示例#1
0
def joinAll(validInputs, params, context, feedback):
    outp = QgsProcessing.TEMPORARY_OUTPUT
    totalValidInputs = len(validInputs)
    step = 0
    steps = totalValidInputs
    feedback = QgsProcessingMultiStepFeedback(steps, feedback)
    i = 0
    for k, v in validInputs.items():
        i = i + 1
        # if i == totalValidInputs:
        #   outp = params['OUTPUT']
        feedback.pushConsoleInfo(str(i))
        val = validInputs[k]
        layer = str(val[0])
        attr = str(val[1])
        if i == 1:
            result = layer
        else:
            step = step + 1
            feedback.setCurrentStep(step)
            result = joinAttrByLocation(result, layer, attr, [IGUALA],
                                        UNDISCARD_NONMATCHING, context,
                                        feedback)
            result = result['OUTPUT']

    return result
示例#2
0
def lineal(params, context, feedback):
    steps = 0
    totalStpes = 1
    pointA = params['A']
    pointB = params['B']
    pointC = params['C']
    pointD = params['D']
    value = params['VALUE']
    feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)
    #feedback.pushConsoleInfo(str(typeFunction))
    steps = steps + 1
    feedback.setCurrentStep(steps)
    formulaLineal = calculateLineal(value, pointA, pointB, pointC, pointD)
    feedback.pushConsoleInfo(str(formulaLineal))
    fieldOputName = "n_" + value
    proximity2OpenSpace = calculateField(params['GRID'], fieldOputName,
                                         formulaLineal, context, feedback,
                                         params['OUTPUT'])

    return proximity2OpenSpace
示例#3
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpaMan = params['DPA_MAN']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)

        pathCsvVivienda = params['CENSO_VIVIENDA']
        file = pathCsvVivienda
        cols = [
            'I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09', 'I10', 'V02',
            'V04', 'V06'
        ]
        df = pd.read_csv(file, usecols=cols)

        # fix codes
        df['I01'] = df['I01'].astype(str)
        df['I02'] = df['I02'].astype(str)
        df['I03'] = df['I03'].astype(str)
        df['I04'] = df['I04'].astype(str)
        df['I05'] = df['I05'].astype(str)
        df['I06'] = df['I06'].astype(str)
        df['I09'] = df['I09'].astype(str)
        df['I10'] = df['I10'].astype(str)

        df.loc[df['I01'].str.len() < 2, 'I01'] = "0" + df['I01']
        df.loc[df['I02'].str.len() < 2, 'I02'] = "0" + df['I02']
        df.loc[df['I03'].str.len() < 2, 'I03'] = "0" + df['I03']
        df.loc[df['I04'].str.len() == 1, 'I04'] = "00" + df['I04']
        df.loc[df['I04'].str.len() == 2, 'I04'] = "0" + df['I04']
        df.loc[df['I05'].str.len() == 1, 'I05'] = "00" + df['I05']
        df.loc[df['I05'].str.len() == 2, 'I05'] = "0" + df['I05']
        df.loc[df['I06'].str.len() < 2, 'I06'] = "0" + df['I06']
        df.loc[df['I09'].str.len() == 1, 'I09'] = "00" + df['I09']
        df.loc[df['I09'].str.len() == 2, 'I09'] = "0" + df['I09']
        df.loc[df['I10'].str.len() < 2, 'I10'] = "0" + df['I10']

        df['codman'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) + df['I06'].astype(str)

        #Para el cálculo se utilizan los datos de las cubiertas,
        # pareds y pisos en estado MALO según el Censo de pobalción y vivienda 2010.
        # V02: categoría 3 (techo).
        # V04: categoría 3 (paredes).
        # V06: categoría 3 (piso).

        df['pt'] = 1.0
        df['vivcarencias'] = 0.0
        df.loc[(df['V02'] == '3')
               & (df['V04'] == '3')
               & (df['V06'] == '3'), 'vivcarencias'] = 1.0

        df['pt'] = df['pt'].astype(float)
        df['vivcarencias'] = df['vivcarencias'].astype(float)

        aggOptions = {
            'codman': 'first',
            'pt': 'count',
            'vivcarencias': 'sum',
        }

        resManzanas = df.groupby('codman').agg(aggOptions)

        resManzanas['pobconcaren'] = None
        resManzanas['pobconcaren'] = (resManzanas['vivcarencias'] /
                                      resManzanas['pt']) * 100

        df = resManzanas

        steps = steps + 1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH + '/pobconcaren.csv'
        feedback.pushConsoleInfo(str(('pobconcaren en ' + outputCsv)))
        df.to_csv(outputCsv, index=False)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if (exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV = QgsVectorLayer(outputCsv, "csv", "ogr")
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]
        print(field_names)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpaMan, outputCsv,
                             'codman', [], UNDISCARD_NONMATCHING, '', 1,
                             context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        expressionNotNull = "pobconcaren IS NOT '' AND pobconcaren is NOT NULL"
        notNull = filterByExpression(result['OUTPUT'], expressionNotNull,
                                     context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pobconcaren * 1.0'
        result = calculateField(notNull['OUTPUT'], 'pobconcaren_n',
                                formulaDummy, context, feedback)

        # ----------------------CONVERTIR A NUMERICOS --------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'vivcarencias * 1.0'
        result = calculateField(result['OUTPUT'], 'vivcarencias_n',
                                formulaDummy, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pt * 1.0'
        result = calculateField(result['OUTPUT'], 'pt_n', formulaDummy,
                                context, feedback)

        # ----------------------PROPORCIONES AREA--------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocks = calculateArea(result['OUTPUT'], 'area_bloc', context,
                               feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                ['vivcarencias_n', 'pt_n', 'area_bloc'],
                                ['id_grid', 'area_grid'], context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg', context,
                                     feedback)

        # -------------------------PROPORCIONES VALORES-------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * vivcarencias_n'
        result = calculateField(segmentsArea['OUTPUT'], 'vivcarencias_n_seg',
                                formulaDummy, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pt_n'
        result = calculateField(result['OUTPUT'], 'pt_n_seg', formulaDummy,
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = makeSureInside(result['OUTPUT'], context, feedback)

        #----------------------------------------------------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByLocation(gridNeto['OUTPUT'], result['OUTPUT'],
                                ['vivcarencias_n_seg', 'pt_n_seg'], [CONTIENE],
                                [SUM], UNDISCARD_NONMATCHING, context,
                                feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(vivcarencias_n_seg_sum/pt_n_seg_sum) * 100'
        result = calculateField(result['OUTPUT'], NAMES_INDEX['ID02'][0],
                                formulaDummy, context, feedback,
                                params['OUTPUT'])

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # gridNeto = joinByLocation(gridNeto['OUTPUT'],
        #                      result['OUTPUT'],
        #                      ['pobconcaren_n'],
        #                       [INTERSECTA], [MEDIA],
        #                       UNDISCARD_NONMATCHING,
        #                       context,
        #                       feedback)

        # fieldsMapping = [
        #     {'expression': '"id_grid"', 'length': 10, 'name': 'id_grid', 'precision': 0, 'type': 4},
        #     {'expression': '"area_grid"', 'length': 16, 'name': 'area_grid', 'precision': 3, 'type': 6},
        #     {'expression': '"acceso_inter_n_mean"', 'length': 20, 'name': NAMES_INDEX['ID02'][0], 'precision': 2, 'type': 6}
        # ]

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # result = refactorFields(fieldsMapping, gridNeto['OUTPUT'],
        #                         context,
        #                         feedback, params['OUTPUT'])

        return result
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpa = params['DPA_SECTOR']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'], params['BLOCKS'],
                                         params['STUDY_AREA_GRID'],
                                         context, feedback)
        gridNeto = grid  


        steps = steps+1
        feedback.setCurrentStep(steps)

        path = params['ENCUESTA']

        file = path

        cols = ['CIUDAD', 'ZONA', 'SECTOR', 'VIVIENDA', 'HOGAR', 'I52']
        df = pd.read_csv(file, usecols=cols)


        # fix codes 
        df['CIUDAD'] = df['CIUDAD'].astype(str)
        df['ZONA'] = df['ZONA'].astype(str)
        df['SECTOR'] = df['SECTOR'].astype(str)
        df['VIVIENDA'] = df['VIVIENDA'].astype(str)
        df['HOGAR'] = df['HOGAR'].astype(str)


        df.loc[df['CIUDAD'].str.len() == 5, 'CIUDAD'] = "0" + df['CIUDAD']
        df.loc[df['ZONA'].str.len() == 1, 'ZONA'] = "00" + df['ZONA']
        df.loc[df['ZONA'].str.len() == 2, 'ZONA'] = "0" + df['ZONA']
        df.loc[df['SECTOR'].str.len() == 1, 'SECTOR'] = "00" + df['SECTOR']
        df.loc[df['SECTOR'].str.len() == 2, 'SECTOR'] = "0" + df['SECTOR']
        df.loc[df['VIVIENDA'].str.len() == 1, 'VIVIENDA'] = "0" + df['VIVIENDA']

        # I52, categorías 1 y 2 (muy inseguro e inseguro)

        df['pobinse'] = 0.0
        df.loc[(df['I52'] == 'Inseguro') | (df['I52'] == 'Muy inseguro'), 'pobinse'] = 1.0

        # codigo sector
        df['codsec'] = df['CIUDAD'].astype(str) + df['ZONA'].astype(str) + df['SECTOR'].astype(str) 
        df['codzon'] = df['CIUDAD'].astype(str) + df['ZONA'].astype(str)

        df.rename(columns={'CIUDAD':'pbt'}, inplace=True) 
        aggOptions = {
                      'codzon' : 'first',
                      'pbt' : 'count',
                      'pobinse' : 'sum',
                     } 

        resManzanas = df.groupby('codzon').agg(aggOptions)
        resManzanas['percepcionins'] = None
        resManzanas['percepcionins'] = (resManzanas['pobinse'] / resManzanas['pbt']) * 100   

        df = resManzanas   

                  
        steps = steps+1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH+'/percepcionins.csv'
        feedback.pushConsoleInfo(str(('percepcionins en ' + outputCsv)))    
        df.to_csv(outputCsv, index=False)

        steps = steps+1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if(exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV =  QgsVectorLayer(outputCsv, "csv", "ogr") 
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]       
        print(field_names)            


        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpa,
                                outputCsv, 'codzon',
                                [],
                                UNDISCARD_NONMATCHING,
                                '',
                                1,
                                context,
                                feedback)

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # expressionNotNull = "percepcionins IS NOT '' AND percepcionins is NOT NULL"    
        # result =   filterByExpression(result['OUTPUT'], expressionNotNull, context, feedback) 



  # ----------------------CONVERTIR A NUMERICOS --------------------     
  
        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pobinse * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'pobinse_n',
                                 formulaDummy,
                                 context,
                                 feedback)  

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pbt * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'pbt_n',
                                 formulaDummy,
                                 context,
                                 feedback)    

       # ----------------------PROPORCIONES AREA--------------------------
       
        steps = steps+1
        feedback.setCurrentStep(steps)        
        blocks = calculateArea(result['OUTPUT'], 'area_bloc', context,
                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                ['pobinse_n','pbt_n','area_bloc'],
                                ['id_grid','area_grid'],
                                context, feedback)        

        steps = steps+1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'],
                                     'area_seg',
                                     context, feedback)

        # -------------------------PROPORCIONES VALORES-------------------------

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pobinse_n' 
        result = calculateField(segmentsArea['OUTPUT'], 'pobinse_n_seg',
                                               formulaDummy,
                                               context,
                                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pbt_n' 
        result = calculateField(result['OUTPUT'], 'pbt_n_seg',
                               formulaDummy,
                               context,
                               feedback)   


        steps = steps+1
        feedback.setCurrentStep(steps)
        result = makeSureInside(result['OUTPUT'],
                                context,
                                feedback)                                    

        #----------------------------------------------------------------------   

        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByLocation(gridNeto['OUTPUT'],
                             result['OUTPUT'],
                             ['pobinse_n_seg','pbt_n_seg'],                                   
                              [CONTIENE], [SUM],
                              UNDISCARD_NONMATCHING,
                              context,
                              feedback)  


        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(pobinse_n_seg_sum/pbt_n_seg_sum) * 100' 
        result = calculateField(result['OUTPUT'], NAMES_INDEX['ID15'][0],
                               formulaDummy,
                               context,
                               feedback, params['OUTPUT'])    


 
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # gridNeto = joinByLocation(gridNeto['OUTPUT'],
        #                      result['OUTPUT'],
        #                      ['pobinse_viv_n'],                                   
        #                       [INTERSECTA], [MEDIA],
        #                       UNDISCARD_NONMATCHING,
        #                       context,
        #                       feedback)         
 

        # fieldsMapping = [
        #     {'expression': '"id_grid"', 'length': 10, 'name': 'id_grid', 'precision': 0, 'type': 4}, 
        #     {'expression': '"area_grid"', 'length': 16, 'name': 'area_grid', 'precision': 3, 'type': 6}, 
        #     {'expression': '"tenencia_viv_n_mean"', 'length': 20, 'name': NAMES_INDEX['ID15'][0], 'precision': 2, 'type': 6}
        # ]      
        
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # result = refactorFields(fieldsMapping, gridNeto['OUTPUT'], 
        #                         context,
        #                         feedback, params['OUTPUT'])                                                                

        return result
示例#5
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 31
        # fieldPopulation = params['FIELD_POPULATION']
        fieldHousing = params['FIELD_HOUSING']
        DISTANCE_EDUCATION = 500
        DISTANCE_HEALTH = 1200
        DISTANCE_APPROVAL = 500
        DISTANCE_SPORTS = 1000
        DISTANCE_ADMIN_PUBLIC = 1000

        MIN_FACILITIES = 5
        OPERATOR_GE = 3

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)
        """
        -----------------------------------------------------------------
        Calcular las facilidades
        -----------------------------------------------------------------
        """

        steps = steps + 1
        feedback.setCurrentStep(steps)
        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocks = calculateArea(params['BLOCKS'], 'area_bloc', context,
                               feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                'area_bloc;' + fieldHousing, 'id_grid',
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg', context,
                                     feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaHousingSegments = '(area_seg/area_bloc) * ' + fieldHousing
        housingForSegments = calculateField(segmentsArea['OUTPUT'], 'hou_seg',
                                            formulaHousingSegments, context,
                                            feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocksWithId = calculateField(housingForSegments['OUTPUT'],
                                      'id_block',
                                      '$id',
                                      context,
                                      feedback,
                                      type=1)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        centroidsBlocks = createCentroids(blocksWithId['OUTPUT'], context,
                                          feedback)

        result = []

        idxs = ['idxedu', 'idxhea', 'idxapp', 'idkspor', 'idxadmin']

        if (params['DISTANCE_OPTIONS'] == 0):
            steps = steps + 1
            feedback.setCurrentStep(steps)
            feedback.pushConsoleInfo(str(('Cálculo de áreas de servicio')))
            layers = [
                [params['EDUCATION'], STRATEGY_DISTANCE, DISTANCE_EDUCATION],
                [params['HEALTH'], STRATEGY_DISTANCE, DISTANCE_HEALTH],
                [params['APPROVAL'], STRATEGY_DISTANCE, DISTANCE_APPROVAL],
                [params['SPORTS'], STRATEGY_DISTANCE, DISTANCE_SPORTS],
                [
                    params['ADMIN_PUBLIC'], STRATEGY_DISTANCE,
                    DISTANCE_ADMIN_PUBLIC
                ],
            ]
            serviceAreas = multiBufferIsocrono(params['ROADS'], layers,
                                               context, feedback)

            iidx = -1
            for serviceArea in serviceAreas:
                iidx = iidx + 1
                idx = idxs[iidx]
                steps = steps + 1
                feedback.setCurrentStep(steps)
                serviceArea = calculateField(serviceArea,
                                             idx,
                                             '$id',
                                             context,
                                             feedback,
                                             type=1)
                steps = steps + 1
                feedback.setCurrentStep(steps)
                centroidsBlocks = joinByLocation(centroidsBlocks['OUTPUT'],
                                                 serviceArea['OUTPUT'], [idx],
                                                 [INTERSECTA], [COUNT],
                                                 UNDISCARD_NONMATCHING,
                                                 context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaDummy = 'coalesce(idxedu_count, 0) + coalesce(idxhea_count, 0) + coalesce(idxapp_count,0) + coalesce(idkspor_count, 0) + coalesce(idxadmin_count, 0)'
            facilitiesCover = calculateField(centroidsBlocks['OUTPUT'],
                                             'facilities', formulaDummy,
                                             context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesFullCover = filter(facilitiesCover['OUTPUT'],
                                         'facilities', OPERATOR_GE,
                                         MIN_FACILITIES, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilitiesCover = joinByLocation(gridNeto['OUTPUT'],
                                                     facilitiesCover['OUTPUT'],
                                                     ['hou_seg', 'facilities'],
                                                     [CONTIENE], [SUM],
                                                     UNDISCARD_NONMATCHING,
                                                     context, feedback)

            fieldsMapping = [{
                'expression': '"id_grid"',
                'length': 10,
                'name': 'id_grid',
                'precision': 0,
                'type': 4
            }, {
                'expression': '"area_grid"',
                'length': 16,
                'name': 'area_grid',
                'precision': 3,
                'type': 6
            }, {
                'expression': '"hou_seg_sum"',
                'length': 20,
                'name': 'ptotal',
                'precision': 2,
                'type': 6
            }, {
                'expression': '"facilities_sum"',
                'length': 20,
                'name': 'facilities',
                'precision': 2,
                'type': 6
            }]

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilitiesCover = refactorFields(
                fieldsMapping, gridNetoFacilitiesCover['OUTPUT'], context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilities = joinByLocation(
                gridNetoFacilitiesCover['OUTPUT'],
                facilitiesFullCover['OUTPUT'], ['hou_seg'], [CONTIENE], [SUM],
                UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(hou_seg_sum,0) / coalesce(ptotal,""))*100,"")'
            proximity2BasicU = calculateField(gridNetoFacilities['OUTPUT'],
                                              NAMES_INDEX['IA07'][0],
                                              formulaProximity, context,
                                              feedback, params['OUTPUT'])

            result = proximity2BasicU

        else:
            feedback.pushConsoleInfo(str(('Cálculo de buffer radial')))

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Education = createBuffer(centroidsBlocks['OUTPUT'],
                                                 DISTANCE_EDUCATION, context,
                                                 feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Health = createBuffer(centroidsBlocks['OUTPUT'],
                                              DISTANCE_HEALTH, context,
                                              feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Approval = createBuffer(centroidsBlocks['OUTPUT'],
                                                DISTANCE_APPROVAL, context,
                                                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            BlockBuffer4Sports = createBuffer(centroidsBlocks['OUTPUT'],
                                              DISTANCE_SPORTS, context,
                                              feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            BlockBuffer4Admin = createBuffer(centroidsBlocks['OUTPUT'],
                                             DISTANCE_ADMIN_PUBLIC, context,
                                             feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerEducation = calculateField(params['EDUCATION'],
                                            'idx',
                                            '$id',
                                            context,
                                            feedback,
                                            type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerHealth = calculateField(params['HEALTH'],
                                         'idx',
                                         '$id',
                                         context,
                                         feedback,
                                         type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerApproval = calculateField(params['APPROVAL'],
                                           'idx',
                                           '$id',
                                           context,
                                           feedback,
                                           type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerSports = calculateField(params['SPORTS'],
                                         'idx',
                                         '$id',
                                         context,
                                         feedback,
                                         type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerAdmin = calculateField(params['ADMIN_PUBLIC'],
                                        'idx',
                                        '$id',
                                        context,
                                        feedback,
                                        type=1)

            layerEducation = layerEducation['OUTPUT']
            layerHealth = layerHealth['OUTPUT']
            layerApproval = layerApproval['OUTPUT']
            layerSports = layerSports['OUTPUT']
            layerAdmin = layerAdmin['OUTPUT']

