3)
    # *************************************************
    # *** Calculate fluxes from covariances section ***
    # *************************************************
    # check to see if the user wants to use the fluxes in the L2 file
    if not qcutils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False):
        # check the covariance units and change if necessary
        qcts.CheckCovarianceUnits(ds3)
        # do the 2D coordinate rotation
        qcts.CoordRotation2D(cf, ds3)
        # do the Massman frequency attenuation correction
        qcts.MassmanStandard(cf, ds3)
        # calculate the fluxes
        qcts.CalculateFluxes(cf, ds3)
        # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual)
        qcts.FhvtoFh(cf, ds3)
        # correct the H2O & CO2 flux due to effects of flux on density measurements
        qcts.Fe_WPL(cf, ds3)
        qcts.Fc_WPL(cf, ds3)
    # **************************************
    # *** Calculate Monin-Obukhov length ***
    # **************************************
    qcts.CalculateMoninObukhovLength(ds3)
    # **************************
    # *** CO2 and Fc section ***
    # **************************
    # convert CO2 units if required
    qcutils.ConvertCO2Units(cf, ds3, CO2=CO2)
    # calculate Fc storage term - single height only at present
    qcts.CalculateFcStorageSinglePoint(cf, ds3, Fc_out='Fc_single', CO2_in=CO2)
    # convert Fc and Fc_storage units if required
    qcutils.ConvertFcUnits(cf, ds3)
    # merge Fc and Fc_storage series if required
    merge_list = [
        label for label in cf["Variables"].keys() if label[0:2] == "Fc"
        and "MergeSeries" in cf["Variables"][label].keys()
    ]
    for label in merge_list:
        qcts.MergeSeries(cf, ds3, label, save_originals=True)
    # correct Fc for storage term - only recommended if storage calculated from profile available
    qcts.CorrectFcForStorage(cf, ds3)
    # *************************
    # *** Radiation section ***
    # *************************
    # merge the incoming shortwave radiation
    qcts.MergeSeries(cf, ds3, 'Fsd')
    # calculate the net radiation from the Kipp and Zonen CNR1
    qcts.CalculateNetRadiation(cf,
                               ds3,
                               Fn_out='Fn_KZ',
                               Fsd_in='Fsd',
                               Fsu_in='Fsu',
                               Fld_in='Fld',
                               Flu_in='Flu')
    qcts.MergeSeries(cf, ds3, 'Fn')
    # ****************************************
    # *** Wind speed and direction section ***
    # ****************************************
    # combine wind speed from the Wind Sentry and the SONIC
    qcts.MergeSeries(cf, ds3, 'Ws')
    # combine wind direction from the Wind Sentry and the SONIC
    qcts.MergeSeries(cf, ds3, 'Wd')
    # ********************
    # *** Soil section ***
    # ********************
    # correct soil heat flux for storage
    #    ... either average the raw ground heat flux, soil temperature and moisture
    #        and then do the correction (OzFlux "standard")
    qcts.AverageSeriesByElements(cf, ds3, 'Ts')
    qcts.AverageSeriesByElements(cf, ds3, 'Sws')
    if qcutils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'):
        #    ... or correct the individual ground heat flux measurements (James' method)
        qcts.CorrectIndividualFgForStorage(cf, ds3)
        qcts.AverageSeriesByElements(cf, ds3, 'Fg')
    else:
        qcts.AverageSeriesByElements(cf, ds3, 'Fg')
        qcts.CorrectFgForStorage(cf,
                                 ds3,
                                 Fg_out='Fg',
                                 Fg_in='Fg',
                                 Ts_in='Ts',
                                 Sws_in='Sws')
    # calculate the available energy
    qcts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg')
    # create new series using MergeSeries or AverageSeries
    qcck.CreateNewSeries(cf, ds3)
    # re-apply the quality control checks (range, diurnal and rules)
    qcck.do_qcchecks(cf, ds3)
    # coordinate gaps in the three main fluxes
    qcck.CoordinateFluxGaps(cf, ds3)
    # coordinate gaps in Ah_7500_Av with Fc
    qcck.CoordinateAh7500AndFcGaps(cf, ds3)
    # check missing data and QC flags are consistent
    qcutils.CheckQCFlags(ds3)
    # get the statistics for the QC flags and write these to an Excel spreadsheet
    qcio.get_seriesstats(cf, ds3)
    # write the percentage of good data as a variable attribute
    qcutils.get_coverage_individual(ds3)
    # write the percentage of good data for groups
    qcutils.get_coverage_groups(ds3)

    return ds3