def l6qc(cf, ds5): ds6 = qcio.copy_datastructure(cf, ds5) # ds6 will be empty (logical false) if an error occurs in copy_datastructure # return from this routine if this is the case if not ds6: return ds6 # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds6, "L6") # parse the control file qcrp.ParseL6ControlFile(cf, ds6) # check to see if we have any imports qcgf.ImportSeries(cf, ds6) # check units qcutils.CheckUnits(ds6, "Fc", "umol/m2/s", convert_units=True) ## filter Fc for night time and ustar threshold, write to ds as "ER" #result = qcrp.GetERFromFc(cf,ds6) #if result==0: return # apply the turbulence filter (if requested) qcck.ApplyTurbulenceFilter(cf, ds6) qcrp.GetERFromFc2(cf, ds6) # estimate ER using SOLO qcrp.ERUsingSOLO(cf, ds6) # estimate ER using FFNET qcrp.ERUsingFFNET(cf, ds6) # estimate ER using Lloyd-Taylor qcrp.ERUsingLloydTaylor(cf, ds6) # estimate ER using Lasslop et al qcrp.ERUsingLasslop(cf, ds6) # merge the estimates of ER with the observations qcts.MergeSeriesUsingDict(ds6, merge_order="standard") # calculate NEE from Fc and ER qcrp.CalculateNEE(cf, ds6) # calculate NEP from NEE qcrp.CalculateNEP(cf, ds6) # calculate ET from Fe qcrp.CalculateET(ds6) # partition NEE into GPP and ER qcrp.PartitionNEE(cf, ds6) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds6) # write the percentage of good data for groups qcutils.get_coverage_groups(ds6) # do the L6 summary qcrp.L6_summary(cf, ds6) return ds6
def l5qc(cf, ds4): ds5 = qcio.copy_datastructure(cf, ds4) # ds4 will be empty (logical false) if an error occurs in copy_datastructure # return from this routine if this is the case if not ds5: return ds5 # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds5, "L5") ds5.cf = cf # create a dictionary to hold the gap filling data ds_alt = {} # check to see if we have any imports qcgf.ImportSeries(cf, ds5) # re-apply the quality control checks (range, diurnal and rules) qcck.do_qcchecks(cf, ds5) # now do the flux gap filling methods label_list = qcutils.get_label_list_from_cf(cf) for label in label_list: # parse the control file for information on how the user wants to do the gap filling qcgf.GapFillParseControlFile(cf, ds5, label, ds_alt) # *** start of the section that does the gap filling of the fluxes *** # apply the turbulence filter (if requested) qcck.ApplyTurbulenceFilter(cf, ds5) # fill short gaps using interpolation qcgf.GapFillUsingInterpolation(cf, ds5) # do the gap filling using SOLO qcgfSOLO.GapFillUsingSOLO(cf, ds4, ds5) if ds5.returncodes["solo"] == "quit": return ds5 # gap fill using marginal distribution sampling qcgfMDS.GapFillFluxUsingMDS(cf, ds5) # gap fill using climatology qcgf.GapFillFromClimatology(ds5) # merge the gap filled drivers into a single series qcts.MergeSeriesUsingDict(ds5, merge_order="standard") # calculate Monin-Obukhov length qcts.CalculateMoninObukhovLength(ds5) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds5) # write the percentage of good data for groups qcutils.get_coverage_groups(ds5) return ds5
def l2qc(cf, ds1): """ Perform initial QA/QC on flux data Generates L2 from L1 data * check parameters specified in control file Functions performed: qcck.do_rangecheck* qcck.do_CSATcheck qcck.do_7500check qcck.do_diurnalcheck* qcck.do_excludedates* qcck.do_excludehours* qcts.albedo """ # make a copy of the L1 data ds2 = copy.deepcopy(ds1) # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds2, "L2") ds2.globalattributes['Functions'] = '' # put the control file name into the global attributes ds2.globalattributes['controlfile_name'] = cf['controlfile_name'] # apply the quality control checks (range, diurnal, exclude dates and exclude hours qcck.do_qcchecks(cf, ds2) # do the CSAT diagnostic check qcck.do_SONICcheck(cf, ds2) # do the IRGA diagnostic check qcck.do_IRGAcheck(cf, ds2) # constrain albedo estimates to full sun angles #qcts.albedo(cf,ds2) #log.info(' Finished the albedo constraints') # apply linear corrections to the data #log.info(' Applying linear corrections ...') qcck.do_linear(cf, ds2) # check missing data and QC flags are consistent qcutils.CheckQCFlags(ds2) # write series statistics to file qcio.get_seriesstats(cf, ds2) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds2) return ds2