            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterEducation = joinByLocation(blockBuffer4Education['OUTPUT'],
                                              layerEducation, 'idx',
                                              [CONTIENE, INTERSECTA], [COUNT],
                                              UNDISCARD_NONMATCHING, context,
                                              feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterHealth = joinByLocation(blockBuffer4Health['OUTPUT'],
                                           layerHealth, 'idx',
                                           [CONTIENE, INTERSECTA], [COUNT],
                                           UNDISCARD_NONMATCHING, context,
                                           feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterApproval = joinByLocation(blockBuffer4Approval['OUTPUT'],
                                             layerApproval, 'idx',
                                             [CONTIENE, INTERSECTA], [COUNT],
                                             UNDISCARD_NONMATCHING, context,
                                             feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterSport = joinByLocation(BlockBuffer4Sports['OUTPUT'],
                                          layerSports, 'idx',
                                          [CONTIENE, INTERSECTA], [COUNT],
                                          UNDISCARD_NONMATCHING, context,
                                          feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterAdmin = joinByLocation(BlockBuffer4Admin['OUTPUT'],
                                          layerAdmin, 'idx',
                                          [CONTIENE, INTERSECTA], [COUNT],
                                          UNDISCARD_NONMATCHING, context,
                                          feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksWithId['OUTPUT'], 'id_block',
                                      counterEducation['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'edu_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterHealth['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'hea_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterApproval['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'app_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterSport['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'spo_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterAdmin['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'adm_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaFacilities = 'edu_idx_count * hea_idx_count * app_idx_count * spo_idx_count * adm_idx_count'
            blocksFacilities = calculateField(blocksJoined['OUTPUT'],
                                              'facilities', formulaFacilities,
                                              context, feedback)
            """
          -----------------------------------------------------------------
          Calcular numero de viviendas por hexagano
          -----------------------------------------------------------------
          """

            # Haciendo el buffer inverso aseguramos que los segmentos
            # quden dentro de la malla
            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesForSegmentsFixed = makeSureInside(
                blocksFacilities['OUTPUT'], context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegments = joinByLocation(
                gridNeto['OUTPUT'], facilitiesForSegmentsFixed['OUTPUT'],
                'edu_idx_count;hea_idx_count;app_idx_count;spo_idx_count;adm_idx_count;facilities;hou_seg',
                [CONTIENE], [MAX, SUM], UNDISCARD_NONMATCHING, context,
                feedback)
            # tomar solo los que tienen cercania simultanea (descartar NULL)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesNotNullForSegmentsFixed = filter(
                facilitiesForSegmentsFixed['OUTPUT'], 'facilities', NOT_NULL,
                '', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegmentsNotNull = joinByLocation(
                gridNeto['OUTPUT'],
                facilitiesNotNullForSegmentsFixed['OUTPUT'], 'hou_seg',
                [CONTIENE], [MAX, SUM], UNDISCARD_NONMATCHING, context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            totalHousing = joinByAttr(gridNetoAndSegments['OUTPUT'], 'id_grid',
                                      gridNetoAndSegmentsNotNull['OUTPUT'],
                                      'id_grid', 'hou_seg_sum',
                                      UNDISCARD_NONMATCHING, 'net_', context,
                                      feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(net_hou_seg_sum,0) /  coalesce(hou_seg_sum,0))*100, "")'
            proximity2BasicU = calculateField(totalHousing['OUTPUT'],
                                              NAMES_INDEX['IA07'][0],
                                              formulaProximity, context,
                                              feedback, params['OUTPUT'])

            result = proximity2BasicU

        return proximity2BasicU
示例#6
0
    def processAlgorithm(self, parameters, context, model_feedback):
        """
        Here is where the processing itself takes place.
        """
        results = {}

        feedback = QgsProcessingMultiStepFeedback(5, model_feedback)

        addressLayer = self.parameterAsVectorLayer(parameters, "addresslayer",
                                                   context)
        addressfields = self.parameterAsFields(parameters, 'addressfield',
                                               context)

        popmeshLayer = self.parameterAsVectorLayer(parameters, "popmeshlayer",
                                                   context)
        if popmeshLayer is None:
            raise QgsProcessingException(self.tr('popmesh layer missed'))

        popmeshidfields = self.parameterAsFields(parameters, 'popmeshid',
                                                 context)

        popmeshpopfields = self.parameterAsFields(parameters, 'popmeshpop',
                                                  context)

        dpop_fieldname = self.parameterAsString(parameters, "POPCOLUMN",
                                                context)

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        meshid = popmeshidfields[0]

        #   行政界の面積計算
        #
        #  面積出力フィールド名

        area_column = 'mesh_area'

        params3 = {
            'INPUT': popmeshLayer,
            'FIELD_NAME': area_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            'FIELD_PRECISION': 5,
            'NEW_FIELD': 1,
            'FORMULA': '$area',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res3 = processing.run('qgis:fieldcalculator',
                              params3,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("caluculate area OK ")

        #   ここから関数化がいいかも
        #   メッシュと行政界のIntesect
        feedback.setCurrentStep(2)

        params2 = {
            'INPUT': res3["OUTPUT"],
            'INPUT_FIELDS': [],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'OVERLAY': addressLayer,
            'OVERLAY_FIELDS': []
        }
        #              'OUTPUT' : parameters["OUTPUT"], 'OVERLAY' : res3["OUTPUT"], 'OVERLAY_FIELDS' : [] }

        res2 = processing.run('qgis:union',
                              params2,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("union  OK ")
        #   union ポリゴンの面積計算

        feedback.setCurrentStep(3)
        params_del = {
            'INPUT': res2["OUTPUT"],
            'COLUMN': ['fid'],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        #'OUTPUT' : parameters["OUTPUT"] }

        res_del = processing.run('qgis:deletecolumn',
                                 params_del,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)
        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("delete column  OK ")
        feedback.setCurrentStep(4)

        alg_paramsg_n = {
            'LAYERS': res_del["OUTPUT"],
            'OVERWRITE': False,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        res_n = processing.run('native:package',
                               alg_paramsg_n,
                               context=context,
                               feedback=feedback,
                               is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("convert to geopackage   OK ")
        feedback.setCurrentStep(5)

        area_column2 = 'div_area'

        params4 = {
            'INPUT': res_n["OUTPUT"],
            'FIELD_NAME': area_column2,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            'FIELD_PRECISION': 5,
            'NEW_FIELD': 1,
            'FORMULA': '$area',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        #         'NEW_FIELD':1,'FORMULA':'$area','OUTPUT' : parameters["OUTPUT"] }

        res4 = processing.run('qgis:fieldcalculator',
                              params4,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        #   分割ポリゴンの面積と元ポリゴンの面積の比率にメッシュ人口をかけて分割ポリゴンの想定人口を算出する
        ppopfield = popmeshpopfields[0]
        new_column = dpop_fieldname

        exp_str = area_column2 + "/" + area_column + "*" + ppopfield

        feedback.pushConsoleInfo("expression " + exp_str)

        params5 = {
            'INPUT': res4["OUTPUT"],
            'FIELD_NAME': new_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            'FIELD_PRECISION': 5,
            #        'NEW_FIELD':1,'FORMULA':exp_str ,'OUTPUT' :QgsProcessing.TEMPORARY_OUTPUT }
            'NEW_FIELD': 1,
            'FORMULA': exp_str,
            'OUTPUT': parameters["OUTPUT"]
        }

        res5 = processing.run('qgis:fieldcalculator',
                              params5,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        feedback.pushConsoleInfo("snum calc end ")

        results["OUTPUT"] = res5["OUTPUT"]
        return results

        params_del2 = {
            'INPUT': res5["OUTPUT"],
            'COLUMN': ['fid'],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        #'OUTPUT' : parameters["OUTPUT"] }

        res_del2 = processing.run('qgis:deletecolumn',
                                  params_del2,
                                  context=context,
                                  feedback=feedback,
                                  is_child_algorithm=True)
        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("delete column 2 OK ")

        feedback.setCurrentStep(6)

        alg_paramsg_n2 = {
            'LAYERS': res_del2["OUTPUT"],
            'OVERWRITE': False,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        res_n2 = processing.run('native:package',
                                alg_paramsg_n2,
                                context=context,
                                feedback=feedback,
                                is_child_algorithm=True)

        tgLayer = res5["OUTPUT"]

        if type(tgLayer) is str:
            feedback.pushConsoleInfo("tglayer is string")
            tgLayer = QgsVectorLayer(tgLayer, "union", "memory")

        agar = []
        #  フィールド単位に集計方法を指定している
        for field in tgLayer.fields():

            agreg = {}
            feedback.pushConsoleInfo("name " + field.name())
            if field.name() != "fid":

                agreg['input'] = '"' + field.name() + '"'

                agreg['name'] = field.name()
                agreg['aggregate'] = 'first_value'

                agreg['length'] = field.length()
                agreg['precision'] = field.precision()
                agreg['type'] = field.type()

                if field.name() == new_column:
                    agreg['aggregate'] = 'sum'

                agar.append(agreg)

        addressf = addressfields[0]

        #    集計
        #params6 = { 'INPUT' : res5["OUTPUT"], 'GROUP_BY' : addressf, 'AGGREGATES': agar, 'OUTPUT' :QgsProcessing.TEMPORARY_OUTPUT }
        params6 = {
            'INPUT': res5["OUTPUT"],
            'GROUP_BY': addressf,
            'AGGREGATES': agar,
            'OUTPUT': parameters["OUTPUT"]
        }
        feedback.pushConsoleInfo("aggregate ")
        res8 = processing.run('qgis:aggregate',
                              params6,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("aggregate OK ")

        #   レイヤ結合  qgis:joinattributestable
        #QgsProject.instance().addMapLayer(res7["OUTPUT"])

        param7 = {
            'DISCARD_NONMATCHING': False,
            'FIELD': addressf,
            'FIELDS_TO_COPY': [new_column],
            'FIELD_2': addressf,
            'INPUT': addressLayer,
            'INPUT_2': res8['OUTPUT'],
            'METHOD': 1,
            'OUTPUT': parameters["OUTPUT"],
            'PREFIX': ''
        }

        res9 = processing.run('qgis:joinattributestable',
                              param7,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("joinattributetable OK")

        # Return the results of the algorithm. In this case our only result is
        # the feature sink which contains the processed features, but some
        # algorithms may return multiple feature sinks, calculated numeric
        # statistics, etc. These should all be included in the returned
        # dictionary, with keys matching the feature corresponding parameter
        # or output names.

        # フォーマット変換(gdal_translate)
        alg_params = {
            'INPUT': res2["OUTPUT"],
            'OPTIONS': '',
            'OUTPUT': parameters['OUTPUT']
        }
        # ocv = processing.run('gdal:convertformat', alg_params, context=context, feedback=feedback, is_child_algorithm=True)

        results["OUTPUT"] = res9["OUTPUT"]
        return results
示例#7
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpaMan = params['DPA_MAN']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'], params['BLOCKS'],
                                         params['STUDY_AREA_GRID'],
                                         context, feedback)
        gridNeto = grid  


        steps = steps+1
        feedback.setCurrentStep(steps)


        # pathCsvPoblacion = params['CENSO_POBLACION']
        pathCsvHogar = params['CENSO_HOGAR']
        pathCsvVivienda = params['CENSO_VIVIENDA']

        fileH = pathCsvHogar

        colsH = ['I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09','H15']
        df = pd.read_csv(fileH, usecols=colsH)

        # fix codes 
        df['I01'] = df['I01'].astype(str)
        df['I02'] = df['I02'].astype(str)
        df['I03'] = df['I03'].astype(str)
        df['I04'] = df['I04'].astype(str)
        df['I05'] = df['I05'].astype(str)
        df['I06'] = df['I06'].astype(str)
        df['I09'] = df['I09'].astype(str)

        df.loc[df['I01'].str.len() < 2, 'I01'] = "0" + df['I01']
        df.loc[df['I02'].str.len() < 2, 'I02'] = "0" + df['I02']
        df.loc[df['I03'].str.len() < 2, 'I03'] = "0" + df['I03']
        df.loc[df['I04'].str.len() == 1, 'I04'] = "00" + df['I04']
        df.loc[df['I04'].str.len() == 2, 'I04'] = "0" + df['I04']
        df.loc[df['I05'].str.len() == 1, 'I05'] = "00" + df['I05']
        df.loc[df['I05'].str.len() == 2, 'I05'] = "0" + df['I05']
        df.loc[df['I06'].str.len() < 2, 'I06'] = "0" + df['I06']
        df.loc[df['I09'].str.len() == 1, 'I09'] = "00" + df['I09']
        df.loc[df['I09'].str.len() == 2, 'I09'] = "0" + df['I09']


        df['codv'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) +  df['I06'].astype(str) \
                  + df['I09'].astype(str)


        # Calcular tenencia de la vivienda
        # 1 Propia y totalmente pagada
        # 2 Propia y la está pagando
        # 3 Propia? (regalada, donada, heredada o por posesión
        # 4 Prestada o cedida (no paga)
        # 5 Por servicios
        # 6 Arrendada
        # 7 Anticresis

        df['tenencia'] = None
        df['H15'] = df['H15'].astype(str)
        df.loc[(df['H15'] >= '1') & (df['H15'] <= '3'), 'tenencia'] = 1
        df.loc[(df['H15'] >= '4') & (df['H15'] < '6'), 'tenencia'] = 0
        df.loc[df['H15'] == '6', 'tenencia'] = 1
        df.loc[df['H15'] > '6', 'tenencia'] = 0

        df['tenencia'] = df['tenencia'].astype(float)
        group = df.groupby('codv')['tenencia'].sum()
        df = group


        fileV = pathCsvVivienda
        colsV = ['I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09', 
                 'I10', 'V16', 'TOTPER'
                ]
        dfV = pd.read_csv(fileV, usecols=colsV)

        # fix codes 
        dfV['I01'] = dfV['I01'].astype(str)
        dfV['I02'] = dfV['I02'].astype(str)
        dfV['I03'] = dfV['I03'].astype(str)
        dfV['I04'] = dfV['I04'].astype(str)
        dfV['I05'] = dfV['I05'].astype(str)
        dfV['I06'] = dfV['I06'].astype(str)
        dfV['I09'] = dfV['I09'].astype(str)
        dfV['I10'] = dfV['I10'].astype(str)

        dfV.loc[dfV['I01'].str.len() < 2, 'I01'] = "0" + dfV['I01']
        dfV.loc[dfV['I02'].str.len() < 2, 'I02'] = "0" + dfV['I02']
        dfV.loc[dfV['I03'].str.len() < 2, 'I03'] = "0" + dfV['I03']
        dfV.loc[dfV['I04'].str.len() == 1, 'I04'] = "00" + dfV['I04']
        dfV.loc[dfV['I04'].str.len() == 2, 'I04'] = "0" + dfV['I04']
        dfV.loc[dfV['I05'].str.len() == 1, 'I05'] = "00" + dfV['I05']
        dfV.loc[dfV['I05'].str.len() == 2, 'I05'] = "0" + dfV['I05']
        dfV.loc[dfV['I06'].str.len() < 2, 'I06'] = "0" + dfV['I06']
        dfV.loc[dfV['I09'].str.len() == 1, 'I09'] = "00" + dfV['I09']
        dfV.loc[dfV['I09'].str.len() == 2, 'I09'] = "0" + dfV['I09']
        dfV.loc[dfV['I10'].str.len() < 2, 'I10'] = "0" + dfV['I10']


        dfV['codv'] = dfV['I01'].astype(str) + dfV['I02'].astype(str) + dfV['I03'].astype(str) \
                  + dfV['I04'].astype(str) + dfV['I05'].astype(str) +  dfV['I06'].astype(str) \
                  + dfV['I09'].astype(str)


        merge = None
        merge = pd.merge(dfV, df,  how='left', on='codv')
        merge.loc[merge['V16'] == ' ', 'V16'] = None

        df = merge
        df['codman'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) + df['I06'].astype(str)


        df['V16'] = df['V16'].astype(float)
        aggOptions = {'codv' : 'count',
                      'tenencia':'sum', 
                       'V16' : 'sum', 
                      'codman' : 'first'
                     } 

        resManzanas = df.groupby('codman').agg(aggOptions)

        df = resManzanas
        df['tenencia_viv'] = (df['tenencia'] / df['V16']) * 100

                  
        steps = steps+1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH+'/tenencia_viv.csv'
        feedback.pushConsoleInfo(str(('tenencia_viv en ' + outputCsv)))    
        df.to_csv(outputCsv, index=False)

        steps = steps+1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if(exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV =  QgsVectorLayer(outputCsv, "csv", "ogr") 
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]       
        print(field_names)            

        steps = steps+1
        feedback.setCurrentStep(steps)

        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpaMan,
                                outputCsv, 'codman',
                                [],
                                UNDISCARD_NONMATCHING,
                                '',
                                1,
                                context,
                                feedback)

        steps = steps+1
        feedback.setCurrentStep(steps)
        expressionNotNull = "tenencia_viv IS NOT '' AND tenencia_viv is NOT NULL"    
        notNull =   filterByExpression(result['OUTPUT'], expressionNotNull, context, feedback) 


        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'tenencia_viv * 1.0'
        result = calculateField(notNull['OUTPUT'], 
                                 'tenencia_viv_n',
                                 formulaDummy,
                                 context,
                                 feedback)   


  # ----------------------CONVERTIR A NUMERICOS --------------------     
  
        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'tenencia * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'tenencia_n',
                                 formulaDummy,
                                 context,
                                 feedback)  

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'V16 * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'V16_n',
                                 formulaDummy,
                                 context,
                                 feedback)    

       # ----------------------PROPORCIONES AREA--------------------------
       
        steps = steps+1
        feedback.setCurrentStep(steps)        
        blocks = calculateArea(result['OUTPUT'], 'area_bloc', context,
                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                ['tenencia_n','V16_n','area_bloc'],
                                ['id_grid','area_grid'],
                                context, feedback)        

        steps = steps+1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'],
                                     'area_seg',
                                     context, feedback)

        # -------------------------PROPORCIONES VALORES-------------------------

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * tenencia_n' 
        result = calculateField(segmentsArea['OUTPUT'], 'tenencia_n_seg',
                                               formulaDummy,
                                               context,
                                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * V16_n' 
        result = calculateField(result['OUTPUT'], 'V16_n_seg',
                               formulaDummy,
                               context,
                               feedback)   


        steps = steps+1
        feedback.setCurrentStep(steps)
        result = makeSureInside(result['OUTPUT'],
                                context,
                                feedback)                                    

        #----------------------------------------------------------------------   

        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByLocation(gridNeto['OUTPUT'],
                             result['OUTPUT'],
                             ['tenencia_n_seg','V16_n_seg'],                                   
                              [CONTIENE], [SUM],
                              UNDISCARD_NONMATCHING,
                              context,
                              feedback)  


        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(tenencia_n_seg_sum/V16_n_seg_sum) * 100' 
        result = calculateField(result['OUTPUT'], NAMES_INDEX['ID10'][0],
                               formulaDummy,
                               context,
                               feedback, params['OUTPUT'])    


 
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # gridNeto = joinByLocation(gridNeto['OUTPUT'],
        #                      result['OUTPUT'],
        #                      ['tenencia_viv_n'],                                   
        #                       [INTERSECTA], [MEDIA],
        #                       UNDISCARD_NONMATCHING,
        #                       context,
        #                       feedback)         
 

        # fieldsMapping = [
        #     {'expression': '"id_grid"', 'length': 10, 'name': 'id_grid', 'precision': 0, 'type': 4}, 
        #     {'expression': '"area_grid"', 'length': 16, 'name': 'area_grid', 'precision': 3, 'type': 6}, 
        #     {'expression': '"tenencia_viv_n_mean"', 'length': 20, 'name': NAMES_INDEX['ID10'][0], 'precision': 2, 'type': 6}
        # ]      
        
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # result = refactorFields(fieldsMapping, gridNeto['OUTPUT'], 
        #                         context,
        #                         feedback, params['OUTPUT'])                                                                

        return result
示例#8
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpa = params['DPA_SECTOR']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)

        path = params['ENCUESTA']

        file = path

        #p03 edad
        cols = [
            'id_hogar', 'P03', 'UT98A', 'UT98B', 'UT99A', 'UT99B', 'UT100A',
            'UT100B', 'UT101A', 'UT101B', 'UT102A', 'UT102B', 'UT103A',
            'UT103B', 'UT104A', 'UT104B', 'UT105A', 'UT105B', 'UT106A',
            'UT106B', 'UT107A', 'UT107B', 'UT108A', 'UT108B', 'UT109A',
            'UT109B', 'UT110A', 'UT110B', 'UT111A', 'UT111B', 'UT112A',
            'UT112B', 'UT113A', 'UT113B', 'UT114A', 'UT114B', 'UT116A',
            'UT116B', 'UT117A', 'UT117B', 'UT118A', 'UT118B', 'UT119A',
            'UT119B', 'UT120A', 'UT120B', 'UT121A', 'UT121B', 'UT122A',
            'UT122B'
        ]

        df = pd.read_csv(file, usecols=cols)

        df['id_hogar'] = df['id_hogar'].astype(str)
        df['P03'] = df['P03'].astype(str)

        df.loc[df['id_hogar'].str.len() == 14,
               'id_hogar'] = "0" + df['id_hogar']
        df['codsec'] = df['id_hogar'].str[0:12]
        df['codzon'] = df['id_hogar'].str[0:9]

        df = df[(df['P03'] >= '12')]

        fieldTimes = cols[2:]
        fildTimesRename = []

