def test_ecev(self): """ European Call Expected Value test """ bounds = np.array([0., 7.]) num_qubits = [3] entangler_map = [] for i in range(sum(num_qubits)): entangler_map.append([i, int(np.mod(i + 1, sum(num_qubits)))]) g_params = [ 0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225 ] # Set an initial state for the generator circuit init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1]) init_distribution = np.sqrt(init_dist.probabilities) init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution) var_form = TwoLocal(int(np.sum(num_qubits)), 'ry', 'cz', reps=1, initial_state=init_distribution, entanglement=entangler_map) uncertainty_model = UnivariateVariationalDistribution(int( sum(num_qubits)), var_form, g_params, low=bounds[0], high=bounds[1]) strike_price = 2 c_approx = 0.25 european_call = EuropeanCallExpectedValue(uncertainty_model, strike_price=strike_price, c_approx=c_approx) uncertainty_model.set_probabilities( QuantumInstance(BasicAer.get_backend('statevector_simulator'))) algo = AmplitudeEstimation(5, european_call) result = algo.run( quantum_instance=BasicAer.get_backend('statevector_simulator')) self.assertAlmostEqual(result['estimation'], 1.2580, places=4) self.assertAlmostEqual(result['max_probability'], 0.8785, places=4)
def setUp(self): super().setUp() self.seed = 7 aqua_globals.random_seed = self.seed # Number training data samples n_v = 5000 # Load data samples from log-normal distribution with mean=1 and standard deviation=1 m_u = 1 sigma = 1 self._real_data = aqua_globals.random.lognormal(mean=m_u, sigma=sigma, size=n_v) # Set upper and lower data values as list of k # min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]] self._bounds = [0., 3.] # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1] num_qubits = [2] # Batch size batch_size = 100 # Set number of training epochs # num_epochs = 10 num_epochs = 5 # Initialize qGAN self.qgan = QGAN(self._real_data, self._bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None) self.qgan.seed = 7 # Set quantum instance to run the quantum generator self.qi_statevector = QuantumInstance(backend=BasicAer.get_backend('statevector_simulator'), seed_simulator=2, seed_transpiler=2) self.qi_qasm = QuantumInstance(backend=BasicAer.get_backend('qasm_simulator'), shots=1000, seed_simulator=2, seed_transpiler=2) # Set entangler map entangler_map = [[0, 1]] # Set an initial state for the generator circuit init_dist = UniformDistribution(sum(num_qubits), low=self._bounds[0], high=self._bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set generator's initial parameters init_params = aqua_globals.random.random(2 * sum(num_qubits)) * 2 * 1e-2 # Set variational form var_form = RealAmplitudes(sum(num_qubits), reps=1, initial_state=init_distribution, entanglement=entangler_map) self.generator_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params, low=self._bounds[0], high=self._bounds[1])
def __init__(self, bounds: np.ndarray, num_qubits: List[int], generator_circuit: Optional[ Union[UnivariateVariationalDistribution, MultivariateVariationalDistribution, QuantumCircuit]] = None, init_params: Optional[Union[List[float], np.ndarray]] = None, snapshot_dir: Optional[str] = None) -> None: """ Args: bounds: k min/max data values [[min_1,max_1],...,[min_k,max_k]], given input data dim k num_qubits: k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,..., n_k] generator_circuit: a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator. init_params: 1D numpy array or list, Initialization for the generator's parameters. snapshot_dir: str or None, if not None save the optimizer's parameter after every update step to the given directory Raises: AquaError: Set multivariate variational distribution to represent multivariate data """ super().