def l4qc(cf, ds3): # !!! code here to use existing L4 file # logic # if the L4 doesn't exist # - create ds4 by using copy.deepcopy(ds3) # if the L4 does exist and the "UseExistingL4File" option is False # - create ds4 by using copy.deepcopy(ds3) # if the L4 does exist and the "UseExistingL4File" option is True # - read the contents of the L4 netCDF file # - check the start and end dates of the L3 and L4 data # - if these are the same then tell the user there is nothing to do # - copy the L3 data to the L4 data structure # - replace the L3 data with the L4 data #ds4 = copy.deepcopy(ds3) ds4 = qcio.copy_datastructure(cf, ds3) # ds4 will be empty (logical false) if an error occurs in copy_datastructure # return from this routine if this is the case if not ds4: return ds4 # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds4, "L4") ds4.cf = cf # calculate the available energy if "Fa" not in ds4.series.keys(): qcts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg') # create a dictionary to hold the gap filling data ds_alt = {} # check to see if we have any imports qcgf.ImportSeries(cf, ds4) # re-apply the quality control checks (range, diurnal and rules) qcck.do_qcchecks(cf, ds4) # now do the meteorological driver gap filling for ThisOne in cf["Drivers"].keys(): if ThisOne not in ds4.series.keys(): log.error("Series " + ThisOne + " not in data structure") continue # parse the control file for information on how the user wants to do the gap filling qcgf.GapFillParseControlFile(cf, ds4, ThisOne, ds_alt) # *** start of the section that does the gap filling of the drivers *** # fill short gaps using interpolation qcgf.GapFillUsingInterpolation(cf, ds4) # gap fill using climatology qcgf.GapFillFromClimatology(ds4) # do the gap filling using the ACCESS output qcgf.GapFillFromAlternate(cf, ds4, ds_alt) if ds4.returncodes["alternate"] == "quit": return ds4 # gap fill using SOLO qcgf.GapFillUsingSOLO(cf, ds3, ds4) if ds4.returncodes["solo"] == "quit": return ds4 # merge the first group of gap filled drivers into a single series qcts.MergeSeriesUsingDict(ds4, merge_order="prerequisite") # re-calculate the ground heat flux but only if requested in control file opt = qcutils.get_keyvaluefromcf(cf, ["Options"], "CorrectFgForStorage", default="No", mode="quiet") if opt.lower() != "no": qcts.CorrectFgForStorage(cf, ds4, Fg_out='Fg', Fg_in='Fg_Av', Ts_in='Ts', Sws_in='Sws') # re-calculate the net radiation qcts.CalculateNetRadiation(cf, ds4, Fn_out='Fn', Fsd_in='Fsd', Fsu_in='Fsu', Fld_in='Fld', Flu_in='Flu') # re-calculate the available energy qcts.CalculateAvailableEnergy(ds4, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg') # merge the second group of gap filled drivers into a single series qcts.MergeSeriesUsingDict(ds4, merge_order="standard") # re-calculate the water vapour concentrations qcts.CalculateHumiditiesAfterGapFill(ds4) # re-calculate the meteorological variables qcts.CalculateMeteorologicalVariables(ds4) # the Tumba rhumba qcts.CalculateComponentsFromWsWd(ds4) # check for any missing data qcutils.get_missingingapfilledseries(ds4) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds4) # write the percentage of good data for groups qcutils.get_coverage_groups(ds4) return ds4