        # print(fieldTimes[:])

        for fieldTime in fieldTimes:
            df.loc[(df[fieldTime] == ' '), fieldTime] = "00"
            df[fieldTime] = df[fieldTime].astype(int)
            timerSplit = fieldTime.split('A')
            newName = timerSplit[0]
            isA = len(timerSplit) == 2
            indexElement = fieldTimes.index(fieldTime)
            if isA:
                nameB = newName + "B"
                df.loc[(df[nameB] == ' '), nameB] = "00"
                df[newName] = df[fieldTime].astype(
                    str) + ":" + df[nameB].astype(str) + ":00"
                fildTimesRename.append(newName)

        df['sumTime'] = datetime.timedelta()

        for field in fildTimesRename:
            df[field] = pd.to_timedelta(df[field])
            df['sumTime'] = df['sumTime'] + df[field]

        df['hours'] = df['sumTime'].dt.total_seconds() / 3600
        df['hours'] = df['hours'].astype(float)

        aggOptions = {
            'codzon': 'first',
            'hours': 'mean',
        }

        resSectores = df.groupby('codzon').agg(aggOptions)

        df = resSectores

        steps = steps + 1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH + '/usoTiempo.csv'
        feedback.pushConsoleInfo(str(('usoTiempo en ' + outputCsv)))
        df.to_csv(outputCsv, index=False)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if (exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV = QgsVectorLayer(outputCsv, "csv", "ogr")
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]
        print(field_names)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpa, outputCsv, 'codzon',
                             [], UNDISCARD_NONMATCHING, '', 1, context,
                             feedback)

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # expressionNotNull = "des IS NOT '' AND des is NOT NULL"
        # result =   filterByExpression(result['OUTPUT'], expressionNotNull, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'hours * 1.0'
        result = calculateField(result['OUTPUT'], 'hours_n', formulaDummy,
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        gridNeto = joinByLocation(gridNeto['OUTPUT'], result['OUTPUT'],
                                  ['hours_n'], [INTERSECTA], [MEDIA],
                                  UNDISCARD_NONMATCHING, context, feedback)

        fieldsMapping = [{
            'expression': '"id_grid"',
            'length': 10,
            'name': 'id_grid',
            'precision': 0,
            'type': 4
        }, {
            'expression': '"area_grid"',
            'length': 16,
            'name': 'area_grid',
            'precision': 3,
            'type': 6
        }, {
            'expression': '"hours_n_mean"',
            'length': 20,
            'name': NAMES_INDEX['ID06'][0],
            'precision': 2,
            'type': 6
        }]

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = refactorFields(fieldsMapping, gridNeto['OUTPUT'], context,
                                feedback, params['OUTPUT'])

        return result
示例#9
0
    def processAlgorithm(self, parameters, context, model_feedback):
        """
        Here is where the processing itself takes place.
        """
        results = {}

        feedback = QgsProcessingMultiStepFeedback(1, model_feedback)

        csvfile = self.parameterAsFile(parameters, self.INPUT, context)
        if csvfile is None:
            raise QgsProcessingException(self.tr('csv file error'))

        #df = QgsVirtualLayerDefinition()

        enc = self.parameterAsInt(parameters, 'ENCODING', context)

        #enc = self.parameterAsFile(
        #    parameters,
        #    self.ENCODING,
        #    context
        #)
        meshLayer = self.parameterAsVectorLayer(parameters, "meshlayer",
                                                context)
        if meshLayer is None:
            raise QgsProcessingException(self.tr('mesh layer missed'))

        meshidfields = self.parameterAsFields(parameters, 'meshid', context)

        limit_sample = self.parameterAsInt(parameters, 'limit_sample', context)

        maxdivide = self.parameterAsInt(parameters, 'maxdivide', context)

        uneven_div = self.parameterAsInt(parameters, 'uneven_div', context)

        #out_crs = self.parameterAsCrs( parameters, 'CRS', context )
        out_crs = parameters['CRS']

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        # 住所別集計
        alg_params = {
            'addresslayer': parameters['addresslayer'],
            'addressfield': parameters['addressfield'],
            'INPUT': csvfile,
            'ENCODING': enc,
            'CRS': None,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        #Stat_CSVAddressPolygon

        outputs_statv = processing.run('QGIS_stat:Stat_CSVAddressPolygon',
                                       alg_params,
                                       context=context,
                                       feedback=feedback,
                                       is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        statv = outputs_statv["OUTPUT"]
        meshid = meshidfields[0]
        param1 = {
            'INPUT': statv,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'aggrefield': 'snum',
            'meshid': meshid,
            'meshlayer': meshLayer
        }

        #parameters['OUTPUT']
        #     メッシュ集計
        res1 = processing.run('QGIS_stat:AggregateAdmbyMeshAlgorithm',
                              param1,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        numberof_under_limit = 0

        #numberof_under_limit = res1["LIMITPOL"]

        # レイヤをGeoPackage化
        alg_paramsg = {
            'LAYERS': res1["OUTPUT"],
            'OVERWRITE': True,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        retg1 = processing.run('native:package',
                               alg_paramsg,
                               context=context,
                               feedback=feedback,
                               is_child_algorithm=True)
        last_output = retg1["OUTPUT"]

        new_mesh = retg1["OUTPUT"]

        mesh_layb = retg1["OUTPUT"]

        if type(mesh_layb) is str:
            mesh_layb = QgsVectorLayer(mesh_layb, "mesh", "ogr")

        numberof_under_limit = 0

        #    作業用レイヤの作成
        crs_str = mesh_layb.crs()

        layerURI = "Polygon?crs=" + crs_str.authid()
        #feedback.pushConsoleInfo( "work layer  " + layerURI  )
        resLayer = QgsVectorLayer(layerURI, "mesh_result", "memory")

        appended = {}

        adfields = []
        for field in mesh_layb.fields():
            #print(field.name(), field.typeName())
            adfields.append(field)
            #resLayer.addField(field)

        resLayer.dataProvider().addAttributes(adfields)
        resLayer.updateFields()

        lower_ids = []

        value_column = "snum"

        #    limit 値より小さい値のポリゴン数算出
        for f in mesh_layb.getFeatures():
            # feedback.pushConsoleInfo( "value  " +str( f["value"])  )
            if not f[value_column] is None:
                if f[value_column] > 0 and f[value_column] < limit_sample:
                    numberof_under_limit += 1
                    lower_ids.append(f[meshid])

        next_output = None

        #   集計結果が最小サンプルより小さいものがある場合
        if numberof_under_limit > 0:
            #  最初のポリゴン集計の場合終了
            feedback.pushConsoleInfo("最初の集計で指定値以下の集計値がありましたので集計を中止しました")
            results["OUTPUT"] = None
            return results

            if uneven_div:

                rmid = []
                for tgid in (lower_ids):
                    feedback.pushConsoleInfo("lower id  " + str(tgid))

                    #  next_output   code   の下3桁 削除   C27210-02    -> C27210   が last_output の code 番号
                    #  next_output  では last_output  が同じ番号の最大4メッシュを削除する

                    # リミットより小さいレコードは旧レコードを退避
                    #  リミットにひっかかるレコードを再処理用リストから削除(同一親メッシュのものも削除)
                    #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                    parent_code = tgid[0:-3]

                    rmid.append(parent_code)

                addfeatures = []

                alg_paramsg_n = {
                    'LAYERS': last_output,
                    'OVERWRITE': False,
                    'SAVE_STYLES': False,
                    'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
                }
                lmesh = processing.run('native:package',
                                       alg_paramsg_n,
                                       context=context,
                                       feedback=feedback,
                                       is_child_algorithm=True)

                last_output = lmesh["OUTPUT"]

                if type(last_output) is str:
                    last_output = QgsVectorLayer(last_output, "mesh", "ogr")

                last_output.selectAll()

                for lf in last_output.getFeatures():

                    for pcode in (rmid):
                        #    feedback.pushConsoleInfo( "pcode  " + pcode+ " meshid =" + lf[meshid]  )
                        if lf[meshid] == pcode:
                            lf["fid"] = None
                            if not lf[value_column]:
                                lf[value_column] = 0.0

                            if lf[meshid] not in appended:

                                addfeatures.append(lf)
                                appended[lf[meshid]] = lf

                    #       feedback.pushConsoleInfo( "add feature   " + pcode  )

                resLayer.dataProvider().addFeatures(addfeatures)

                deleteFeatures = []

                if type(next_output) is str:
                    next_output = QgsVectorLayer(next_output, "mesh", "ogr")

                for nf in next_output.getFeatures():

                    for pcode in (rmid):
                        if nf[meshid][0:-3] == pcode:
                            deleteFeatures.append(nf.id())
                            feedback.pushConsoleInfo("delete id  " +
                                                     str(pcode))

                next_output.dataProvider().deleteFeatures(deleteFeatures)

                last_output = next_output

        #  分割回数ループ
        for divide_c in range(1, maxdivide):

            if numberof_under_limit > 0:
                #  均等分割の場合は終了
                if not uneven_div:
                    break
#------------------------------------------------------------------------------------------------------------------------

#  最小サンプルより小さいものが無い場合はメッシュ分割
#else:

            if type(last_output) is str:
                feedback.pushConsoleInfo("last output " + last_output)
            else:
                feedback.pushConsoleInfo("last output " + last_output.name())

            alg_paramsg_m = {
                'LAYERS': last_output,
                'OVERWRITE': True,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            spmesh = processing.run('native:package',
                                    alg_paramsg_m,
                                    context=context,
                                    feedback=feedback,
                                    is_child_algorithm=True)

            new_mesh = agtools.SplitMeshLayer(spmesh["OUTPUT"], meshid)

            # statv  行政界別集計データ

            #  再度メッシュ集計
            param2 = {
                'INPUT': statv,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
                'aggrefield': 'snum',
                'meshid': meshid,
                'meshlayer': new_mesh
            }

            res2 = processing.run('QGIS_stat:AggregateAdmbyMeshAlgorithm',
                                  param2,
                                  context=context,
                                  feedback=feedback,
                                  is_child_algorithm=True)

            #numberof_under_limit = res2["LIMITPOL"]
            numberof_under_limit = 0
            # レイヤをGeoPackage化
            alg_paramsg2 = {
                'LAYERS': res2["OUTPUT"],
                'OVERWRITE': True,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            retg2 = processing.run('native:package',
                                   alg_paramsg2,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

            mesh_layb = retg2["OUTPUT"]

            if type(mesh_layb) is str:
                mesh_layb = QgsVectorLayer(mesh_layb, "mesh", "ogr")

                #features = mesh_layb.selectedFeatures()
                #feedback.pushConsoleInfo( "feature count  " +str( len(features))  )
            lower_ids = []
            for f in mesh_layb.getFeatures():
                #   feedback.pushConsoleInfo( "value  " +str( f["value"])  )
                if not f[value_column] is None:
                    if f[value_column] > 0 and f[value_column] < limit_sample:
                        numberof_under_limit += 1
                        lower_ids.append(f[meshid])

            if numberof_under_limit == 0:
                last_output = res2["OUTPUT"]
                next_output = retg2["OUTPUT"]
            else:
                #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                # last_output = res2["OUTPUT"]
                next_output = retg2["OUTPUT"]

            #   集計結果が最小サンプルより小さいものがある場合
            if numberof_under_limit > 0:
                #  均等分割の場合は終了
                if not uneven_div:

                    break

                #  不均等分割の場合は終了データを保全  それ以外のメッシュの分割
                else:
                    rmid = []
                    for tgid in (lower_ids):
                        feedback.pushConsoleInfo("lower id  " + str(tgid))

                        #  next_output   code   の下3桁 削除   C27210-02    -> C27210   が last_output の code 番号
                        #  next_output  では last_output  が同じ番号の最大4メッシュを削除する

                        # リミットより小さいレコードは旧レコードを退避
                        #  リミットにひっかかるレコードを再処理用リストから削除(同一親メッシュのものも削除)
                        #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                        parent_code = tgid[0:-3]

                        rmid.append(parent_code)

                    addfeatures = []

                    #if type(last_output) is str:
                    #    last_output =  QgsVectorLayer(last_output, "mesh", "ogr")

                    alg_paramsg_n = {
                        'LAYERS': last_output,
                        'OVERWRITE': False,
                        'SAVE_STYLES': False,
                        'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
                    }
                    lmesh = processing.run('native:package',
                                           alg_paramsg_n,
                                           context=context,
                                           feedback=feedback,
                                           is_child_algorithm=True)

                    #last_output.removeSelection()
                    last_output = lmesh["OUTPUT"]

                    if type(last_output) is str:
                        last_output = QgsVectorLayer(last_output, "mesh",
                                                     "ogr")

                    last_output.selectAll()

                    for lf in last_output.getFeatures():

                        for pcode in (rmid):
                            #    feedback.pushConsoleInfo( "pcode  " + pcode+ " meshid =" + lf[meshid]  )
                            if lf[meshid] == pcode:
                                lf["fid"] = None

                                if not lf[value_column]:
                                    lf[value_column] = 0.0

                                if lf[meshid] not in appended:

                                    addfeatures.append(lf)
                                    appended[lf[meshid]] = lf

                                    #addfeatures.append(lf)
                                    feedback.pushConsoleInfo("add feature   " +
                                                             pcode)

                    resLayer.dataProvider().addFeatures(addfeatures)

                    deleteFeatures = []

                    if type(next_output) is str:
                        next_output = QgsVectorLayer(next_output, "mesh",
                                                     "ogr")

                    for nf in next_output.getFeatures():

                        for pcode in (rmid):
                            if nf[meshid][0:-3] == pcode:
                                deleteFeatures.append(nf.id())
                                feedback.pushConsoleInfo("delete id  " +
                                                         str(pcode))

                    next_output.dataProvider().deleteFeatures(deleteFeatures)

                    last_output = next_output

        # Return the results of the algorithm. In this case our only result is
        # the feature sink which contains the processed features, but some
        # algorithms may return multiple feature sinks, calculated numeric
        # statistics, etc. These should all be included in the returned
        # dictionary, with keys matching the feature corresponding parameter
        # or output names.

        #  不均等分割の場合   最終作業レイヤの地物がはいってないかも
        if uneven_div:

            alg_paramsg_n = {
                'LAYERS': next_output,
                'OVERWRITE': False,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            lmesh = processing.run('native:package',
                                   alg_paramsg_n,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

            #last_output.removeSelection()
            last_output = lmesh["OUTPUT"]

            if type(last_output) is str:
                last_output = QgsVectorLayer(last_output, "mesh", "ogr")

                last_output.selectAll()

            addfeatures = []

            for lf in last_output.getFeatures():

                feedback.pushConsoleInfo("add features  meshid =" + lf[meshid])
                lf["fid"] = None
                if not lf[value_column]:
                    lf[value_column] = 0.0

                if lf[meshid] not in appended:

                    addfeatures.append(lf)
                    appended[lf[meshid]] = lf

                #addfeatures.append(lf)

            resLayer.dataProvider().addFeatures(addfeatures)

            option_str = ''
            if out_crs is None:
                feedback.pushConsoleInfo("output crs  is not specified")
            else:
                feedback.pushConsoleInfo("output crs  " + out_crs.authid())
                option_str = "-t_srs " + out_crs.authid()

                # フォーマット変換(gdal_translate)
            alg_params = {
                'INPUT': resLayer,
                'OPTIONS': option_str,
                'OUTPUT': parameters['OUTPUT']
            }
            ocv = processing.run('gdal:convertformat',
                                 alg_params,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

            results["OUTPUT"] = ocv["OUTPUT"]
            return results

    #   均等分割の場合
        else:
            option_str = ''
            if out_crs is None:
                feedback.pushConsoleInfo("output crs  is not specified")
            else:
                feedback.pushConsoleInfo("output crs  " + out_crs.authid())
                option_str = "-t_srs " + out_crs.authid()

    # フォーマット変換(gdal_translate)
            alg_params = {
                'INPUT': last_output,
                'OPTIONS': option_str,
                'OUTPUT': parameters['OUTPUT']
            }
            ocv = processing.run('gdal:convertformat',
                                 alg_params,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

            results["OUTPUT"] = ocv["OUTPUT"]
            return results
示例#10
0
    def processAlgorithm(self, parameters, context, model_feedback):
        # Use a multi-step feedback, so that individual child algorithm progress reports are adjusted for the
        # overall progress through the model
        feedback = QgsProcessingMultiStepFeedback(1, model_feedback)
        results = {}
        outputs = {}

        #reference=parameters['reference']
        #classification=parameters['Newfieldname']
        #output_folder=parameters['Outputfolder']

        # Sample raster values
        alg_params = {
            'COLUMN_PREFIX': parameters['Newfieldname'],
            'INPUT': parameters['vectorwithclassificationandreference'],
            'RASTERCOPY': parameters['raster'],
            'OUTPUT': parameters['Sampled']
        }

        SampleRasterValues = processing.run('qgis:rastersampling',
                                            alg_params,
                                            context=context,
                                            feedback=feedback,
                                            is_child_algorithm=True)

        vlayer = QgsVectorLayer(SampleRasterValues['OUTPUT'])

        idx_1 = vlayer.fields().indexFromName(parameters['reference'])
        idx_2 = vlayer.fields().indexFromName(parameters['Newfieldname'])

        list_class = []
        list_ref = []

        features = vlayer.getFeatures()

        for ft in features:
            if ft.attributes()[idx_2] != None and ft.attributes(
            )[idx_1] != None:
                list_class.append(ft.attributes()[idx_2])
                list_ref.append(ft.attributes()[idx_1])

        feedback.pushInfo(str(idx_2))
        error_matrix1 = pd.crosstab(pd.Series(list_class,
                                              name=parameters['Newfieldname']),
                                    pd.Series(list_ref,
                                              name=parameters['reference']),
                                    dropna=False)

        cls_cat = error_matrix1.index.values

        #extract all columns values (classes of existing dataset)
        ref_cat = error_matrix1.columns.values
        #make union of index and column values
        cats = (list(set(ref_cat) | set(cls_cat)))
        #reindex error matrix so that it has missing columns and fill the emtpy cells with 0.00000001
        error_matrix = error_matrix1.reindex(index=cats,
                                             columns=cats,
                                             fill_value=0.00000001)
        error_matrix.index.name = error_matrix.index.name + "/" + error_matrix.columns.name

        # OUTPUT

        diag_elem = np.diagonal(np.matrix(error_matrix))
        UA = (diag_elem / error_matrix.sum(axis=1)) * (diag_elem > 0.01)
        PA = diag_elem / error_matrix.sum(axis=0) * (diag_elem > 0.01)
        OA = sum(diag_elem) / error_matrix.sum(axis=1).sum()
        error_matrix['UA'] = UA.round(2)
        error_matrix['PA'] = PA.round(2)
        error_matrix['OA'] = np.nan
        error_matrix.loc[error_matrix.index[0], 'OA'] = OA

        error_matrix.to_csv(parameters['Outputfolder'])
        feedback.pushConsoleInfo('Error matrix saved in ' +
                                 parameters['Outputfolder'])
        return results
示例#11
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpa = params['DPA_SECTOR']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'], params['BLOCKS'],
                                         params['STUDY_AREA_GRID'],
                                         context, feedback)
        gridNeto = grid  


        steps = steps+1
        feedback.setCurrentStep(steps)

        path = params['ENCUESTA']

        file = path

        #p03 edad
        cols = ['id_vivienda','id_hogar', 'p03', 'empleo', 'desempleo']
        df = pd.read_csv(file, usecols=cols, sep=";")


        df['id_vivienda'] = df['id_vivienda'].astype(str)

        df.loc[df['id_vivienda'].str.len() == 18, 'id_vivienda'] = "0" + df['id_vivienda']
        df['codsec'] = df['id_vivienda'].str[0:12]
        df['codzon'] = df['id_vivienda'].str[0:9]
        df['pbt'] = df['codsec'].astype(str)

