def circuit_tester(prep, test_circ): for gate in test_circ.gates(): id = gate.gate_id() target = gate.target() control = gate.control() num_qubits = 5 qc1 = Computer(num_qubits) qc2 = Computer(num_qubits) qc1.apply_circuit_safe(prep) qc2.apply_circuit_safe(prep) qc1.apply_gate_safe(gate) qc2.apply_gate(gate) C1 = qc1.get_coeff_vec() C2 = qc2.get_coeff_vec() diff_vec = [(C1[i] - C2[i]) * np.conj(C1[i] - C2[i]) for i in range(len(C1))] diff_norm = np.sum(diff_vec) if (np.sum(diff_vec) != (0.0 + 0.0j)): print('|C - C_safe|F^2 control target id') print('----------------------------------------') print(diff_norm, ' ', control, ' ', target, ' ', id) return diff_norm
def test_trotterization_with_controlled_U(self): circ_vec = [build_circuit('Y_0 X_1'), build_circuit('X_0 Y_1')] coef_vec = [-1.0719145972781818j, 1.0719145972781818j] # the operator to be exponentiated minus_iH = QubitOperator() for i in range(len(circ_vec)): minus_iH.add(coef_vec[i], circ_vec[i]) ancilla_idx = 2 # exponentiate the operator Utrot, phase = trotterization.trotterize_w_cRz(minus_iH, ancilla_idx) # Case 1: positive control # initalize a quantum computer qc = Computer(3) # build HF state qc.apply_gate(gate('X', 0, 0)) # put ancilla in |1> state qc.apply_gate(gate('X', 2, 2)) # apply the troterized minus_iH qc.apply_circuit(Utrot) smart_print(qc) coeffs = qc.get_coeff_vec() assert coeffs[5] == approx(-0.5421829373021542, abs=1.0e-15) assert coeffs[6] == approx(-0.8402604730072732, abs=1.0e-15) # Case 2: negitive control # initalize a quantum computer qc = Computer(3) # build HF state qc.apply_gate(gate('X', 0, 0)) # apply the troterized minus_iH qc.apply_circuit(Utrot) smart_print(qc) coeffs = qc.get_coeff_vec() assert coeffs[1] == approx(1, abs=1.0e-15)
def test_trotterization(self): circ_vec = [Circuit(), build_circuit('Z_0')] coef_vec = [-1.0j * 0.5, -1.0j * -0.04544288414432624] # the operator to be exponentiated minus_iH = QubitOperator() for i in range(len(circ_vec)): minus_iH.add(coef_vec[i], circ_vec[i]) # exponentiate the operator Utrot, phase = trotterization.trotterize(minus_iH) inital_state = np.zeros(2**4, dtype=complex) inital_state[3] = np.sqrt(2 / 3) inital_state[12] = -np.sqrt(1 / 3) # initalize a quantum computer with above coeficients # i.e. ca|1100> + cb|0011> qc = Computer(4) qc.set_coeff_vec(inital_state) # apply the troterized minus_iH qc.apply_circuit(Utrot) qc.apply_constant(phase) smart_print(qc) coeffs = qc.get_coeff_vec() assert np.real(coeffs[3]) == approx(0.6980209737879599, abs=1.0e-15) assert np.imag(coeffs[3]) == approx(-0.423595782342996, abs=1.0e-15) assert np.real(coeffs[12]) == approx(-0.5187235657531178, abs=1.0e-15) assert np.imag(coeffs[12]) == approx(0.25349397560041553, abs=1.0e-15)