def l3qc(cf, ds2): """ Corrections Generates L3 from L2 data Functions performed: qcts.AddMetVars (optional) qcts.CorrectSWC (optional*) qcck.do_linear (all sites) qcutils.GetMergeList + qcts.MergeSeries Ah_EC (optional)x qcts.TaFromTv (optional) qcutils.GetMergeList + qcts.MergeSeries Ta_EC (optional)x qcts.CoordRotation2D (all sites) qcts.MassmanApprox (optional*)y qcts.Massman (optional*)y qcts.CalculateFluxes (used if Massman not optioned)x qcts.CalculateFluxesRM (used if Massman optioned)y qcts.FhvtoFh (all sites) qcts.Fe_WPL (WPL computed on fluxes, as with Campbell algorithm)+x qcts.Fc_WPL (WPL computed on fluxes, as with Campbell algorithm)+x qcts.Fe_WPLcov (WPL computed on kinematic fluxes (ie, covariances), as with WPL80)+y qcts.Fc_WPLcov (WPL computed on kinematic fluxes (ie, covariances), as with WPL80)+y qcts.CalculateNetRadiation (optional) qcutils.GetMergeList + qcts.MergeSeries Fsd (optional) qcutils.GetMergeList + qcts.MergeSeries Fn (optional*) qcts.InterpolateOverMissing (optional) AverageSeriesByElements (optional) qcts.CorrectFgForStorage (all sites) qcts.Average3SeriesByElements (optional) qcts.CalculateAvailableEnergy (optional) qcck.do_qcchecks (all sites) qcck.gaps (optional) *: requires ancillary measurements for paratmerisation +: each site requires one pair, either Fe_WPL & Fc_WPL (default) or Fe_WPLCov & FcWPLCov x: required together in option set y: required together in option set """ # make a copy of the L2 data ds3 = copy.deepcopy(ds2) # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds3, "L3") # initialise the global attribute to document the functions used ds3.globalattributes['Functions'] = '' # put the control file name into the global attributes ds3.globalattributes['controlfile_name'] = cf['controlfile_name'] # check to see if we have any imports qcgf.ImportSeries(cf, ds3) # correct measured soil water content using empirical relationship to collected samples qcts.CorrectSWC(cf, ds3) # apply linear corrections to the data qcck.do_linear(cf, ds3) # merge whatever humidities are available qcts.MergeHumidities(cf, ds3, convert_units=True) # get the air temperature from the CSAT virtual temperature qcts.TaFromTv(cf, ds3) # merge the HMP and corrected CSAT data qcts.MergeSeries(cf, ds3, 'Ta', [0, 10], convert_units=True) qcutils.CheckUnits(ds3, "Ta", "C", convert_units=True) # calculate humidities (absolute, specific and relative) from whatever is available qcts.CalculateHumidities(ds3) # merge the 7500 CO2 concentration qcts.MergeSeries(cf, ds3, 'Cc', [0, 10], convert_units=True) qcutils.CheckUnits(ds3, "Cc", "mg/m3", convert_units=True) # add relevant meteorological values to L3 data qcts.CalculateMeteorologicalVariables(ds3) # check to see if the user wants to use the fluxes in the L2 file if not qcutils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False): # check the covariancve units and change if necessary qcts.CheckCovarianceUnits(ds3) # do the 2D coordinate rotation qcts.CoordRotation2D(cf, ds3) # do the Massman frequency attenuation correction qcts.MassmanStandard(cf, ds3) # calculate the fluxes qcts.CalculateFluxes(cf, ds3) # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual) qcts.FhvtoFh(cf, ds3) # correct the H2O & CO2 flux due to effects of flux on density measurements qcts.Fe_WPL(cf, ds3) qcts.Fc_WPL(cf, ds3) # convert CO2 units if required qcutils.ConvertCO2Units(cf, ds3, Cc='Cc') # calculate Fc storage term - single height only at present qcts.CalculateFcStorage(cf, ds3) # convert Fc and Fc_storage units if required qcutils.ConvertFcUnits(cf, ds3, Fc='Fc', Fc_storage='Fc_storage') # correct Fc for storage term - only recommended if storage calculated from profile available qcts.CorrectFcForStorage(cf, ds3) # merge the incoming shortwave radiation qcts.MergeSeries(cf, ds3, 'Fsd', [0, 10]) # calculate the net radiation from the Kipp and Zonen CNR1 