        # CAMBIAR A TODA LA POBLACION MAYOR DE 15
        # df = df[(df['p03'] >= 15) & ((df['empleo'].astype(str) != ' ') | (df['desempleo'].astype(str) != ' '))]
        df = df[(df['p03'] >= 15)]

                
        df.loc[df['empleo'] == ' ', 'empleo'] = 0
        df.loc[df['desempleo'] == ' ', 'desempleo'] = 0


        df['desempleo'] = df['desempleo'].astype(float)

        aggOptions = {
                      'codzon' : 'first',
                      'pbt' : 'count',
                      'desempleo' : 'sum',
                     } 

        resManzanas = df.groupby('codzon').agg(aggOptions)

        resManzanas['des'] = None
        resManzanas['des'] = (resManzanas['desempleo'] / resManzanas['pbt'] * 100)
        df = resManzanas   
                  
        steps = steps+1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH+'/des.csv'
        feedback.pushConsoleInfo(str(('des en ' + outputCsv)))    
        df.to_csv(outputCsv, index=False)

        steps = steps+1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if(exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV =  QgsVectorLayer(outputCsv, "csv", "ogr") 
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]       
        print(field_names)            


        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpa,
                                outputCsv, 'codzon',
                                [],
                                UNDISCARD_NONMATCHING,
                                '',
                                1,
                                context,
                                feedback)

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # expressionNotNull = "des IS NOT '' AND des is NOT NULL"    
        # result =   filterByExpression(result['OUTPUT'], expressionNotNull, context, feedback) 



  # ----------------------CONVERTIR A NUMERICOS --------------------     
  
        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'desempleo * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'desempleo_n',
                                 formulaDummy,
                                 context,
                                 feedback)  

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pbt * 1.0'
        result = calculateField(result['OUTPUT'], 
                                 'pbt_n',
                                 formulaDummy,
                                 context,
                                 feedback)    

       # ----------------------PROPORCIONES AREA--------------------------
       
        steps = steps+1
        feedback.setCurrentStep(steps)        
        blocks = calculateArea(result['OUTPUT'], 'area_bloc', context,
                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                ['desempleo_n','pbt_n','area_bloc'],
                                ['id_grid','area_grid'],
                                context, feedback)        

        steps = steps+1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'],
                                     'area_seg',
                                     context, feedback)

        # -------------------------PROPORCIONES VALORES-------------------------

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * desempleo_n' 
        result = calculateField(segmentsArea['OUTPUT'], 'desempleo_n_seg',
                                               formulaDummy,
                                               context,
                                               feedback)     

        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pbt_n' 
        result = calculateField(result['OUTPUT'], 'pbt_n_seg',
                               formulaDummy,
                               context,
                               feedback)   


        steps = steps+1
        feedback.setCurrentStep(steps)
        result = makeSureInside(result['OUTPUT'],
                                context,
                                feedback)                                    

        #----------------------------------------------------------------------   

        steps = steps+1
        feedback.setCurrentStep(steps)
        result = joinByLocation(gridNeto['OUTPUT'],
                             result['OUTPUT'],
                             ['desempleo_n_seg','pbt_n_seg'],                                   
                              [CONTIENE], [SUM],
                              UNDISCARD_NONMATCHING,
                              context,
                              feedback)  


        steps = steps+1
        feedback.setCurrentStep(steps)
        formulaDummy = '(desempleo_n_seg_sum/pbt_n_seg_sum) * 100' 
        result = calculateField(result['OUTPUT'], NAMES_INDEX['ID11'][0],
                               formulaDummy,
                               context,
                               feedback, params['OUTPUT'])    


 
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # gridNeto = joinByLocation(gridNeto['OUTPUT'],
        #                      result['OUTPUT'],
        #                      ['desempleo_viv_n'],                                   
        #                       [INTERSECTA], [MEDIA],
        #                       UNDISCARD_NONMATCHING,
        #                       context,
        #                       feedback)         
 

        # fieldsMapping = [
        #     {'expression': '"id_grid"', 'length': 10, 'name': 'id_grid', 'precision': 0, 'type': 4}, 
        #     {'expression': '"area_grid"', 'length': 16, 'name': 'area_grid', 'precision': 3, 'type': 6}, 
        #     {'expression': '"tenencia_viv_n_mean"', 'length': 20, 'name': NAMES_INDEX['ID11'][0], 'precision': 2, 'type': 6}
        # ]      
        
        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # result = refactorFields(fieldsMapping, gridNeto['OUTPUT'], 
        #                         context,
        #                         feedback, params['OUTPUT'])                                                                

        return result
    def processAlgorithm(self, parameters, context, model_feedback):
        # Use a multi-step feedback, so that individual child algorithm progress reports are adjusted for the
        # overall progress through the model
        feedback = QgsProcessingMultiStepFeedback(5, model_feedback)
        results = {}
        outputs = {}
        model_feedback.pushConsoleInfo("start")
        # CSVtoStatProcessing
        alg_params = {
            'ENCODING': parameters['ENCODING'],
            'INPUT': parameters['INPUT'],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        out_crs = parameters['CRS']

        outputs['Csvtostatprocessing'] = processing.run(
            'QGIS_stat:CSVtoStatProcessing',
            alg_params,
            context=context,
            feedback=feedback,
            is_child_algorithm=True)
        model_feedback.pushConsoleInfo("end csv")
        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        # 属性テーブルで結合(table join)
        alg_params = {
            'DISCARD_NONMATCHING': False,
            'FIELD': parameters['addressfield'],
            'FIELDS_TO_COPY': None,
            'FIELD_2': 'address',
            'INPUT': parameters['addresslayer'],
            'INPUT_2': outputs['Csvtostatprocessing']['OUTPUT'],
            'METHOD': 1,
            'PREFIX': '',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        outputs['TableJoin'] = processing.run('native:joinattributestable',
                                              alg_params,
                                              context=context,
                                              feedback=feedback,
                                              is_child_algorithm=True)
        model_feedback.pushConsoleInfo("end join")
        feedback.setCurrentStep(2)
        if feedback.isCanceled():
            return {}

        # レイヤをGeoPackage化
        alg_params = {
            'LAYERS': outputs['TableJoin']['OUTPUT'],
            'OVERWRITE': True,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        outputs['Geopackage'] = processing.run('native:package',
                                               alg_params,
                                               context=context,
                                               feedback=feedback,
                                               is_child_algorithm=True)

        feedback.setCurrentStep(3)
        if feedback.isCanceled():
            return {}

        # SpatiaLiteでSQLを実行
        alg_params = {
            'DATABASE': outputs['Geopackage']['OUTPUT'],
            'SQL': 'update \"出力レイヤ\" set snum=0 where snum is NULL'
        }
        outputs['Spatialitesql'] = processing.run('qgis:spatialiteexecutesql',
                                                  alg_params,
                                                  context=context,
                                                  feedback=feedback,
                                                  is_child_algorithm=True)

        feedback.setCurrentStep(4)
        if feedback.isCanceled():
            return {}

        option_str = ''
        if out_crs is None:
            feedback.pushConsoleInfo("output crs  is not specified")
        else:
            feedback.pushConsoleInfo("output crs  " + out_crs.authid())
            option_str = "-t_srs " + out_crs.authid()

        # フォーマット変換(gdal_translate)
        alg_params = {
            'INPUT': outputs['Geopackage']['OUTPUT'],
            'OPTIONS': option_str,
            'OUTPUT': parameters['OUTPUT']
        }
        outputs['Gdal_translate'] = processing.run('gdal:convertformat',
                                                   alg_params,
                                                   context=context,
                                                   feedback=feedback,
                                                   is_child_algorithm=True)

        feedback.setCurrentStep(5)
        if feedback.isCanceled():
            return {}

        results['OUTPUT'] = outputs['Gdal_translate']['OUTPUT']
        return results
示例#13
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 37
        fieldPopulateOrHousing = params['FIELD_POPULATE_HOUSING']
        DISTANCE_SHOP = 300
        #MINIMARKET SON DEPOSITOS DE CILINDRO DE GAS
        DISTANCE_MINIMARKET = 300
        DISTANCE_PHARMACY = 300
        DISTANCE_BAKERY = 300
        DISTANCE_STATIONERY = 300

        # tomar solo los que tienen cercania simultanea (descartar lo menores de 3)
        MIN_FACILITIES = 5
        OPERATOR_GE = 3

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)
        """
      -----------------------------------------------------------------
      Calcular las facilidades
      -----------------------------------------------------------------
      """

        steps = steps + 1
        feedback.setCurrentStep(steps)
        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)
        gridNeto = calculateField(gridNeto['OUTPUT'],
                                  'id_grid',
                                  '$id',
                                  context,
                                  feedback,
                                  type=1)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocks = calculateArea(params['BLOCKS'], 'area_bloc', context,
                               feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segments = intersection(
            blocks['OUTPUT'],
            gridNeto['OUTPUT'],
            'area_bloc;' + fieldPopulateOrHousing,
            'id_grid',
            context,
            feedback,
        )

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg', context,
                                     feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaHousingSegments = '(area_seg/area_bloc) * ' + fieldPopulateOrHousing
        housingForSegments = calculateField(segmentsArea['OUTPUT'], 'h_s',
                                            formulaHousingSegments, context,
                                            feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocksWithId = calculateField(housingForSegments['OUTPUT'],
                                      'id_block',
                                      '$id',
                                      context,
                                      feedback,
                                      type=1)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        centroidsBlocks = createCentroids(blocksWithId['OUTPUT'], context,
                                          feedback)

        result = []

        idxs = ['idxshop', 'idxmini', 'idxpha', 'idkbake', 'idxsta']

        if (params['DISTANCE_OPTIONS'] == 0):
            steps = steps + 1
            feedback.setCurrentStep(steps)
            feedback.pushConsoleInfo(str(('Cálculo de áreas de servicio')))
            layers = [
                [params['SHOP'], STRATEGY_DISTANCE, DISTANCE_SHOP],
                [params['GAS'], STRATEGY_DISTANCE, DISTANCE_MINIMARKET],
                [params['PHARMACY'], STRATEGY_DISTANCE, DISTANCE_PHARMACY],
                [params['BAKERY'], STRATEGY_DISTANCE, DISTANCE_BAKERY],
                [params['STATIONERY'], STRATEGY_DISTANCE, DISTANCE_STATIONERY],
            ]
            serviceAreas = multiBufferIsocrono(params['ROADS'], layers,
                                               context, feedback)

            iidx = -1
            for serviceArea in serviceAreas:
                iidx = iidx + 1
                idx = idxs[iidx]
                steps = steps + 1
                feedback.setCurrentStep(steps)
                serviceArea = calculateField(serviceArea,
                                             idx,
                                             '$id',
                                             context,
                                             feedback,
                                             type=1)
                steps = steps + 1
                feedback.setCurrentStep(steps)
                centroidsBlocks = joinByLocation(centroidsBlocks['OUTPUT'],
                                                 serviceArea['OUTPUT'], [idx],
                                                 [INTERSECTA], [COUNT],
                                                 UNDISCARD_NONMATCHING,
                                                 context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaDummy = 'coalesce(idxshop_count, 0) + coalesce(idxmini_count, 0) + coalesce(idxpha_count,0) + coalesce(idkbake_count, 0) + coalesce(idxsta_count, 0)'
            facilitiesCover = calculateField(centroidsBlocks['OUTPUT'],
                                             'facilities', formulaDummy,
                                             context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesFullCover = filter(facilitiesCover['OUTPUT'],
                                         'facilities', OPERATOR_GE,
                                         MIN_FACILITIES, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilitiesCover = joinByLocation(gridNeto['OUTPUT'],
                                                     facilitiesCover['OUTPUT'],
                                                     ['h_s', 'facilities'],
                                                     [CONTIENE], [SUM],
                                                     UNDISCARD_NONMATCHING,
                                                     context, feedback)

            fieldsMapping = [{
                'expression': '"id_grid"',
                'length': 10,
                'name': 'id_grid',
                'precision': 0,
                'type': 4
            }, {
                'expression': '"area_grid"',
                'length': 16,
                'name': 'area_grid',
                'precision': 3,
                'type': 6
            }, {
                'expression': '"h_s_sum"',
                'length': 20,
                'name': 'ptotal',
                'precision': 2,
                'type': 6
            }, {
                'expression': '"facilities_sum"',
                'length': 20,
                'name': 'facilities',
                'precision': 2,
                'type': 6
            }]

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilitiesCover = refactorFields(
                fieldsMapping, gridNetoFacilitiesCover['OUTPUT'], context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoFacilities = joinByLocation(
                gridNetoFacilitiesCover['OUTPUT'],
                facilitiesFullCover['OUTPUT'], ['h_s'], [CONTIENE], [SUM],
                UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(h_s_sum,0) / coalesce(ptotal,""))*100,"")'
            coverageDailyBusiness = calculateField(
                gridNetoFacilities['OUTPUT'], NAMES_INDEX['IA09'][0],
                formulaProximity, context, feedback, params['OUTPUT'])

            result = coverageDailyBusiness

        else:
            feedback.pushConsoleInfo(str(('Cálculo de buffer radial')))

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Shop = createBuffer(centroidsBlocks['OUTPUT'],
                                            DISTANCE_SHOP, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Minimarket = createBuffer(centroidsBlocks['OUTPUT'],
                                                  DISTANCE_MINIMARKET, context,
                                                  feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4Pharmacy = createBuffer(centroidsBlocks['OUTPUT'],
                                                DISTANCE_PHARMACY, context,
                                                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            BlockBuffer4Bakery = createBuffer(centroidsBlocks['OUTPUT'],
                                              DISTANCE_BAKERY, context,
                                              feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            BlockBuffer4Stationery = createBuffer(centroidsBlocks['OUTPUT'],
                                                  DISTANCE_STATIONERY, context,
                                                  feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerShop = calculateField(params['SHOP'],
                                       'idx',
                                       '$id',
                                       context,
                                       feedback,
                                       type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerMinimarket = calculateField(params['GAS'],
                                             'idx',
                                             '$id',
                                             context,
                                             feedback,
                                             type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerPharmacy = calculateField(params['PHARMACY'],
                                           'idx',
                                           '$id',
                                           context,
                                           feedback,
                                           type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerBakery = calculateField(params['BAKERY'],
                                         'idx',
                                         '$id',
                                         context,
                                         feedback,
                                         type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            layerStationery = calculateField(params['STATIONERY'],
                                             'idx',
                                             '$id',
                                             context,
                                             feedback,
                                             type=1)

            layerShop = layerShop['OUTPUT']
            layerMinimarket = layerMinimarket['OUTPUT']
            layerPharmacy = layerPharmacy['OUTPUT']
            layerBakery = layerBakery['OUTPUT']
            layerStationery = layerStationery['OUTPUT']

            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterShop = joinByLocation(blockBuffer4Shop['OUTPUT'], layerShop,
                                         'idx', [INTERSECTA], [COUNT],
                                         UNDISCARD_NONMATCHING, context,
                                         feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterMinimarket = joinByLocation(
                blockBuffer4Minimarket['OUTPUT'], layerMinimarket, 'idx',
                [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            countePharmacy = joinByLocation(blockBuffer4Pharmacy['OUTPUT'],
                                            layerPharmacy, 'idx', [INTERSECTA],
                                            [COUNT], UNDISCARD_NONMATCHING,
                                            context, feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterBakery = joinByLocation(BlockBuffer4Bakery['OUTPUT'],
                                           layerBakery, 'idx', [INTERSECTA],
                                           [COUNT], UNDISCARD_NONMATCHING,
                                           context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterStationery = joinByLocation(
                BlockBuffer4Stationery['OUTPUT'], layerStationery, 'idx',
                [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksWithId['OUTPUT'], 'id_block',
                                      counterShop['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'sh_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterMinimarket['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'mk_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      countePharmacy['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'pha_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterBakery['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'bk_', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksJoined['OUTPUT'], 'id_block',
                                      counterStationery['OUTPUT'], 'id_block',
                                      'idx_count', UNDISCARD_NONMATCHING,
                                      'st_', context, feedback)

            #FIXME: CAMBIAR POR UN METODO BUCLE

            formulaParseBS = 'CASE WHEN coalesce(sh_idx_count, 0) > 0 THEN 1 ELSE 0 END'
            formulaParseTS = 'CASE WHEN coalesce(mk_idx_count, 0) > 0 THEN 1 ELSE 0 END'
            formulaParseBKS = 'CASE WHEN coalesce(pha_idx_count, 0) > 0 THEN 1 ELSE 0 END'
            formulaParseBW = 'CASE WHEN coalesce(bk_idx_count, 0) > 0 THEN 1 ELSE 0 END'
            formulaParseCW = 'CASE WHEN coalesce(st_idx_count, 0) > 0 THEN 1 ELSE 0 END'

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksJoined['OUTPUT'],
                                              'parse_bs', formulaParseBS,
                                              context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                              'parse_ts', formulaParseTS,
                                              context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                              'parse_bks', formulaParseBKS,
                                              context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                              'parse_bw', formulaParseBW,
                                              context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                              'parse_cw', formulaParseCW,
                                              context, feedback)

            formulaFacilities = 'parse_bs + parse_ts + parse_bks + parse_bw + parse_cw'

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                              'facilities', formulaFacilities,
                                              context, feedback)
            """
        -----------------------------------------------------------------
        Calcular numero de viviendas por hexagano
        -----------------------------------------------------------------
        """
            # steps = steps+1
            # feedback.setCurrentStep(steps)
            # segments = intersection(blocksFacilities['OUTPUT'], gridNeto['OUTPUT'],
            #                         'sh_idx_count;mk_idx_count;pha_idx_count;bk_idx_count;st_idx_count;facilities;h_s',
            #                         'id_grid',
            #                         context, feedback)

            # Haciendo el buffer inverso aseguramos que los segmentos
            # quden dentro de la malla
            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesForSegmentsFixed = makeSureInside(
                blocksFacilities['OUTPUT'], context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegments = joinByLocation(
                gridNeto['OUTPUT'], facilitiesForSegmentsFixed['OUTPUT'],
                'sh_idx_count;mk_idx_count;pha_idx_count;bk_idx_count;st_idx_count;facilities;h_s',
                [CONTIENE], [SUM], UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesNotNullForSegmentsFixed = filter(
                facilitiesForSegmentsFixed['OUTPUT'], 'facilities',
                OPERATOR_GE, MIN_FACILITIES, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegmentsSimulta = joinByLocation(
                gridNeto['OUTPUT'],
                facilitiesNotNullForSegmentsFixed['OUTPUT'], 'h_s', [CONTIENE],
                [SUM], UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            totalHousing = joinByAttr(gridNetoAndSegments['OUTPUT'], 'id_grid',
                                      gridNetoAndSegmentsSimulta['OUTPUT'],
                                      'id_grid', 'h_s_sum',
                                      UNDISCARD_NONMATCHING, 'net_', context,
                                      feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(net_h_s_sum,0)/coalesce(h_s_sum,""))*100,"")'
            coverageDailyBusiness = calculateField(totalHousing['OUTPUT'],
                                                   NAMES_INDEX['IA09'][0],
                                                   formulaProximity, context,
                                                   feedback, params['OUTPUT'])

            result = coverageDailyBusiness

        return result
示例#14
0
    def processAlgorithm(self, parameters, context, model_feedback):
        """
        Here is where the processing itself takes place.
        """
        results = {}

        feedback = QgsProcessingMultiStepFeedback(7, model_feedback)

        inputLayer = self.parameterAsVectorLayer(parameters, self.INPUT,
                                                 context)
        if inputLayer is None:
            raise QgsProcessingException(self.tr('input layer missed'))

        meshLayer = self.parameterAsVectorLayer(parameters, "meshlayer",
                                                context)
        if meshLayer is None:
            raise QgsProcessingException(self.tr('mesh layer missed'))

        meshidfields = self.parameterAsFields(parameters, 'meshid', context)

        pareafields = self.parameterAsFields(parameters, 'pareafield', context)

        psamplefields = self.parameterAsFields(parameters, 'polsmpl', context)