def test_circuit(self): print('\n') num_qubits = 10 qc1 = Computer(num_qubits) qc2 = Computer(num_qubits) prep_circ = Circuit() circ = Circuit() for i in range(num_qubits): prep_circ.add(gate('H', i, i)) for i in range(num_qubits): prep_circ.add(gate('cR', i, i + 1, 1.116 / (i + 1.0))) for i in range(num_qubits - 1): circ.add(gate('cX', i, i + 1)) circ.add(gate('cX', i + 1, i)) circ.add(gate('cY', i, i + 1)) circ.add(gate('cY', i + 1, i)) circ.add(gate('cZ', i, i + 1)) circ.add(gate('cZ', i + 1, i)) circ.add(gate('cR', i, i + 1, 3.14159 / (i + 1.0))) circ.add(gate('cR', i + 1, i, 2.17284 / (i + 1.0))) qc1.apply_circuit_safe(prep_circ) qc2.apply_circuit_safe(prep_circ) qc1.apply_circuit_safe(circ) qc2.apply_circuit(circ) C1 = qc1.get_coeff_vec() C2 = qc2.get_coeff_vec() diff_vec = [(C1[i] - C2[i]) * np.conj(C1[i] - C2[i]) for i in range(len(C1))] diff_norm = np.sum(diff_vec) print('\nNorm of diff vec |C - Csafe|') print('-----------------------------') print(' ', diff_norm) assert diff_norm == approx(0, abs=1.0e-16)
def test_sparse_operator(self): """ test the SparseMatrix and SparseVector classes """ coeff_vec = [ -0.093750, +0.093750j, -0.093750, -0.093750j, -0.093750, -0.093750j, +0.062500j, -0.093750, -0.093750, +0.093750j, +0.093750, -0.062500, -0.093750j, -0.062500j, +0.062500j, -0.062500, +0.062500, +0.062500, -0.062500j, -0.093750, +0.062500j, -0.062500, -0.062500j, -0.062500, +0.093750j, +0.093750j, +0.062500j, +0.093750, -0.062500, -0.062500, -0.093750j, -0.062500j ] circ_vec = [ build_circuit('X_1 Y_2 X_3 Y_4'), build_circuit('X_1 Y_2 X_3 X_4'), build_circuit('X_1 Y_2 Y_3 X_4'), build_circuit('X_1 X_2 X_3 Y_4'), build_circuit('X_1 X_2 X_3 X_4'), build_circuit('X_1 X_2 Y_3 X_4'), build_circuit('Y_2 X_3 X_4 Z_5 X_6'), build_circuit('Y_1 Y_2 Y_3 Y_4'), build_circuit('Y_1 X_2 X_3 Y_4'), build_circuit('Y_1 X_2 X_3 X_4'), build_circuit('Y_1 Y_2 X_3 X_4'), build_circuit('X_2 X_3 X_4 Z_5 X_6'), build_circuit('Y_1 X_2 Y_3 Y_4'), build_circuit('X_2 Y_3 Y_4 Z_5 Y_6'), build_circuit('X_2 Y_3 X_4 Z_5 X_6'), build_circuit('X_2 Y_3 Y_4 Z_5 X_6'), build_circuit('X_2 X_3 Y_4 Z_5 Y_6'), build_circuit('Y_2 Y_3 X_4 Z_5 X_6'), build_circuit('X_2 X_3 Y_4 Z_5 X_6'), build_circuit('Y_1 X_2 Y_3 X_4'), build_circuit('Y_2 Y_3 X_4 Z_5 Y_6'), build_circuit('Y_2 X_3 X_4 Z_5 Y_6'), build_circuit('X_2 X_3 X_4 Z_5 Y_6'), build_circuit('X_2 Y_3 X_4 Z_5 Y_6'), build_circuit('Y_1 Y_2 Y_3 X_4'), build_circuit('Y_1 Y_2 X_3 Y_4'), build_circuit('Y_2 Y_3 Y_4 Z_5 X_6'), build_circuit('X_1 X_2 Y_3 Y_4'), build_circuit('Y_2 Y_3 Y_4 Z_5 Y_6'), build_circuit('Y_2 X_3 Y_4 Z_5 X_6'), build_circuit('X_1 Y_2 Y_3 Y_4'), build_circuit('Y_2 X_3 Y_4 Z_5 Y_6') ] qubit_op = QubitOperator() for coeff, circ in zip(coeff_vec, circ_vec): qubit_op.add(coeff, circ) num_qb = qubit_op.num_qubits() qci = Computer(num_qb) arb_vec = np.linspace(0, 2 * np.pi, 2**num_qb) arb_vec = arb_vec / np.linalg.norm(arb_vec) qci.set_coeff_vec(arb_vec) sp_mat_op = qubit_op.sparse_matrix(num_qb) ci = np.array(qci.get_coeff_vec()) qci.apply_operator(qubit_op) diff_vec = np.array(qci.get_coeff_vec()) # Reset stae qci.set_coeff_vec(ci) qci.apply_sparse_matrix(sp_mat_op) # see if there is a difference diff_vec = np.array(qci.get_coeff_vec()) - diff_vec diff_val = np.linalg.norm(diff_vec) print('Operator used for sparse matrix operator test: \n', qubit_op) print('||∆||: ', diff_val) assert diff_val < 1.0e-15