qcts.CalculateNetRadiation(cf, ds3, Fn_out='Fn_KZ', Fsd_in='Fsd', Fsu_in='Fsu', Fld_in='Fld', Flu_in='Flu') qcts.MergeSeries(cf, ds3, 'Fn', [0, 10]) # combine wind speed from the Wind Sentry and the CSAT qcts.MergeSeries(cf, ds3, 'Ws', [0, 10]) # combine wind direction from the Wind Sentry and the CSAT qcts.MergeSeries(cf, ds3, 'Wd', [0, 10]) # correct soil heat flux for storage # ... either average the raw ground heat flux, soil temperature and moisture # and then do the correction (OzFlux "standard") qcts.AverageSeriesByElements(cf, ds3, 'Ts') qcts.AverageSeriesByElements(cf, ds3, 'Sws') if qcutils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'): # ... or correct the individual ground heat flux measurements (James' method) qcts.CorrectIndividualFgForStorage(cf, ds3) qcts.AverageSeriesByElements(cf, ds3, 'Fg') else: qcts.AverageSeriesByElements(cf, ds3, 'Fg') qcts.CorrectFgForStorage(cf, ds3, Fg_out='Fg', Fg_in='Fg', Ts_in='Ts', Sws_in='Sws') # calculate the available energy qcts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg') # create new series using MergeSeries or AverageSeries qcck.CreateNewSeries(cf, ds3) # create a series of daily averaged soil moisture interpolated back to the time step #qcts.DailyAverageSws_Interpolated(cf,ds3,Sws_out='Sws_daily',Sws_in='Sws') # re-apply the quality control checks (range, diurnal and rules) qcck.do_qcchecks(cf, ds3) # coordinate gaps in the three main fluxes qcck.CoordinateFluxGaps(cf, ds3) # coordinate gaps in Ah_7500_Av with Fc qcck.CoordinateAh7500AndFcGaps(cf, ds3) # get the statistics for the QC flags and write these to an Excel spreadsheet qcio.get_seriesstats(cf, ds3) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds3) # write the percentage of good data for groups qcutils.get_coverage_groups(ds3) return ds3
def l3qc(cf, ds2): """ """ # make a copy of the L2 data ds3 = copy.deepcopy(ds2) # set some attributes for this level qcutils.UpdateGlobalAttributes(cf, ds3, "L3") # put the control file name into the global attributes ds3.globalattributes['controlfile_name'] = cf['controlfile_name'] # check to see if we have any imports qcgf.ImportSeries(cf, ds3) # apply linear corrections to the data qcck.do_linear(cf, ds3) # ************************ # *** Merge humidities *** # ************************ # merge whatever humidities are available qcts.MergeHumidities(cf, ds3, convert_units=True) # ************************** # *** Merge temperatures *** # ************************** # get the air temperature from the CSAT virtual temperature qcts.TaFromTv(cf, ds3) # merge the HMP and corrected CSAT data qcts.MergeSeries(cf, ds3, "Ta", convert_units=True) qcutils.CheckUnits(ds3, "Ta", "C", convert_units=True) # *************************** # *** Calcuate humidities *** # *************************** # calculate humidities (absolute, specific and relative) from whatever is available qcts.CalculateHumidities(ds3) # ******************************** # *** Merge CO2 concentrations *** # ******************************** # merge the 7500 CO2 concentration # PRI 09/08/2017 possibly the ugliest thing I have done yet # This needs to be abstracted to a general alias checking routine at the # start of the L3 processing so that possible aliases are mapped to a single # set of variable names. if "CO2" in cf["Variables"]: CO2 = "CO2" elif "Cc" in cf["Variables"]: CO2 = "Cc" else: msg = "Label for CO2 ('CO2','Cc') not found in control file" logger.error(msg) return qcts.MergeSeries(cf, ds3, CO2, convert_units=True) # ****************************************** # *** Calculate meteorological variables *** # ****************************************** # Update meteorological variables qcts.CalculateMeteorologicalVariables(ds3) # ************************************************* # *** Calculate fluxes