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        #  union

#   集計用メッシュと人口×行政界メッシュの UNIONを作成する

        params2 = {
            'INPUT': meshLayer,
            'INPUT_FIELDS': [],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            # 'OUTPUT' : parameters["OUTPUT"],
            'OVERLAY': inputLayer,
            'OVERLAY_FIELDS': []
        }
        #             'OUTPUT' : parameters["OUTPUT"], 'OVERLAY' : res3["OUTPUT"], 'OVERLAY_FIELDS' : [] }

        #      ここはIntersectではなくて union
        #res2 = processing.run('native:intersection', params2,  context=context, feedback=feedback ,is_child_algorithm=True)
        res2 = processing.run('qgis:union',
                              params2,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("union  OK ")

        #  作成UNIONのポリゴン面積算出

        #  面積出力フィールド名

        feedback.setCurrentStep(2)

        darea_column = 'divu_area'

        params3 = {
            'INPUT': res2["OUTPUT"],
            'FIELD_NAME': darea_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            'FIELD_PRECISION': 5,
            'NEW_FIELD': 1,
            'FORMULA': '$area',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res3 = processing.run('qgis:fieldcalculator',
                              params3,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("caluculate area of union polygon OK ")

        #  作成UNIONと元 UNIONの面積比率
        feedback.setCurrentStep(3)

        newFlag = True
        ratio_column = 'divu_ratio'
        ratio_str = darea_column + "/" + pareafields[0]
        params4 = {
            'INPUT': res3["OUTPUT"],
            'FIELD_NAME': ratio_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            #            'FIELD_PRECISION':5, 'NEW_FIELD':newFlag,'FORMULA':ratio_str,'OUTPUT' :parameters["OUTPUT"] }
            'FIELD_PRECISION': 5,
            'NEW_FIELD': newFlag,
            'FORMULA': ratio_str,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res4 = processing.run('qgis:fieldcalculator',
                              params4,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("calc ratio ok ")

        #  元UNIONの想定集計値に面積比率をかけて作成UNIONの想定調査値を算出する
        feedback.setCurrentStep(4)

        sv_column = 'snum_nv'
        sv_str = psamplefields[0] + "*" + ratio_column

        feedback.pushConsoleInfo("expres  " + sv_str)
        params5 = {
            'INPUT': res4["OUTPUT"],
            'FIELD_NAME': sv_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            #            'FIELD_PRECISION':5, 'NEW_FIELD':newFlag,'FORMULA':sv_str,'OUTPUT' :parameters["OUTPUT"] }
            'FIELD_PRECISION': 5,
            'NEW_FIELD': newFlag,
            'FORMULA': sv_str,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res5 = processing.run('qgis:fieldcalculator',
                              params5,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("calc ratio2 ok ")

        #  作成UNIONの想定調査値をメッシュ別に集計する

        #   按分数値をもとにメッシュ別集計
        feedback.setCurrentStep(5)
        meshid_f = meshidfields[0]

        alg_paramsg_n = {
            'LAYERS': res5["OUTPUT"],
            'OVERWRITE': False,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        lout = processing.run('native:package',
                              alg_paramsg_n,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        agar = []

        tgLayer = lout["OUTPUT"]

        if type(tgLayer) is str:
            tgLayer = QgsVectorLayer(tgLayer, "intesect", "ogr")

        for field in tgLayer.fields():

            agreg = {}

            agreg['input'] = '"' + field.name() + '"'

            #feedback.pushConsoleInfo( "name "  + field.name() )
            agreg['name'] = field.name()
            agreg['aggregate'] = 'first_value'

            agreg['length'] = field.length()
            agreg['precision'] = field.precision()
            agreg['type'] = field.type()

            if field.name() == sv_column:
                agreg['aggregate'] = 'sum'

                agar.append(agreg)

            if field.name() == meshid_f:
                agar.append(agreg)

        params6 = {
            'INPUT': res5["OUTPUT"],
            'GROUP_BY': meshid_f,
            'AGGREGATES': agar,
            #               'OUTPUT' :parameters["OUTPUT"]  }
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        feedback.pushConsoleInfo("aggregate ")
        res6 = processing.run('qgis:aggregate',
                              params6,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("aggregate OK ")

        #   レイヤ結合  qgis:joinattributestable
        #QgsProject.instance().addMapLayer(res7["OUTPUT"])

        feedback.setCurrentStep(6)

        param7 = {
            'DISCARD_NONMATCHING': False,
            'FIELD': meshid_f,
            'FIELDS_TO_COPY': [sv_column],
            'FIELD_2': meshid_f,
            'INPUT': meshLayer,
            'INPUT_2': res6['OUTPUT'],
            'METHOD': 1,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'PREFIX': ''
        }

        res7 = processing.run('qgis:joinattributestable',
                              param7,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("joinattributetable OK")

        #   結果フィールド名変更
        feedback.setCurrentStep(7)

        param8 = {
            'FIELD': sv_column,
            'INPUT': res7["OUTPUT"],
            'NEW_NAME': 'snum',
            'OUTPUT': parameters["OUTPUT"]
        }

        res8 = processing.run('qgis:renametablefield',
                              param8,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("field rename OK")

        results["OUTPUT"] = res8["OUTPUT"]
        # results["LIMITPOL"] = matches

        return results
示例#15
0
    def processAlgorithm(self, parameters, context, model_feedback):
        constraint_lines = self.parameterAsLayerList(
            parameters,
            self.CONSTRAINT_LINES,
            context,
        )

        feedback = QgsProcessingMultiStepFeedback(4 if constraint_lines else 2,
                                                  model_feedback)

        sections_prepared = self.prepare_sections(parameters, context,
                                                  feedback)

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        if constraint_lines:
            constraint_lines = self.prepare_constraint_lines(
                parameters, context, feedback)
            feedback.setCurrentStep(3)
            if feedback.isCanceled():
                return {}

        axis_path = self.parameterAsCompatibleSourceLayerPath(
            parameters,
            self.AXIS,
            context,
            compatibleFormats=["shp"],
        )
        long_step = self.parameterAsString(parameters, self.LONG_STEP, context)
        lat_step = self.parameterAsString(parameters, self.LAT_STEP, context)
        attr_cross_sections = self.parameterAsString(parameters,
                                                     self.ATTR_CROSS_SECTION,
                                                     context)
        output_path = self.parameterAsOutputLayer(parameters, self.OUTPUT,
                                                  context)

        command = [
            PYTHON_INTERPRETER,
            PYTHON_SCRIPT,
            "-v",
        ]
        if constraint_lines:
            command += [
                "--infile_constraint_lines",
                constraint_lines,
            ]
        command += [
            "--long_step",
            long_step,
            "--lat_step",
            lat_step,
            "--attr_cross_sections",
            attr_cross_sections,
            axis_path,
            sections_prepared,
            output_path,
        ]

        feedback.pushCommandInfo(" ".join(command))

        env = {key: value for key, value in os.environ.items()}
        env["PYTHONPATH"] = os.pathsep.join(
            [env.get("PYTHONPATH", ""), PYTHONPATH])

        with subprocess.Popen(
                command,
                stdout=subprocess.PIPE,
                stdin=subprocess.DEVNULL,
                stderr=subprocess.STDOUT,
                env=env,
                encoding=ENCODING,
        ) as proc:
            while proc.poll() is None:
                for line in iter(proc.stdout.readline, ""):
                    feedback.pushConsoleInfo(line.strip())
            for line in iter(proc.stdout.readline, ""):
                feedback.pushConsoleInfo(line.strip())
            if proc.returncode != 0:
                raise QgsProcessingException(
                    "Failed to execute command {}".format(" ".join(command)))

        sections = self.parameterAsSource(parameters, self.SECTIONS, context)
        processing.run(
            "qgis:definecurrentprojection",
            {
                "INPUT": output_path,
                "CRS": sections.sourceCrs()
            },
        )

        return {self.OUTPUT: output_path}
示例#16
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpaMan = params['DPA_MAN']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)

        pathCsvPoblacion = params['CENSO_POBLACION']

        file = pathCsvPoblacion
        cols = [
            'I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09', 'I10', 'P01',
            'P23', 'P03'
        ]
        df = pd.read_csv(file, usecols=cols)

        # fix codes
        df['I01'] = df['I01'].astype(str)
        df['I02'] = df['I02'].astype(str)
        df['I03'] = df['I03'].astype(str)
        df['I04'] = df['I04'].astype(str)
        df['I05'] = df['I05'].astype(str)
        df['I06'] = df['I06'].astype(str)
        df['I09'] = df['I09'].astype(str)
        df['I10'] = df['I10'].astype(str)

        df.loc[df['I01'].str.len() < 2, 'I01'] = "0" + df['I01']
        df.loc[df['I02'].str.len() < 2, 'I02'] = "0" + df['I02']
        df.loc[df['I03'].str.len() < 2, 'I03'] = "0" + df['I03']
        df.loc[df['I04'].str.len() == 1, 'I04'] = "00" + df['I04']
        df.loc[df['I04'].str.len() == 2, 'I04'] = "0" + df['I04']
        df.loc[df['I05'].str.len() == 1, 'I05'] = "00" + df['I05']
        df.loc[df['I05'].str.len() == 2, 'I05'] = "0" + df['I05']
        df.loc[df['I06'].str.len() < 2, 'I06'] = "0" + df['I06']
        df.loc[df['I09'].str.len() == 1, 'I09'] = "00" + df['I09']
        df.loc[df['I09'].str.len() == 2, 'I09'] = "0" + df['I09']
        df.loc[df['I10'].str.len() < 2, 'I10'] = "0" + df['I10']

        df['GREDAD'] = None
        df.loc[(df['P03'] >= 15), 'GREDAD'] = 5
        df.loc[(df['P03'] < 15), 'GREDAD'] = 4

        df['pobactive'] = 0.0
        df.loc[(df['GREDAD'] >= 5) & ((df['P23'] == '9') |
                                      (df['P23'] == '09')), 'pobactive'] = 1.0

        df['poblacion'] = 0.0
        df.loc[(df['GREDAD'] > 0), 'poblacion'] = 1.0

        # df[0:50]

        df['codman'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) + df['I06'].astype(str)

        df['pobactive'] = df['pobactive'].astype(float)
        df['poblacion'] = df['poblacion'].astype(float)

        aggOptions = {
            'codman': 'first',
            'poblacion': 'sum',
            'pobactive': 'sum',
        }

        resManzanas = df.groupby('codman').agg(aggOptions)

        resManzanas['pobactuni'] = None
        resManzanas['pobactuni'] = (resManzanas['pobactive'] /
                                    resManzanas['poblacion']) * 100
        resManzanas['pobt'] = resManzanas['poblacion']

        df = resManzanas

        steps = steps + 1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH + '/pobactuni.csv'
        feedback.pushConsoleInfo(str(('pobactuni en ' + outputCsv)))
        df.to_csv(outputCsv, index=False)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if (exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV = QgsVectorLayer(outputCsv, "csv", "ogr")
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]
        print(field_names)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpaMan, outputCsv,
                             'codman', [], UNDISCARD_NONMATCHING, '', 1,
                             context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        expressionNotNull = "pobactuni IS NOT '' AND pobactuni is NOT NULL"
        notNull = filterByExpression(result['OUTPUT'], expressionNotNull,
                                     context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pobactuni * 1.0'
        result = calculateField(notNull['OUTPUT'], 'pobactuni_n', formulaDummy,
                                context, feedback)

        # ----------------------CONVERTIR A NUMERICOS --------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pobactive * 1.0'
        result = calculateField(result['OUTPUT'], 'pobactive_n', formulaDummy,
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'pobt * 1.0'
        result = calculateField(result['OUTPUT'], 'pobt_n', formulaDummy,
                                context, feedback)

        # ----------------------PROPORCIONES AREA--------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocks = calculateArea(result['OUTPUT'], 'area_bloc', context,
                               feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                ['pobactive_n', 'pobt_n', 'area_bloc'],
                                ['id_grid', 'area_grid'], context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg', context,
                                     feedback)

        # -------------------------PROPORCIONES VALORES-------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pobactive_n'
        result = calculateField(segmentsArea['OUTPUT'], 'pobactive_n_seg',
                                formulaDummy, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(area_seg/area_bloc) * pobt_n'
        result = calculateField(result['OUTPUT'], 'pobt_n_seg', formulaDummy,
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = makeSureInside(result['OUTPUT'], context, feedback)

        #----------------------------------------------------------------------

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByLocation(gridNeto['OUTPUT'], result['OUTPUT'],
                                ['pobactive_n_seg', 'pobt_n_seg'], [CONTIENE],
                                [SUM], UNDISCARD_NONMATCHING, context,
                                feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = '(pobactive_n_seg_sum/pobt_n_seg_sum) * 100'
        result = calculateField(result['OUTPUT'], NAMES_INDEX['ID13'][0],
                                formulaDummy, context, feedback,
                                params['OUTPUT'])

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # gridNeto = joinByLocation(gridNeto['OUTPUT'],
        #                      result['OUTPUT'],
        #                      ['pobactuni_n'],
        #                       [INTERSECTA], [MEDIA],
        #                       UNDISCARD_NONMATCHING,
        #                       context,
        #                       feedback)

        # fieldsMapping = [
        #     {'expression': '"id_grid"', 'length': 10, 'name': 'id_grid', 'precision': 0, 'type': 4},
        #     {'expression': '"area_grid"', 'length': 16, 'name': 'area_grid', 'precision': 3, 'type': 6},
        #     {'expression': '"pobactuni_n_mean"', 'length': 20, 'name': NAMES_INDEX['ID13'][0], 'precision': 2, 'type': 6}
        # ]

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # result = refactorFields(fieldsMapping, gridNeto['OUTPUT'],
        #                         context,
        #                         feedback, params['OUTPUT'])

        return result
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 14
        fieldPopulation = params['FIELD_POPULATION']
        fieldHousing = fieldPopulation
        DISTANCE_WALKABILITY = 300

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)
        """
      -----------------------------------------------------------------
      Calcular las facilidades a espacios pubicos abiertos
      -----------------------------------------------------------------
      """
        steps = steps + 1
        feedback.setCurrentStep(steps)
        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocks = calculateArea(params['BLOCKS'], 'area_bloc', context,
                               feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                'area_bloc;' + fieldPopulation, 'id_grid',
                                context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg', context,
                                     feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaPopulationSegments = '(area_seg/area_bloc) * ' + fieldPopulation
        populationForSegments = calculateField(segmentsArea['OUTPUT'],
                                               'pop_seg',
                                               formulaPopulationSegments,
                                               context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        blocksWithId = calculateField(populationForSegments['OUTPUT'],
                                      'id_block',
                                      '$id',
                                      context,
                                      feedback,
                                      type=1)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        equipmentWithId = calculateField(params['EQUIPMENT_GREEN'],
                                         'idx',
                                         '$id',
                                         context,
                                         feedback,
                                         type=1)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        centroidsBlocks = createCentroids(blocksWithId['OUTPUT'], context,
                                          feedback)

        result = []

        print(params['DISTANCE_OPTIONS'])

        if (params['DISTANCE_OPTIONS'] == 0):
            steps = steps + 1
            feedback.setCurrentStep(steps)
            feedback.pushConsoleInfo(str(('Cálculo de áreas de servicio')))
            serviceArea = bufferIsocrono(params['ROADS'],
                                         equipmentWithId['OUTPUT'],
                                         TIME_TRAVEL_COST, STRATEGY_TIME,
                                         context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            housingServed = intersection(segmentsArea['OUTPUT'],
                                         serviceArea['OUTPUT'],
                                         [fieldHousing, 'area_bloc'],
                                         ['id_grid'], context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            areaHousingServed = calculateArea(housingServed['OUTPUT'],
                                              'area_served', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaHousingSegmentsServed = '(area_served/area_bloc) * ' + fieldHousing
            housingSegmentsServed = calculateField(
                areaHousingServed['OUTPUT'], 'has',
                formulaHousingSegmentsServed, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            housingSegmentsServedFixed = makeSureInside(
                housingSegmentsServed['OUTPUT'], context, feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegmentsServed = joinByLocation(
                gridNeto['OUTPUT'], housingSegmentsServedFixed['OUTPUT'],
                'has', [CONTIENE], [SUM], UNDISCARD_NONMATCHING, context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            housingForSegmentsFixed = makeSureInside(
                populationForSegments['OUTPUT'], context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegmentsServed = joinByLocation(
                gridNetoAndSegmentsServed['OUTPUT'],
                housingForSegmentsFixed['OUTPUT'], 'pop_seg', [CONTIENE],
                [SUM], UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(has_sum,0) /  coalesce(pop_seg_sum,""))*100, "")'
            proximity2OpenSpace = calculateField(
                gridNetoAndSegmentsServed['OUTPUT'], NAMES_INDEX['IB04'][0],
                formulaProximity, context, feedback, params['OUTPUT'])

            result = proximity2OpenSpace

        else:
            feedback.pushConsoleInfo(str(('Cálculo de buffer radial')))
            steps = steps + 1
            feedback.setCurrentStep(steps)
            blockBuffer4GreenSapace = createBuffer(centroidsBlocks['OUTPUT'],
                                                   DISTANCE_WALKABILITY,
                                                   context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            counterGreenSpace = joinByLocation(
                blockBuffer4GreenSapace['OUTPUT'], equipmentWithId['OUTPUT'],
                'idx', [CONTIENE, INTERSECTA], [COUNT], False, context,
                feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksJoined = joinByAttr(blocksWithId['OUTPUT'], 'id_block',
                                      counterGreenSpace['OUTPUT'], 'id_block',
                                      'idx_count', False, 'gsp_', context,
                                      feedback)
            """
        -----------------------------------------------------------------
        Calcular numero de viviendas por hexagano
        -----------------------------------------------------------------
        """

            # Haciendo el buffer inverso aseguramos que los segmentos
            # quden dentro de la malla
            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesForSegmentsFixed = makeSureInside(
                blocksJoined['OUTPUT'], context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegments = joinByLocation(
                gridNeto['OUTPUT'], facilitiesForSegmentsFixed['OUTPUT'],
                'gsp_idx_count;pop_seg', [CONTIENE], [SUM],
                UNDISCARD_NONMATCHING, context, feedback)

            #descartar NULL para obtener el total de viviendas que cumple
            steps = steps + 1
            feedback.setCurrentStep(steps)
            facilitiesNotNullForSegmentsFixed = filter(
                facilitiesForSegmentsFixed['OUTPUT'], 'gsp_idx_count',
                NOT_NULL, '', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            gridNetoAndSegmentsNotNull = joinByLocation(
                gridNetoAndSegments['OUTPUT'],
                facilitiesNotNullForSegmentsFixed['OUTPUT'], 'pop_seg',
                [CONTIENE], [SUM], UNDISCARD_NONMATCHING, context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaProximity = 'coalesce((coalesce(pop_seg_sum_2,0) /  coalesce(pop_seg_sum,""))*100,"")'
            proximity2OpenSpace = calculateField(
                gridNetoAndSegmentsNotNull['OUTPUT'], NAMES_INDEX['IB04'][0],
                formulaProximity, context, feedback, params['OUTPUT'])

            result = proximity2OpenSpace

        return proximity2OpenSpace
示例#18
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 3
        # fieldPopulation = params['FIELD_POPULATION']
        fieldActivities = str(params['FIELD_ACTIVITIES'])

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        tempOutput = self.CURRENT_PATH + '/zaux.shp'

        # print(QgsProcessing.TEMPORARY_OUTPUT)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        activitiesGrid = joinAttrByLocation(params['TERTIARYUSES_ACTIVITIES'],
                                            gridNeto['OUTPUT'], ['id_grid'],
                                            [INTERSECTA],
                                            UNDISCARD_NONMATCHING, context,
                                            feedback, tempOutput)

        # steps = steps+1
        # feedback.setCurrentStep(steps)
        # rep = calculateField(gridNeto['OUTPUT'], 'id_ter', '$id', context,
        #                               feedback, type=1)

        activitiesLayer = QgsVectorLayer(tempOutput, "activitiesGrid", "ogr")

        # activitiesLayer = convertTempOuputToObject(activitiesGrid)

        # layer = self.parameterAsVectorLayer(params, activitiesLayer, context)
        layer = activitiesLayer
        # layer = activitiesGrid
        features = layer.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in layer.fields()]
        # print(field_names)
        # print(len(features))

        df = pd.DataFrame(features, columns=field_names)

        # df["id_grid"]= df["id_grid"].astype(int)

        aggregation = {fieldActivities: {'amount_class': 'count'}}

        grouped = df.groupby(['id_grid', fieldActivities]).agg(aggregation)
        grouped.columns = grouped.columns.droplevel(level=0)

        aggregation = {
            fieldActivities: {
                'total_class': 'count'  # conteo de todos los puntos
                # 'total_class':'nunique' # conteo de los puntos no repetidos
            }
        }

        grouped2 = df.groupby(['id_grid']).agg(aggregation)
        grouped2.columns = grouped2.columns.droplevel(level=0)

        res = grouped.join(grouped2).reset_index()

        print(res['amount_class'])
        print(res)

        uniqueActivities = pd.unique(df[fieldActivities])
        totalActivities = len(uniqueActivities)
        res["total_study"] = totalActivities

        # cross = pd.crosstab(df['id'], df[fieldActivities])
        res["proporcion"] = ((res['amount_class'] / res['total_class']) *
                             np.log(res['amount_class'] / res['total_class']))
        aggregation = {'proporcion': {'shannon': 'sum'}}

        res = res.groupby(['id_grid']).agg(aggregation)
        res.columns = res.columns.droplevel(level=0)
        res['shannon'] = res['shannon'] * -1

        outputCsv = self.CURRENT_PATH + '/sett_shannon.csv'

        feedback.pushConsoleInfo(str(('Settings shannon en ' + outputCsv)))
        # res.to_csv(outputCsv, sep = ";", encoding='utf-8')
        res.to_csv(outputCsv)

        print(res)

        exitCsv = os.path.exists(outputCsv)
        if (exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV = QgsVectorLayer(outputCsv, "csv", "ogr")
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]

        print(field_names)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'to_string(id_grid)'
        gridDummy = calculateField(gridNeto['OUTPUT'], 'griid', formulaDummy,
                                   context, feedback,
                                   QgsProcessing.TEMPORARY_OUTPUT, 2)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        gridShannon = joinByAttr2(gridDummy['OUTPUT'], 'griid', outputCsv,
                                  'id_grid', 'shannon', UNDISCARD_NONMATCHING,
                                  '', 1, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'coalesce(shannon * 1, "")'
        result = calculateField(gridShannon['OUTPUT'], NAMES_INDEX['IA11'][0],
                                formulaDummy, context, feedback,
                                params['OUTPUT'])

        # gridShannon = joinByAttr(r'/Users/terra/llactalab/data/SHAPES_PARA_INDICADORES/SIS-OUTPUTS/ia11.shp', 'id_grid',
        #                           '/Users/terra/llactalab/data/SHAPES_PARA_INDICADORES/SIS-OUTPUTS/sett_shannon.csv', 'id_grid',
        #                           ['shannon'],
        #                           UNDISCARD_NONMATCHING,
        #                           '',
        #                           1,
        #                           context,
        #                           feedback, params['OUTPUT'])

        # res.iloc[1:, [4]] = res.iloc[1:, [2]] / res.iloc[1:, [3]]

        # print(totalActivities)
        # print(grouped)
        # print(grouped2)

        # print(un)
        # print(cross)

        # print(df[fieldActivities])

        return result
示例#19
0
    def processAlgorithm(self, parameters, context, model_feedback):
        # Use a multi-step feedback, so that individual child algorithm progress reports are adjusted for the
        # overall progress through the model
        feedback = QgsProcessingMultiStepFeedback(5, model_feedback)
        results = {}
        outputs = {}
        model_feedback.pushConsoleInfo("start")

        inputLayer = self.parameterAsVectorLayer(parameters, "inputlayer",
                                                 context)

        agfields = self.parameterAsFields(parameters, 'agfield', context)

        cfields = self.parameterAsFields(parameters, 'cfield', context)

        # ret = inputLayer.aggregate(QgsAggregateCalculator.Sum, fieldOrExpression: str, parameters: QgsAggregateCalculator.AggregateParameters = QgsAggregateCalculator.AggregateParameters(), context: QgsExpressionContext = None, fids: object = None)
        # retar = sum(cfields[0], group_by:=agfields[0])

        # results['OUTPUT'] = outputs['Gdal_translate']['OUTPUT']

        #enc = self.parameterAsFile(
        #    parameters,
        #    self.ENCODING,
        #    context
        #
        #
        #)

        # enc = self.parameterAsInt( parameters,self.ENCODING, context )

        #encstring = self.encode[enc]
        #feedback.pushConsoleInfo( encstring)

        basename = "memorylayer.gpkg"
        tmp_path = QgsProcessingUtils.generateTempFilename(basename)

        conn = sqlite3.connect(tmp_path)
        # sqliteを操作するカーソルオブジェクトを作成
        cur = conn.cursor()

        entbl = "sample_tbl"

        key_fieldname = agfields[0]
        value_fieldname = cfields[0]
        feedback.pushConsoleInfo("field name " + key_fieldname)

        feedback.pushConsoleInfo("value field name " + value_fieldname)

        # 調査結果格納テーブルの作成
        crsql = 'CREATE TABLE \"' + entbl + '\"( \"' + key_fieldname + '\" STRING, \"' + value_fieldname + '\" NUMERIC);'
        cur.execute(crsql)

        # uri = csvfile

        #valueAsPythonString(
        # csv file read

        #    read input layer

        isql = 'insert into \"' + entbl + '\" values (?,?);'

        for f in inputLayer.getFeatures():

            # t = '(\'' + f[key_fieldname ] + '\',' + str(f[value_fieldname] ) + ',)'
            #feedback.pushConsoleInfo( "class  " + f[key_fieldname].__class__.__name__ + ' ' + f[value_fieldname].__class__.__name__ )

            sqv = []

            if isinstance(f[value_fieldname], (int, float)):

                if (type(f[key_fieldname]) is str):
                    sqv.append(f[key_fieldname])
                    sqv.append(f[value_fieldname])
                    cur.execute(isql, sqv)
            else:

                feedback.pushConsoleInfo("no value  ")

                if (type(f[key_fieldname]) is str):
                    sqv.append(f[key_fieldname])
                    sqv.append(0)
                    cur.execute(isql, sqv)

    # データベースへコミット。これで変更が反映される。
        conn.commit()

        sqlstr = 'create table temp_vlayer as select \"' + key_fieldname + '\", sum(\"' + value_fieldname + '\") vn from \"' + entbl + '\"  group by \"' + key_fieldname + '\";'
        # 町名別集計
        cur.execute(sqlstr)

        feedback.pushConsoleInfo("execute   " + sqlstr)

        result_def = tmp_path + '|layername=temp_vlayer'
        tgttable = "temp_vlayer"

        #results["OUTPUT"] = result_def

        #return results

        fields = QgsFields()
        fields.append(QgsField(key_fieldname, QVariant.String))
        fields.append(QgsField(value_fieldname, QVariant.Double))

        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT,
                                               context, fields)

        feedback.pushConsoleInfo("create sink    ")

        # Compute the number of steps to display within the progress bar and
        # get features from source
        #total = 100.0 / resultlayer.featureCount() if resultlayer.featureCount() else 0
        #features = resultlayer.getFeatures()

        sqlstr = 'select \"' + key_fieldname + '\",' + 'vn from temp_vlayer;'

        c = conn.cursor()

        for row in c.execute(sqlstr):

            #for current, feature in enumerate(list1):
            # Stop the algorithm if cancel button has been clicked
            if feedback.isCanceled():
                break

            nfeature = QgsFeature(fields)

            nfeature[key_fieldname] = row[0]
            nfeature[value_fieldname] = row[1]
            sink.addFeature(nfeature, QgsFeatureSink.FastInsert)

            # Update the progress bar
            #feedback.setProgress(int(current * total))

        conn.close()

        # Return the results of the algorithm. In this case our only result is
        # the feature sink which contains the processed features, but some
        # algorithms may return multiple feature sinks, calculated numeric
        # statistics, etc. These should all be included in the returned
        # dictionary, with keys matching the feature corresponding parameter
        # or output names.
        return {self.OUTPUT: dest_id}
示例#20
0
    def processAlgorithm(self, params, context, feedback):
        isValid = lambda x: 0 if x is None else 1
        isBusStop = isValid(params['BUSSTOP'])
        isTramStop = isValid(params['TRAMSTOP'])
        isBikeStop = isValid(params['BIKESTOP'])
        isBikeWay = isValid(params['BIKEWAY'])
        isCrossWalk = isValid(params['CROSSWALK'])
        isRoads = isValid(params['ROADS'])
        totalValides = isBusStop + isTramStop + isBikeStop + isBikeWay + isCrossWalk

        if (totalValides >= 3):
            if isRoads == 0 and params['DISTANCE_OPTIONS'] == 0:
                feedback.reportError(
                    str(('Distancia isocrona requiere la red vial')))
                return {}

            steps = 0
            totalStpes = 37
            fieldPopulateOrHousing = params['FIELD_POPULATE_HOUSING']
            DISTANCE_BUSSTOP = 300
            DISTANCE_TRAMSTOP = 500
            DISTANCE_BKESTOP = 300
            DISTANCE_BIKEWAY = 300
            DISTANCE_CROSSWALK = 300

            MIN_FACILITIES = 3
            OPERATOR_GE = 3

            feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)
            """
        -----------------------------------------------------------------
        Calcular las facilidades
        -----------------------------------------------------------------
        """

            steps = steps + 1
            feedback.setCurrentStep(steps)
            if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
            grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                               params['BLOCKS'],
                                               params['STUDY_AREA_GRID'],
                                               context, feedback)
            gridNeto = grid

            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocks = calculateArea(params['BLOCKS'], 'area_bloc', context,
                                   feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            segments = intersection(blocks['OUTPUT'], gridNeto['OUTPUT'],
                                    'area_bloc;' + fieldPopulateOrHousing,
                                    'id_grid', context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            segmentsArea = calculateArea(segments['OUTPUT'], 'area_seg',
                                         context, feedback)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            formulaPopulationSegments = '(area_seg/area_bloc) * ' + fieldPopulateOrHousing
            populationForSegments = calculateField(segmentsArea['OUTPUT'],
                                                   'pop_seg',
                                                   formulaPopulationSegments,
                                                   context, feedback)
            steps = steps + 1
            feedback.setCurrentStep(steps)
            blocksWithId = calculateField(populationForSegments['OUTPUT'],
                                          'id_block',
                                          '$id',
                                          context,
                                          feedback,
                                          type=1)

            steps = steps + 1
            feedback.setCurrentStep(steps)
            centroidsBlocks = createCentroids(blocksWithId['OUTPUT'], context,
                                              feedback)

            result = []

            idxs = [
                'idxbus', 'idxtram', 'idxbikestop', 'idkbikeway', 'idxwalk'
            ]

            layers = []

            if (params['DISTANCE_OPTIONS'] == 0):
                steps = steps + 1
                feedback.setCurrentStep(steps)
                feedback.pushConsoleInfo(str(('Cálculo de áreas de servicio')))

                pointsBikeWay = pointsAlongLines(params['BIKEWAY'], 50,
                                                 context, feedback)
                pointsCrossWalk = pointsAlongLines(params['CROSSWALK'], 50,
                                                   context, feedback)

                if isBusStop == 1:
                    layers.append([
                        params['BUSSTOP'], STRATEGY_DISTANCE, DISTANCE_BUSSTOP
                    ])
                if isTramStop == 1:
                    layers.append([
                        params['TRAMSTOP'], STRATEGY_DISTANCE,
                        DISTANCE_TRAMSTOP
                    ])
                if isBikeStop == 1:
                    layers.append([
                        params['BIKESTOP'], STRATEGY_DISTANCE, DISTANCE_BKESTOP
                    ])
                if isBikeWay == 1:
                    layers.append([
                        pointsBikeWay['OUTPUT'], STRATEGY_DISTANCE,
                        DISTANCE_BIKEWAY
                    ])
                if isCrossWalk == 1:
                    layers.append([
                        pointsCrossWalk['OUTPUT'], STRATEGY_DISTANCE,
                        DISTANCE_CROSSWALK
                    ])

                serviceAreas = multiBufferIsocrono(params['ROADS'], layers,
                                                   context, feedback)

                iidx = -1
                for serviceArea in serviceAreas:
                    iidx = iidx + 1
                    idx = idxs[iidx]
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    serviceArea = calculateField(serviceArea,
                                                 idx,
                                                 '$id',
                                                 context,
                                                 feedback,
                                                 type=1)
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    centroidsBlocks = joinByLocation(centroidsBlocks['OUTPUT'],
                                                     serviceArea['OUTPUT'],
                                                     [idx], [INTERSECTA],
                                                     [COUNT],
                                                     UNDISCARD_NONMATCHING,
                                                     context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                # formulaDummy = 'idxbus_count * 1'
                formulaDummy = 'coalesce(idxbus_count, 0) + coalesce(idxtram_count, 0) + coalesce(idxbikestop_count,0) + coalesce(idkbikeway_count, 0) + coalesce(idxwalk_count, 0)'
                facilitiesCover = calculateField(centroidsBlocks['OUTPUT'],
                                                 'facilities', formulaDummy,
                                                 context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                facilitiesFullCover = filter(facilitiesCover['OUTPUT'],
                                             'facilities', OPERATOR_GE,
                                             MIN_FACILITIES, context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                gridNetoFacilitiesCover = joinByLocation(
                    gridNeto['OUTPUT'], facilitiesCover['OUTPUT'],
                    ['pop_seg', 'facilities'], [CONTIENE], [SUM],
                    UNDISCARD_NONMATCHING, context, feedback)

                fieldsMapping = [{
                    'expression': '"id_grid"',
                    'length': 10,
                    'name': 'id_grid',
                    'precision': 0,
                    'type': 4
                }, {
                    'expression': '"area_grid"',
                    'length': 16,
                    'name': 'area_grid',
                    'precision': 3,
                    'type': 6
                }, {
                    'expression': '"pop_seg_sum"',
                    'length': 20,
                    'name': 'ptotal',
                    'precision': 2,
                    'type': 6
                }, {
                    'expression': '"facilities_sum"',
                    'length': 20,
                    'name': 'facilities',
                    'precision': 2,
                    'type': 6
                }]

                steps = steps + 1
                feedback.setCurrentStep(steps)
                gridNetoFacilitiesCover = refactorFields(
                    fieldsMapping, gridNetoFacilitiesCover['OUTPUT'], context,
                    feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                gridNetoFacilities = joinByLocation(
                    gridNetoFacilitiesCover['OUTPUT'],
                    facilitiesFullCover['OUTPUT'], ['pop_seg'], [CONTIENE],
                    [SUM], UNDISCARD_NONMATCHING, context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                formulaProximity = 'coalesce((coalesce(pop_seg_sum,0) / coalesce(ptotal,""))*100,"")'
                proximity2AlternativeTransport = calculateField(
                    gridNetoFacilities['OUTPUT'], NAMES_INDEX['IC04'][0],
                    formulaProximity, context, feedback, params['OUTPUT'])

                result = proximity2AlternativeTransport

            else:
                feedback.pushConsoleInfo(str(('Cálculo de buffer radial')))
                blocksJoined = blocksWithId

                steps = steps + 1
                feedback.setCurrentStep(steps)
                blockBuffer4BusStop = createBuffer(centroidsBlocks['OUTPUT'],
                                                   DISTANCE_BUSSTOP, context,
                                                   feedback)

                # ------------------------------------

                if isBusStop == 1:
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    layerBusStop = calculateField(params['BUSSTOP'],
                                                  'idx',
                                                  '$id',
                                                  context,
                                                  feedback,
                                                  type=1)

                    layerBusStop = layerBusStop['OUTPUT']
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    counterBusStop = joinByLocation(
                        blockBuffer4BusStop['OUTPUT'], layerBusStop, 'idx',
                        [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                        feedback)
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blocksJoined = joinByAttr(blocksJoined['OUTPUT'],
                                              'id_block',
                                              counterBusStop['OUTPUT'],
                                              'id_block', 'idx_count',
                                              UNDISCARD_NONMATCHING, 'bs_',
                                              context, feedback)

                # ---------------------------------------------------
                if isTramStop == 1:
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blockBuffer4TramStop = createBuffer(
                        centroidsBlocks['OUTPUT'], DISTANCE_TRAMSTOP, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    layerTramStop = calculateField(params['TRAMSTOP'],
                                                   'idx',
                                                   '$id',
                                                   context,
                                                   feedback,
                                                   type=1)

                    layerTramStop = layerTramStop['OUTPUT']
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    counterTramStop = joinByLocation(
                        blockBuffer4TramStop['OUTPUT'], layerTramStop, 'idx',
                        [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blocksJoined = joinByAttr(blocksJoined['OUTPUT'],
                                              'id_block',
                                              counterTramStop['OUTPUT'],
                                              'id_block', 'idx_count',
                                              UNDISCARD_NONMATCHING, 'ts_',
                                              context, feedback)

                # -----------------------------------------------
                if isBikeStop == 1:
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blockBuffer4BikeStop = createBuffer(
                        centroidsBlocks['OUTPUT'], DISTANCE_BKESTOP, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    layerBikeStop = calculateField(params['BIKESTOP'],
                                                   'idx',
                                                   '$id',
                                                   context,
                                                   feedback,
                                                   type=1)

                    layerBikeStop = layerBikeStop['OUTPUT']
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    counteBikeStop = joinByLocation(
                        blockBuffer4BikeStop['OUTPUT'], layerBikeStop, 'idx',
                        [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blocksJoined = joinByAttr(blocksJoined['OUTPUT'],
                                              'id_block',
                                              counteBikeStop['OUTPUT'],
                                              'id_block', 'idx_count',
                                              UNDISCARD_NONMATCHING, 'bks_',
                                              context, feedback)

                # -----------------------------------------

                if isBikeWay == 1:
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    BlockBuffer4BikeWay = createBuffer(
                        centroidsBlocks['OUTPUT'], DISTANCE_BIKEWAY, context,
                        feedback)

                    pointsBikeWay = pointsAlongLines(params['BIKEWAY'], 50,
                                                     context, feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    layerBikeWay = calculateField(pointsBikeWay['OUTPUT'],
                                                  'idx',
                                                  '$id',
                                                  context,
                                                  feedback,
                                                  type=1)

                    layerBikeWay = layerBikeWay['OUTPUT']
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    counterBikeWay = joinByLocation(
                        BlockBuffer4BikeWay['OUTPUT'], layerBikeWay, 'idx',
                        [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blocksJoined = joinByAttr(blocksJoined['OUTPUT'],
                                              'id_block',
                                              counterBikeWay['OUTPUT'],
                                              'id_block', 'idx_count',
                                              UNDISCARD_NONMATCHING, 'bw_',
                                              context, feedback)

                # ------------------------------------------
                if isCrossWalk == 1:
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    BlockBuffer4CrossWalk = createBuffer(
                        centroidsBlocks['OUTPUT'], DISTANCE_CROSSWALK, context,
                        feedback)

                    pointsCrossWalk = pointsAlongLines(params['CROSSWALK'], 50,
                                                       context, feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    layerCrossWalk = calculateField(pointsCrossWalk['OUTPUT'],
                                                    'idx',
                                                    '$id',
                                                    context,
                                                    feedback,
                                                    type=1)

                    layerCrossWalk = layerCrossWalk['OUTPUT']
                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    counterCrossWalk = joinByLocation(
                        BlockBuffer4CrossWalk['OUTPUT'], layerCrossWalk, 'idx',
                        [INTERSECTA], [COUNT], UNDISCARD_NONMATCHING, context,
                        feedback)

                    steps = steps + 1
                    feedback.setCurrentStep(steps)
                    blocksJoined = joinByAttr(blocksJoined['OUTPUT'],
                                              'id_block',
                                              counterCrossWalk['OUTPUT'],
                                              'id_block', 'idx_count',
                                              UNDISCARD_NONMATCHING, 'cw_',
                                              context, feedback)
                # --------------------------------------------