from covariances section *** # ************************************************* # check to see if the user wants to use the fluxes in the L2 file if not qcutils.cfoptionskeylogical(cf, Key="UseL2Fluxes", default=False): # check the covariance units and change if necessary qcts.CheckCovarianceUnits(ds3) # do the 2D coordinate rotation qcts.CoordRotation2D(cf, ds3) # do the Massman frequency attenuation correction qcts.MassmanStandard(cf, ds3) # calculate the fluxes qcts.CalculateFluxes(cf, ds3) # approximate wT from virtual wT using wA (ref: Campbell OPECSystem manual) qcts.FhvtoFh(cf, ds3) # correct the H2O & CO2 flux due to effects of flux on density measurements qcts.Fe_WPL(cf, ds3) qcts.Fc_WPL(cf, ds3) # ************************************** # *** Calculate Monin-Obukhov length *** # ************************************** qcts.CalculateMoninObukhovLength(ds3) # ************************** # *** CO2 and Fc section *** # ************************** # convert CO2 units if required qcutils.ConvertCO2Units(cf, ds3, CO2=CO2) # calculate Fc storage term - single height only at present qcts.CalculateFcStorageSinglePoint(cf, ds3, Fc_out='Fc_single', CO2_in=CO2) # convert Fc and Fc_storage units if required qcutils.ConvertFcUnits(cf, ds3) # merge Fc and Fc_storage series if required merge_list = [ label for label in cf["Variables"].keys() if label[0:2] == "Fc" and "MergeSeries" in cf["Variables"][label].keys() ] for label in merge_list: qcts.MergeSeries(cf, ds3, label, save_originals=True) # correct Fc for storage term - only recommended if storage calculated from profile available qcts.CorrectFcForStorage(cf, ds3) # ************************* # *** Radiation section *** # ************************* # merge the incoming shortwave radiation qcts.MergeSeries(cf, ds3, 'Fsd') # calculate the net radiation from the Kipp and Zonen CNR1 qcts.CalculateNetRadiation(cf, ds3, Fn_out='Fn_KZ', Fsd_in='Fsd', Fsu_in='Fsu', Fld_in='Fld', Flu_in='Flu') qcts.MergeSeries(cf, ds3, 'Fn') # **************************************** # *** Wind speed and direction section *** # **************************************** # combine wind speed from the Wind Sentry and the SONIC qcts.MergeSeries(cf, ds3, 'Ws') # combine wind direction from the Wind Sentry and the SONIC qcts.MergeSeries(cf, ds3, 'Wd') # ******************** # *** Soil section *** # ******************** # correct soil heat flux for storage # ... either average the raw ground heat flux, soil temperature and moisture # and then do the correction (OzFlux "standard") qcts.AverageSeriesByElements(cf, ds3, 'Ts') qcts.AverageSeriesByElements(cf, ds3, 'Sws') if qcutils.cfoptionskeylogical(cf, Key='CorrectIndividualFg'): # ... or correct the individual ground heat flux measurements (James' method) qcts.CorrectIndividualFgForStorage(cf, ds3) qcts.AverageSeriesByElements(cf, ds3, 'Fg') else: qcts.AverageSeriesByElements(cf, ds3, 'Fg') qcts.CorrectFgForStorage(cf, ds3, Fg_out='Fg', Fg_in='Fg', Ts_in='Ts', Sws_in='Sws') # calculate the available energy qcts.CalculateAvailableEnergy(ds3, Fa_out='Fa', Fn_in='Fn', Fg_in='Fg') # create new series using MergeSeries or AverageSeries qcck.CreateNewSeries(cf, ds3) # re-apply the quality control checks (range, diurnal and rules) qcck.do_qcchecks(cf, ds3) # coordinate gaps in the three main fluxes qcck.CoordinateFluxGaps(cf, ds3) # coordinate gaps in Ah_7500_Av with Fc qcck.CoordinateAh7500AndFcGaps(cf, ds3) # check missing data and QC flags are consistent qcutils.CheckQCFlags(ds3) # get the statistics for the QC flags and write these to an Excel spreadsheet qcio.get_seriesstats(cf, ds3) # write the percentage of good data as a variable attribute qcutils.get_coverage_individual(ds3) # write the percentage of good data for groups qcutils.get_coverage_groups(ds3) return ds3