                #TODO: CAMBIAR POR UN METODO BUCLE

                formulaParseBS = 'CASE WHEN coalesce(bs_idx_count, 0) > 0 THEN 1 ELSE 0 END'
                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksJoined['OUTPUT'],
                                                  'parse_bs', formulaParseBS,
                                                  context, feedback)

                formulaParseTS = 'CASE WHEN coalesce(ts_idx_count, 0) > 0 THEN 1 ELSE 0 END'
                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                                  'parse_ts', formulaParseTS,
                                                  context, feedback)

                formulaParseBKS = 'CASE WHEN coalesce(bks_idx_count, 0) > 0 THEN 1 ELSE 0 END'
                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                                  'parse_bks', formulaParseBKS,
                                                  context, feedback)

                formulaParseBW = 'CASE WHEN coalesce(bw_idx_count, 0) > 0 THEN 1 ELSE 0 END'
                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                                  'parse_bw', formulaParseBW,
                                                  context, feedback)

                formulaParseCW = 'CASE WHEN coalesce(cw_idx_count, 0) > 0 THEN 1 ELSE 0 END'
                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                                  'parse_cw', formulaParseCW,
                                                  context, feedback)

                formulaFacilities = 'parse_bs + parse_ts + parse_bks + parse_bw + parse_cw'

                steps = steps + 1
                feedback.setCurrentStep(steps)
                blocksFacilities = calculateField(blocksFacilities['OUTPUT'],
                                                  'facilities',
                                                  formulaFacilities, context,
                                                  feedback)

                # Haciendo el buffer inverso aseguramos que los segmentos
                # quden dentro de la malla
                steps = steps + 1
                feedback.setCurrentStep(steps)
                facilitiesForSegmentsFixed = makeSureInside(
                    blocksFacilities['OUTPUT'], context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                gridNetoAndSegments = joinByLocation(
                    gridNeto['OUTPUT'], facilitiesForSegmentsFixed['OUTPUT'],
                    'bs_idx_count;ts_idx_count;bks_idx_count;bw_idx_count;cw_idx_count;facilities;pop_seg',
                    [CONTIENE], [MAX, SUM], UNDISCARD_NONMATCHING, context,
                    feedback)

                # tomar solo los que tienen cercania simultanea (descartar lo menores de 3)
                steps = steps + 1
                feedback.setCurrentStep(steps)
                facilitiesNotNullForSegmentsFixed = filter(
                    facilitiesForSegmentsFixed['OUTPUT'], 'facilities',
                    OPERATOR_GE, MIN_FACILITIES, context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                gridNetoAndSegmentsSimulta = joinByLocation(
                    gridNeto['OUTPUT'],
                    facilitiesNotNullForSegmentsFixed['OUTPUT'], 'pop_seg',
                    [CONTIENE], [MAX, SUM], UNDISCARD_NONMATCHING, context,
                    feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                totalHousing = joinByAttr(gridNetoAndSegments['OUTPUT'],
                                          'id_grid',
                                          gridNetoAndSegmentsSimulta['OUTPUT'],
                                          'id_grid', 'pop_seg_sum',
                                          UNDISCARD_NONMATCHING, 'net_',
                                          context, feedback)

                steps = steps + 1
                feedback.setCurrentStep(steps)
                formulaProximity = 'coalesce((coalesce(net_pop_seg_sum,0) /  coalesce(pop_seg_sum,""))*100,"")'
                proximity2AlternativeTransport = calculateField(
                    totalHousing['OUTPUT'], NAMES_INDEX['IC04'][0],
                    formulaProximity, context, feedback, params['OUTPUT'])

                result = proximity2AlternativeTransport

            return result
        else:
            feedback.reportError(
                str(('Se necesita al menos tres redes de transporte')))

            return {}
示例#21
0
    def processAlgorithm(self, parameters, context, model_feedback):
        """
        Here is where the processing itself takes place.
        """
        results = {}

        feedback = QgsProcessingMultiStepFeedback(1, model_feedback)

        inputLayer = self.parameterAsVectorLayer(parameters, self.INPUT,
                                                 context)
        if inputLayer is None:
            raise QgsProcessingException(self.tr('input layer missed'))

        meshLayer = self.parameterAsVectorLayer(parameters, "meshlayer",
                                                context)
        if meshLayer is None:
            raise QgsProcessingException(self.tr('mesh layer missed'))

        meshidfields = self.parameterAsFields(parameters, 'meshid', context)

        aggrefields = self.parameterAsFields(parameters, 'aggrefield', context)

        #limit_sample = self.parameterAsInt ( parameters,
        #     'limit_sample',
        #     context)

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        #  InterSect

        #Stat_CSVAddressPolygon

    #   行政界の面積計算
    #
    #  面積出力フィールド名

        area_column = 'adm_area'

        params3 = {
            'INPUT': inputLayer,
            'FIELD_NAME': area_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            'FIELD_PRECISION': 5,
            'NEW_FIELD': 1,
            'FORMULA': '$area',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res3 = processing.run('qgis:fieldcalculator',
                              params3,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("caluculate area OK ")

        #   ここから関数化がいいかも
        #   メッシュと行政界のIntesect

        params2 = {
            'INPUT': meshLayer,
            'INPUT_FIELDS': [],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'OVERLAY': res3["OUTPUT"],
            'OVERLAY_FIELDS': []
        }
        #             'OUTPUT' : parameters["OUTPUT"], 'OVERLAY' : res3["OUTPUT"], 'OVERLAY_FIELDS' : [] }

        #      ここはIntersectではなくて union
        #res2 = processing.run('native:intersection', params2,  context=context, feedback=feedback ,is_child_algorithm=True)
        res2 = processing.run('qgis:union',
                              params2,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("union  OK ")
        #   Inter sect ポリゴンの面積計算

        tgLayer = res2["OUTPUT"]

        if type(tgLayer) is str:
            tgLayer = QgsVectorLayer(tgLayer, "intesect", "ogr")

        #tgLayer.beginEditCommand("Feature triangulation")

        ad_areacolumn = 'isect_area'
        ratio_column = 'area_ratio'
        anbun_col = 'anbun_colum'

        tgLayer.dataProvider().addAttributes([
            QgsField(ad_areacolumn, QVariant.Double),
            QgsField(ratio_column, QVariant.Double),
            QgsField(anbun_col, QVariant.Double)
        ])
        tgLayer.updateFields()

        newFlag = False

        params4 = {
            'INPUT': res2["OUTPUT"],
            'FIELD_NAME': ad_areacolumn,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            #             'FIELD_PRECISION':5, 'NEW_FIELD':1,'FORMULA':'$area','OUTPUT' :parameters["OUTPUT"] }
            'FIELD_PRECISION': 5,
            'NEW_FIELD': newFlag,
            'FORMULA': '$area',
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        #for feat  in tgLayer.getFeatures():

        #feat[ad_areacolumn] = feat.geometry().area()
        #    feedback.pushConsoleInfo( "feature "+ str(feat[0]) )
        #    feedback.pushConsoleInfo( "area "+ str(feat.geometry().area())  )
        #tgLayer.updateFeature(feat)

        #tgLayer.endEditCommand()

        #results["OUTPUT"] = res2["OUTPUT"]

        #return results

        #params4 = { 'INPUT' : res2["OUTPUT"], 'FIELD_NAME' : ad_areacolumn , 'FIELD_TYPE': 0, 'FIELD_LENGTH':12,
        #             'FIELD_PRECISION':5, 'NEW_FIELD':1,'FORMULA':'$area','OUTPUT' :parameters["OUTPUT"] }
        #            'FIELD_PRECISION':5, 'NEW_FIELD':1,'FORMULA':'$area','OUTPUT' :QgsProcessing.TEMPORARY_OUTPUT }

        res5 = processing.run('qgis:fieldcalculator',
                              params4,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("calc area ok ")

        ratio_str = ad_areacolumn + "/" + area_column
        params5 = {
            'INPUT': res5["OUTPUT"],
            'FIELD_NAME': ratio_column,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            #            'FIELD_PRECISION':5, 'NEW_FIELD':False,'FORMULA':ratio_str,'OUTPUT' :parameters["OUTPUT"] }
            'FIELD_PRECISION': 5,
            'NEW_FIELD': newFlag,
            'FORMULA': ratio_str,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        res6 = processing.run('qgis:fieldcalculator',
                              params5,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)
        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("calc ratio ok ")

        # Intersect ポリゴンと元の行政界ポリゴンの面積比とサンプル数値をかけてInterSectポリゴン単位の案分サンプル値を作成する
        #  def CalcDataUsingRatio(  intersect_output, area_column,ratio_column , out_table, ad_areacolumn)
        #

        #   intersect_output    Intersect 結果
        #   area_column   面積出力カラム名
        #   ratio_column   按分集計値出力カラム名
        #   out_table     出力テーブル名
        #  ad_areacolumn        行政界ポリゴンテーブルの面積値格納カラム名
        #
        #   ratio_column = 'area_ratio'

        #   res5 = agtools.CalcDataUsingRatio(  res4['OUTPUT'], area_column, ratio_column ,  ad_areacolumn , model_feedback)

        #  按分数値算出

        anbun_col = 'snum'

        formula_str = aggrefields[0] + " * " + ratio_column

        params7 = {
            'INPUT': res6["OUTPUT"],
            'FIELD_NAME': anbun_col,
            'FIELD_TYPE': 0,
            'FIELD_LENGTH': 12,
            # 'FIELD_PRECISION':5, 'NEW_FIELD':newFlag,'FORMULA':formula_str ,'OUTPUT' :parameters["OUTPUT"]  }
            'FIELD_PRECISION': 5,
            'NEW_FIELD': newFlag,
            'FORMULA': formula_str,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res7 = processing.run('qgis:fieldcalculator',
                              params7,
                              context=context,
                              feedback=feedback)

        #        res7 = processing.run('qgis:fieldcalculator', params7,  context=context, feedback=feedback ,is_child_algorithm=True)
        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("anbun ok ")
        #   results["OUTPUT"] = res7["OUTPUT"]
        #  return results

        #   按分数値をもとにメッシュ別集計
        meshid_f = meshidfields[0]

        #QgsProject.instance().addMapLayer(res6["OUTPUT"])

        #mesh_aggregate = 'aggregate(layer:=\'' + res6["OUTPUT"].id() + '\',aggregate:=\'sum\',expression:="'+ anbun_col + '", filter:="' + meshid_f +'"=attribute(@parent,\'' + meshid_f + '\'))'
        #feedback.pushConsoleInfo( "mesh_aggregate " + mesh_aggregate )

        #mesh_exr = QgsExpression( mesh_aggregate )
        #params6 = { 'INPUT' : meshLayer, 'FIELD_NAME' : anbun_col , 'FIELD_TYPE': 1,
        #              'NEW_FIELD':1,'FORMULA':mesh_exr ,'OUTPUT' :QgsProcessing.TEMPORARY_OUTPUT }

        agar = []

        tgLayer = res7["OUTPUT"]

        if type(tgLayer) is str:
            tgLayer = QgsVectorLayer(tgLayer, "intesect", "ogr")

        for field in tgLayer.fields():

            agreg = {}

            agreg['input'] = '"' + field.name() + '"'

            feedback.pushConsoleInfo("name " + field.name())
            agreg['name'] = field.name()
            agreg['aggregate'] = 'first_value'

            agreg['length'] = field.length()
            agreg['precision'] = field.precision()
            agreg['type'] = field.type()

            if field.name() == anbun_col:
                agreg['aggregate'] = 'sum'

            agar.append(agreg)

        params6 = {
            'INPUT': res7["OUTPUT"],
            'GROUP_BY': meshid_f,
            'AGGREGATES': agar,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        feedback.pushConsoleInfo("aggregate ")
        res8 = processing.run('qgis:aggregate',
                              params6,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("aggregate OK ")

        #   レイヤ結合  qgis:joinattributestable
        #QgsProject.instance().addMapLayer(res7["OUTPUT"])

        param7 = {
            'DISCARD_NONMATCHING': False,
            'FIELD': meshid_f,
            'FIELDS_TO_COPY': [anbun_col],
            'FIELD_2': meshid_f,
            'INPUT': meshLayer,
            'INPUT_2': res8['OUTPUT'],
            'METHOD': 1,
            'OUTPUT': parameters["OUTPUT"],
            'PREFIX': ''
        }

        res9 = processing.run('qgis:joinattributestable',
                              param7,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}
        feedback.pushConsoleInfo("joinattributetable OK")

        #  divide_f = "divide_f"

        #  params8 = { 'INPUT' : res8["OUTPUT"], 'FIELD_NAME' : divide_f , 'FIELD_TYPE': 1,
        #                'NEW_FIELD':1,'FORMULA':QgsExpression('0') ,'OUTPUT' :QgsProcessing.TEMPORARY_OUTPUT }

        #  res9 = processing.run('qgis:fieldcalculator', params8, feedback=feedback)

        #  if feedback.isCanceled():
        #      return {}
        #  feedback.pushConsoleInfo( "add divide flag OK"  )

        #  最低値チェック
        #  ここが < なのか <= なのかはチェックが必要
        #exp_str = '"' + anbun_col + '" <= ' + str(limit_sample ) + ' and "' + divide_f + '"=0'

        #exp_str = '"' + anbun_col + '" <= ' + str(limit_sample )
        #feedback.pushConsoleInfo( "exp_str " + exp_str )
        #nexpression  =QgsExpression(exp_str)

        #request = QgsFeatureRequest().setFilterExpression(exp_str)

        #rsLayer = res9["OUTPUT"]

        #if type(rsLayer) is str:
        #     rsLayer =  QgsVectorLayer(rsLayer, "mesh", "memory")

        #tgLayer.beginEditCommand("Feature triangulation")

        # matches = 0
        #for f in rsLayer.getFeatures():
        #      feedback.pushConsoleInfo( "value  " +str( f[anbun_col])  )
        #matches += 1

        #feedback.pushConsoleInfo( "make expression OK"  )
        #params10 =  { 'INPUT' : res8["OUTPUT"], 'EXPRESSION' : expression , 'METHOD': 0  }
        #outputs_statv = processing.run('QGIS_stat:Stat_CSVAddressPolygon', alg_params, context=context, feedback=feedback, is_child_algorithm=True)

        #res11 = processing.run('qgis:selectbyexpression', params10, feedback=feedback)

        # 最低値 に達した地物数の算出
        #scount = res11["OUTPUT"].selectedFeatureCount()

        #feedback.pushConsoleInfo( "scount = "+str(matches)  )

        #if scount > 0:
        # #  最低値に達したものがある場合
        # 最低値に達したメッシュのフラグを終了に変更

        # Return the results of the algorithm. In this case our only result is
        # the feature sink which contains the processed features, but some
        # algorithms may return multiple feature sinks, calculated numeric
        # statistics, etc. These should all be included in the returned
        # dictionary, with keys matching the feature corresponding parameter
        # or output names.

        results["OUTPUT"] = res9["OUTPUT"]
        # results["LIMITPOL"] = matches

        return results
    def processAlgorithm(self, parameters, context, model_feedback):
        """
        Here is where the processing itself takes place.
        """
        results = {}

        csvfile = self.parameterAsFile(parameters, self.INPUT, context)
        if csvfile is None:
            raise QgsProcessingException(self.tr('csv file error'))

        #df = QgsVirtualLayerDefinition()

        enc = self.parameterAsInt(parameters, 'ENCODING', context)

        meshLayer = self.parameterAsVectorLayer(parameters, "meshlayer",
                                                context)
        if meshLayer is None:
            raise QgsProcessingException(self.tr('mesh layer missed'))

        meshidfields = self.parameterAsFields(parameters, 'meshid', context)

        limit_sample = self.parameterAsInt(parameters, 'limit_sample', context)

        maxdivide = self.parameterAsInt(parameters, 'maxdivide', context)

        uneven_div = self.parameterAsInt(parameters, 'uneven_div', context)

        popmeshLayer = self.parameterAsVectorLayer(parameters, "popmeshlayer",
                                                   context)
        if popmeshLayer is None:
            raise QgsProcessingException(self.tr('popmes  layer missed'))

        popmeshidfields = self.parameterAsFields(parameters, 'popmeshid',
                                                 context)

        popmeshpopfields = self.parameterAsFields(parameters, 'popmeshpop',
                                                  context)

        feedback = QgsProcessingMultiStepFeedback(9 + maxdivide,
                                                  model_feedback)

        feedback.setCurrentStep(1)
        if feedback.isCanceled():
            return {}

        # 住所別集計
        alg_params = {
            'addresslayer': parameters['addresslayer'],
            'addressfield': parameters['addressfield'],
            'INPUT': csvfile,
            'ENCODING': enc,
            'CRS': None,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        #Stat_CSVAddressPolygon

        outputs_statv = processing.run('QGIS_stat:Stat_CSVAddressPolygon',
                                       alg_params,
                                       context=context,
                                       feedback=feedback,
                                       is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        statv = outputs_statv["OUTPUT"]
        meshid = meshidfields[0]

        #   人口メッシュと行政界メッシュのUnion作成する

        new_popfield = 'pv'

        param_uni = {
            'addresslayer': statv,
            'addressfield': parameters['addressfield'][0],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'popmeshlayer': popmeshLayer,
            'popmeshid': popmeshidfields[0],
            'popmeshpop': popmeshpopfields[0],
            'POPCOLUMN': new_popfield
        }

        feedback.setCurrentStep(2)

        res_uni = processing.run('QGIS_stat:UnionAdmAndPopMeshAlgorithm',
                                 param_uni,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("csvs 1 union ok  ")

        #     union pop polygon   res_unit["OUTPUT"]
        #   population     pv
        #      address   parameters['addressfield'][0]

        #    行政界別人口の算出

        feedback.setCurrentStep(3)

        param_pop = {
            'inputlayer': res_uni['OUTPUT'],
            'agfield': parameters['addressfield'],
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            # 'OUTPUT':parameters['OUTPUT'],
            'cfield': new_popfield
        }

        res_adpop = processing.run('QGIS_stat:AggreagteValueAlgorithm',
                                   param_pop,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("csvs 1  caliculate pop adm ok  ")

        #   UNION mesh と 行政界別 人口の結合

        feedback.setCurrentStep(4)

        param_join = {
            'DISCARD_NONMATCHING': False,
            'FIELD': parameters['addressfield'],
            'FIELDS_TO_COPY': [],
            'FIELD_2': parameters['addressfield'],
            'INPUT': res_uni['OUTPUT'],
            'INPUT_2': res_adpop['OUTPUT'],
            'METHOD': 1,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            #'OUTPUT':parameters['OUTPUT'],
            'PREFIX': 'op'
        }

        res_join = processing.run('qgis:joinattributestable',
                                  param_join,
                                  context=context,
                                  feedback=feedback,
                                  is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("csvs 1  join union mesh and popof adm  ok  ")

        #   UNION MESH  人口 と行政界人口の比率算出

        feedback.setCurrentStep(5)

        param_ratio = {
            'FIELD_LENGTH': 12,
            'FIELD_NAME': 'pvratio',
            'FIELD_PRECISION': 6,
            'FIELD_TYPE': 0,
            'FORMULA': ' \"pv\" / \"oppv\" ',
            'INPUT': res_join["OUTPUT"],
            #'OUTPUT':parameters['OUTPUT']
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
        }

        res_ratio = processing.run('qgis:fieldcalculator',
                                   param_ratio,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo(
            "csvs 1 calc ratio of adm pop and union polygon population  ok  ")

        #    Union mesh の想定集計値を算出する   住所別集計値 × ( UNION MESH  人口 と行政界人口の比率算出)

        feedback.setCurrentStep(6)

        param_ratio2 = {
            'FIELD_LENGTH': 12,
            'FIELD_NAME': 'pvsum',
            'FIELD_PRECISION': 6,
            'FIELD_TYPE': 0,
            'FORMULA': ' \"snum\" * \"pvratio\" ',
            'INPUT': res_ratio["OUTPUT"],
            #'OUTPUT':parameters['OUTPUT']
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }

        res_ratio2 = processing.run('qgis:fieldcalculator',
                                    param_ratio2,
                                    context=context,
                                    feedback=feedback,
                                    is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo("csvs 1 calc ratio of research sample  ok  ")

        #results["OUTPUT"] = res_ratio2["OUTPUT"]
        #return results

        #    入力メッシュとUnionメッシュのUnion
        feedback.setCurrentStep(7)

        #results["OUTPUT"] = res_ratio['OUTPUT']
        #return results

        #    入力UNIONメッシュの保存

        # レイヤをGeoPackage化
        cnv_paramsg = {
            'LAYERS': res_ratio2["OUTPUT"],
            'OVERWRITE': True,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            #'OUTPUT':parameters['OUTPUT']
        }
        input_c = processing.run('native:package',
                                 cnv_paramsg,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

        feedback.pushConsoleInfo("csvs 1 cahnge to geopackage  ok  ")

        #results["OUTPUT"] = input_c["OUTPUT"]
        #return results

        #   集計用 人口+行政界  UNION
        input_union = input_c["OUTPUT"]

        feedback.setCurrentStep(8)
        #    create union  poplation mesh and input mesh

        param1 = {
            'INPUT': input_union,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
            'pareafield': 'div_area',
            'polsmpl': 'pvsum',
            'meshid': meshid,
            'meshlayer': meshLayer
        }

        #parameters['OUTPUT']
        #
        res1 = processing.run('QGIS_stat:AggregatePopMeshbyMeshAlgorithm',
                              param1,
                              context=context,
                              feedback=feedback,
                              is_child_algorithm=True)

        if feedback.isCanceled():
            return {}

        feedback.pushConsoleInfo(
            "csvs 1 AggregatePopMeshbyMeshAlgorithm  ok  ")
        numberof_under_limit = 0

        #numberof_under_limit = res1["LIMITPOL"]

        # レイヤをGeoPackage化
        alg_paramsg = {
            'LAYERS': res1["OUTPUT"],
            'OVERWRITE': True,
            'SAVE_STYLES': False,
            'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
        }
        retg1 = processing.run('native:package',
                               alg_paramsg,
                               context=context,
                               feedback=feedback,
                               is_child_algorithm=True)
        last_output = retg1["OUTPUT"]

        new_mesh = retg1["OUTPUT"]

        mesh_layb = retg1["OUTPUT"]

        if type(mesh_layb) is str:
            mesh_layb = QgsVectorLayer(mesh_layb, "mesh", "ogr")

        numberof_under_limit = 0

        #    作業用レイヤの作成
        crs_str = mesh_layb.crs()

        layerURI = "Polygon?crs=" + crs_str.authid()
        #feedback.pushConsoleInfo( "work layer  " + layerURI  )
        resLayer = QgsVectorLayer(layerURI, "mesh_result", "memory")

        appended = {}

        adfields = []
        for field in mesh_layb.fields():
            #print(field.name(), field.typeName())
            adfields.append(field)
            #resLayer.addField(field)

        resLayer.dataProvider().addAttributes(adfields)
        resLayer.updateFields()

        lower_ids = []

        value_column = "snum"

        #    limit 値より小さい値のポリゴン数算出
        for f in mesh_layb.getFeatures():
            # feedback.pushConsoleInfo( "value  " +str( f["value"])  )
            if not f[value_column] is None:
                if f[value_column] > 0 and f[value_column] < limit_sample:
                    numberof_under_limit += 1
                    lower_ids.append(f[meshid])

        next_output = None

        stepi = 9

        #   集計結果が最小サンプルより小さいものがある場合
        if numberof_under_limit > 0:
            #  初回の場合は終了

            feedback.pushConsoleInfo("最初の集計で指定値以下の集計値がありましたので集計を中止しました")
            results["OUTPUT"] = None
            return results

            if uneven_div:

                rmid = []
                for tgid in (lower_ids):
                    feedback.pushConsoleInfo("lower id  " + str(tgid))

                    #  next_output   code   の下3桁 削除   C27210-02    -> C27210   が last_output の code 番号
                    #  next_output  では last_output  が同じ番号の最大4メッシュを削除する

                    # リミットより小さいレコードは旧レコードを退避
                    #  リミットにひっかかるレコードを再処理用リストから削除(同一親メッシュのものも削除)
                    #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                    parent_code = tgid[0:-3]

                    rmid.append(parent_code)

                addfeatures = []

                alg_paramsg_n = {
                    'LAYERS': last_output,
                    'OVERWRITE': False,
                    'SAVE_STYLES': False,
                    'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
                }
                lmesh = processing.run('native:package',
                                       alg_paramsg_n,
                                       context=context,
                                       feedback=feedback,
                                       is_child_algorithm=True)

                last_output = lmesh["OUTPUT"]

                if type(last_output) is str:
                    last_output = QgsVectorLayer(last_output, "mesh", "ogr")

                last_output.selectAll()

                for lf in last_output.getFeatures():

                    for pcode in (rmid):
                        #    feedback.pushConsoleInfo( "pcode  " + pcode+ " meshid =" + lf[meshid]  )
                        if lf[meshid] == pcode:
                            lf["fid"] = None
                            if not lf[value_column]:
                                lf[value_column] = 0.0

                            if lf[meshid] not in appended:

                                addfeatures.append(lf)
                                appended[lf[meshid]] = lf

                    #       feedback.pushConsoleInfo( "add feature   " + pcode  )

                resLayer.dataProvider().addFeatures(addfeatures)

                deleteFeatures = []

                if type(next_output) is str:
                    next_output = QgsVectorLayer(next_output, "mesh", "ogr")

                #   add check   20210310
                if next_output is None:
                    feedback.pushConsoleInfo("no next  array")
                else:
                    for nf in next_output.getFeatures():

                        for pcode in (rmid):
                            if nf[meshid][0:-3] == pcode:
                                deleteFeatures.append(nf.id())
                                feedback.pushConsoleInfo("delete id  " +
                                                         str(pcode))

                    next_output.dataProvider().deleteFeatures(deleteFeatures)

                last_output = next_output

        #  分割回数ループ
        for divide_c in range(1, maxdivide):
            feedback.setCurrentStep(stepi)

            stepi = stepi + 1

            if numberof_under_limit > 0:
                #  均等分割の場合は終了
                if not uneven_div:
                    break

            if last_output is None:
                feedback.pushConsoleInfo("last output  is none")
            else:
                if type(last_output) is str:
                    feedback.pushConsoleInfo("last output " + last_output)
                else:
                    feedback.pushConsoleInfo("last output " +
                                             last_output.name())

            alg_paramsg_m = {
                'LAYERS': last_output,
                'OVERWRITE': True,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            spmesh = processing.run('native:package',
                                    alg_paramsg_m,
                                    context=context,
                                    feedback=feedback,
                                    is_child_algorithm=True)

            new_mesh = agtools.SplitMeshLayer(spmesh["OUTPUT"], meshid)

            # statv  行政界別集計データ

            #  再度メッシュ集計
            param2 = {
                'INPUT': input_union,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT,
                'pareafield': 'div_area',
                'polsmpl': 'pvsum',
                'meshid': meshid,
                'meshlayer': new_mesh
            }

            res2 = processing.run('QGIS_stat:AggregatePopMeshbyMeshAlgorithm',
                                  param2,
                                  context=context,
                                  feedback=feedback,
                                  is_child_algorithm=True)

            #numberof_under_limit = res2["LIMITPOL"]
            numberof_under_limit = 0
            # レイヤをGeoPackage化
            alg_paramsg2 = {
                'LAYERS': res2["OUTPUT"],
                'OVERWRITE': True,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            retg2 = processing.run('native:package',
                                   alg_paramsg2,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

            mesh_layb = retg2["OUTPUT"]

            if type(mesh_layb) is str:
                mesh_layb = QgsVectorLayer(mesh_layb, "mesh", "ogr")

                #features = mesh_layb.selectedFeatures()
                #feedback.pushConsoleInfo( "feature count  " +str( len(features))  )
            lower_ids = []
            for f in mesh_layb.getFeatures():
                #   feedback.pushConsoleInfo( "value  " +str( f["value"])  )
                if not f[value_column] is None:
                    if f[value_column] > 0 and f[value_column] < limit_sample:
                        numberof_under_limit += 1
                        lower_ids.append(f[meshid])

            if numberof_under_limit == 0:
                last_output = res2["OUTPUT"]
                next_output = retg2["OUTPUT"]
            else:
                #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                # last_output = res2["OUTPUT"]
                next_output = retg2["OUTPUT"]

            #   集計結果が最小サンプルより小さいものがある場合
            if numberof_under_limit > 0:
                #  均等分割の場合は終了
                if not uneven_div:

                    break

                #  不均等分割の場合は終了データを保全  それ以外のメッシュの分割
                else:
                    rmid = []
                    for tgid in (lower_ids):
                        feedback.pushConsoleInfo("lower id  " + str(tgid))

                        #  next_output   code   の下3桁 削除   C27210-02    -> C27210   が last_output の code 番号
                        #  next_output  では last_output  が同じ番号の最大4メッシュを削除する

                        # リミットより小さいレコードは旧レコードを退避
                        #  リミットにひっかかるレコードを再処理用リストから削除(同一親メッシュのものも削除)
                        #   不均等分割でリミット以下のデータがある場合は last_output -> 分割不能抽出   next_output  分割不能削除  next_output -> last_output 代入
                        parent_code = tgid[0:-3]

                        rmid.append(parent_code)

                    addfeatures = []

                    #if type(last_output) is str:
                    #    last_output =  QgsVectorLayer(last_output, "mesh", "ogr")

                    alg_paramsg_n = {
                        'LAYERS': last_output,
                        'OVERWRITE': False,
                        'SAVE_STYLES': False,
                        'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
                    }
                    lmesh = processing.run('native:package',
                                           alg_paramsg_n,
                                           context=context,
                                           feedback=feedback,
                                           is_child_algorithm=True)

                    #last_output.removeSelection()
                    last_output = lmesh["OUTPUT"]

                    if type(last_output) is str:
                        last_output = QgsVectorLayer(last_output, "mesh",
                                                     "ogr")

                    last_output.selectAll()

                    for lf in last_output.getFeatures():

                        for pcode in (rmid):
                            #    feedback.pushConsoleInfo( "pcode  " + pcode+ " meshid =" + lf[meshid]  )
                            if lf[meshid] == pcode:
                                lf["fid"] = None

                                if not lf[value_column]:
                                    lf[value_column] = 0.0

                                if lf[meshid] not in appended:

                                    addfeatures.append(lf)
                                    appended[lf[meshid]] = lf

                                    #addfeatures.append(lf)
                                    feedback.pushConsoleInfo("add feature   " +
                                                             pcode)

                    resLayer.dataProvider().addFeatures(addfeatures)

                    deleteFeatures = []

                    if type(next_output) is str:
                        next_output = QgsVectorLayer(next_output, "mesh",
                                                     "ogr")

                    for nf in next_output.getFeatures():

                        for pcode in (rmid):
                            if nf[meshid][0:-3] == pcode:
                                deleteFeatures.append(nf.id())
                                feedback.pushConsoleInfo("delete id  " +
                                                         str(pcode))

                    next_output.dataProvider().deleteFeatures(deleteFeatures)

                    last_output = next_output

        # Return the results of the algorithm. In this case our only result is
        # the feature sink which contains the processed features, but some
        # algorithms may return multiple feature sinks, calculated numeric
        # statistics, etc. These should all be included in the returned
        # dictionary, with keys matching the feature corresponding parameter
        # or output names.

        #  不均等分割の場合   最終作業レイヤの地物がはいってないかも
        if uneven_div:

            alg_paramsg_n = {
                'LAYERS': next_output,
                'OVERWRITE': False,
                'SAVE_STYLES': False,
                'OUTPUT': QgsProcessing.TEMPORARY_OUTPUT
            }
            lmesh = processing.run('native:package',
                                   alg_paramsg_n,
                                   context=context,
                                   feedback=feedback,
                                   is_child_algorithm=True)

            #last_output.removeSelection()
            last_output = lmesh["OUTPUT"]

            if type(last_output) is str:
                last_output = QgsVectorLayer(last_output, "mesh", "ogr")

                last_output.selectAll()

            addfeatures = []

            for lf in last_output.getFeatures():

                feedback.pushConsoleInfo("add features  meshid =" + lf[meshid])
                lf["fid"] = None
                if not lf[value_column]:
                    lf[value_column] = 0.0

                if lf[meshid] not in appended:

                    addfeatures.append(lf)
                    appended[lf[meshid]] = lf

                #addfeatures.append(lf)

            resLayer.dataProvider().addFeatures(addfeatures)

            # フォーマット変換(gdal_translate)
            alg_params = {
                'INPUT': resLayer,
                'OPTIONS': '',
                'OUTPUT': parameters['OUTPUT']
            }
            ocv = processing.run('gdal:convertformat',
                                 alg_params,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

            results["OUTPUT"] = ocv["OUTPUT"]
            return results

    #   均等分割の場合
        else:

            # フォーマット変換(gdal_translate)
            alg_params = {
                'INPUT': last_output,
                'OPTIONS': '',
                'OUTPUT': parameters['OUTPUT']
            }
            ocv = processing.run('gdal:convertformat',
                                 alg_params,
                                 context=context,
                                 feedback=feedback,
                                 is_child_algorithm=True)

            results["OUTPUT"] = ocv["OUTPUT"]
            return results
示例#23
0
    def processAlgorithm(self, params, context, feedback):
        steps = 0
        totalStpes = 17
        fieldDpaMan = params['DPA_MAN']
        # fieldHab = params['NUMBER_HABITANTS']

        feedback = QgsProcessingMultiStepFeedback(totalStpes, feedback)

        if not OPTIONAL_GRID_INPUT: params['CELL_SIZE'] = P_CELL_SIZE
        grid, isStudyArea = buildStudyArea(params['CELL_SIZE'],
                                           params['BLOCKS'],
                                           params['STUDY_AREA_GRID'], context,
                                           feedback)
        gridNeto = grid

        steps = steps + 1
        feedback.setCurrentStep(steps)

        fileH = params['CENSO_HOGAR']
        cols = ['I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09', 'I10', 'H12']
        df = pd.read_csv(fileH, usecols=cols)

        # fix codes
        df['I01'] = df['I01'].astype(str)
        df['I02'] = df['I02'].astype(str)
        df['I03'] = df['I03'].astype(str)
        df['I04'] = df['I04'].astype(str)
        df['I05'] = df['I05'].astype(str)
        df['I06'] = df['I06'].astype(str)
        df['I09'] = df['I09'].astype(str)
        df['I10'] = df['I10'].astype(str)

        df.loc[df['I01'].str.len() < 2, 'I01'] = "0" + df['I01']
        df.loc[df['I02'].str.len() < 2, 'I02'] = "0" + df['I02']
        df.loc[df['I03'].str.len() < 2, 'I03'] = "0" + df['I03']
        df.loc[df['I04'].str.len() == 1, 'I04'] = "00" + df['I04']
        df.loc[df['I04'].str.len() == 2, 'I04'] = "0" + df['I04']
        df.loc[df['I05'].str.len() == 1, 'I05'] = "00" + df['I05']
        df.loc[df['I05'].str.len() == 2, 'I05'] = "0" + df['I05']
        df.loc[df['I06'].str.len() < 2, 'I06'] = "0" + df['I06']
        df.loc[df['I09'].str.len() == 1, 'I09'] = "00" + df['I09']
        df.loc[df['I09'].str.len() == 2, 'I09'] = "0" + df['I09']
        df.loc[df['I10'].str.len() < 2, 'I10'] = "0" + df['I10']

        df['codman'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) + df['I06'].astype(str)


        df['codviv'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) +  df['I06'].astype(str) \
                  + df['I09'].astype(str)


        df['codhog'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str)  + df['I09'].astype(str) \
                  + df['I10'].astype(str)

        df = df[(df['H12'] != '9999')]
        df = blanks2None(df, 'H12')
        df['H12'] = df['H12'].astype(float)

        aggOptions = {
            'codviv': 'first',
            'H12': 'sum',
        }

        resVivi = df.groupby('codviv').agg(aggOptions)

        resVivi.index.name = None
        colsToSave = ['codviv', 'H12']
        resVivi = pd.DataFrame(resVivi, columns=colsToSave)

        dfH = resVivi

        file = params['CENSO_VIVIENDA']
        cols = [
            'I01', 'I02', 'I03', 'I04', 'I05', 'I06', 'I09', 'I10', 'TOTPER'
        ]
        df = pd.read_csv(file, usecols=cols)

        # fix codes
        df['I01'] = df['I01'].astype(str)
        df['I02'] = df['I02'].astype(str)
        df['I03'] = df['I03'].astype(str)
        df['I04'] = df['I04'].astype(str)
        df['I05'] = df['I05'].astype(str)
        df['I06'] = df['I06'].astype(str)
        df['I09'] = df['I09'].astype(str)
        df['I10'] = df['I10'].astype(str)

        df.loc[df['I01'].str.len() < 2, 'I01'] = "0" + df['I01']
        df.loc[df['I02'].str.len() < 2, 'I02'] = "0" + df['I02']
        df.loc[df['I03'].str.len() < 2, 'I03'] = "0" + df['I03']
        df.loc[df['I04'].str.len() == 1, 'I04'] = "00" + df['I04']
        df.loc[df['I04'].str.len() == 2, 'I04'] = "0" + df['I04']
        df.loc[df['I05'].str.len() == 1, 'I05'] = "00" + df['I05']
        df.loc[df['I05'].str.len() == 2, 'I05'] = "0" + df['I05']
        df.loc[df['I06'].str.len() < 2, 'I06'] = "0" + df['I06']
        df.loc[df['I09'].str.len() == 1, 'I09'] = "00" + df['I09']
        df.loc[df['I09'].str.len() == 2, 'I09'] = "0" + df['I09']
        df.loc[df['I10'].str.len() < 2, 'I10'] = "0" + df['I10']

        df['codviv'] = df['I01'].astype(str) + df['I02'].astype(str) + df['I03'].astype(str) \
                  + df['I04'].astype(str) + df['I05'].astype(str) +  df['I06'].astype(str) \
                  + df['I09'].astype(str)

        aggOptions = {
            'codviv': 'first',
            'TOTPER': 'sum',
        }

        group = df.groupby('codviv').agg(aggOptions)
        group.reindex()
        colsToSave = ['codviv', 'TOTPER']
        group = pd.DataFrame(df, columns=colsToSave)

        merge = pd.merge(group, dfH, how='left', on='codviv')
        df = merge

        # colsToSave = ['codhog', 'codviv', 'codman', 'TOTPER', 'H12']
        # df = pd.DataFrame(df, columns=colsToSave)

        df['enerporperson'] = df['H12'] / df['TOTPER']
        df['codman'] = df['codviv'].str[0:14]

        aggOptions = {
            'codman': 'first',
            'enerporperson': 'mean',
        }

        df = df.groupby('codman').agg(aggOptions)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        outputCsv = self.CURRENT_PATH + '/enerporperson.csv'
        feedback.pushConsoleInfo(str(('enerporperson en ' + outputCsv)))
        df.to_csv(outputCsv, index=False)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        exitCsv = os.path.exists(outputCsv)
        if (exitCsv):
            print("El archivo CSV existe")
        else:
            print("No se encuentra CSV")

        CSV = QgsVectorLayer(outputCsv, "csv", "ogr")
        featuresCSV = CSV.getFeatures()
        # fields = layer.dataProvider().fields()
        field_names = [field.name() for field in CSV.fields()]
        print(field_names)

        steps = steps + 1
        feedback.setCurrentStep(steps)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = joinByAttr2(params['BLOCKS'], fieldDpaMan, outputCsv,
                             'codman', [], UNDISCARD_NONMATCHING, '', 1,
                             context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        expressionNotNull = "enerporperson IS NOT '' AND enerporperson is NOT NULL"
        notNull = filterByExpression(result['OUTPUT'], expressionNotNull,
                                     context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        formulaDummy = 'enerporperson * 1.0'
        result = calculateField(notNull['OUTPUT'], 'enerporperson_n',
                                formulaDummy, context, feedback)

        steps = steps + 1
        feedback.setCurrentStep(steps)
        gridNeto = joinByLocation(gridNeto['OUTPUT'], result['OUTPUT'],
                                  ['enerporperson_n'], [INTERSECTA], [MEDIA],
                                  UNDISCARD_NONMATCHING, context, feedback)

        fieldsMapping = [{
            'expression': '"id_grid"',
            'length': 10,
            'name': 'id_grid',
            'precision': 0,
            'type': 4
        }, {
            'expression': '"area_grid"',
            'length': 16,
            'name': 'area_grid',
            'precision': 3,
            'type': 6
        }, {
            'expression': '"enerporperson_n_mean"',
            'length': 20,
            'name': NAMES_INDEX['IC09'][0],
            'precision': 2,
            'type': 6
        }]

        steps = steps + 1
        feedback.setCurrentStep(steps)
        result = refactorFields(fieldsMapping, gridNeto['OUTPUT'], context,
                                feedback, params['OUTPUT'])

        return result