__init__() self._bounds = bounds self._num_qubits = num_qubits self.generator_circuit = generator_circuit if self.generator_circuit is None: entangler_map = [] if np.sum(num_qubits) > 2: for i in range(int(np.sum(num_qubits))): entangler_map.append( [i, int(np.mod(i + 1, np.sum(num_qubits)))]) else: if np.sum(num_qubits) > 1: entangler_map.append([0, 1]) if len(num_qubits) > 1: num_qubits = list(map(int, num_qubits)) low = bounds[:, 0].tolist() high = bounds[:, 1].tolist() init_dist = MultivariateUniformDistribution(num_qubits, low=low, high=high) q = QuantumRegister(sum(num_qubits)) qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set variational form var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = MultivariateVariationalDistribution( num_qubits, var_form, init_params, low=low, high=high) else: init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = UnivariateVariationalDistribution( int(np.sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) if len(num_qubits) > 1: if isinstance(self.generator_circuit, MultivariateVariationalDistribution): pass else: raise AquaError('Set multivariate variational distribution ' 'to represent multivariate data') else: if isinstance(self.generator_circuit, UnivariateVariationalDistribution): pass else: raise AquaError('Set univariate variational distribution ' 'to represent univariate data') # Set optimizer for updating the generator network self._optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-3, beta_1=0.7, beta_2=0.99, noise_factor=1e-6, eps=1e-6, amsgrad=True, snapshot_dir=snapshot_dir) if np.ndim(self._bounds) == 1: bounds = np.reshape(self._bounds, (1, len(self._bounds))) else: bounds = self._bounds for j, prec in enumerate(self._num_qubits): # prepare data grid for dim j grid = np.linspace(bounds[j, 0], bounds[j, 1], (2**prec)) if j == 0: if len(self._num_qubits) > 1: self._data_grid = [grid] else: self._data_grid = grid self._grid_elements = grid elif j == 1: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = [g_e] temp0.append(g) temp.append(temp0) self._grid_elements = temp else: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = deepcopy(g_e) temp0.append(g) temp.append(temp0) self._grid_elements = deepcopy(temp) self._data_grid = np.array(self._data_grid) self._shots = None self._discriminator = None self._ret = {}
class QuantumGenerator(GenerativeNetwork): """ Quantum Generator. The quantum generator is a parametrized quantum circuit which can be trained with the :class:`~qiskit.aqua.algorithms.QGAN` algorithm to generate a quantum state which approximates the probability distribution of given training data. At the beginning of the training the parameters will be set randomly, thus, the output will is random. Throughout the training the quantum generator learns to represent the target distribution. Eventually, the trained generator can be used for state preparation e.g. in QAE. """ def __init__(self, bounds: np.ndarray, num_qubits: List[int], generator_circuit: Optional[ Union[UnivariateVariationalDistribution, MultivariateVariationalDistribution, QuantumCircuit]] = None, init_params: Optional[Union[List[float], np.ndarray]] = None, snapshot_dir: Optional[str] = None) -> None: """ Args: bounds: k min/max data values [[min_1,max_1],...,[min_k,max_k]], given input data dim k num_qubits: k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,..., n_k] generator_circuit: a UnivariateVariationalDistribution for univariate data, a MultivariateVariationalDistribution for multivariate data, or a QuantumCircuit implementing the generator. init_params: 1D numpy array or list, Initialization for the generator's parameters. snapshot_dir: str or None, if not None save the optimizer's parameter after every update step to the given directory Raises: AquaError: Set multivariate variational distribution to represent multivariate data """ super().__init__() self._bounds = bounds self._num_qubits = num_qubits self.generator_circuit = generator_circuit if self.generator_circuit is None: entangler_map = [] if np.sum(num_qubits) > 2: for i in range(int(np.sum(num_qubits))): entangler_map.append( [i, int(np.mod(i + 1, np.sum(num_qubits)))]) else: if np.sum(num_qubits) > 1: entangler_map.append([0, 1]) if len(num_qubits) > 1: num_qubits = list(map(int, num_qubits)) low = bounds[:, 0].tolist() high = bounds[:, 1].tolist() init_dist = MultivariateUniformDistribution(num_qubits, low=low, high=high) q = QuantumRegister(sum(num_qubits)) qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set variational form var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = MultivariateVariationalDistribution( num_qubits, var_form, init_params, low=low, high=high) else: init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = UnivariateVariationalDistribution( int(np.sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) if len(num_qubits) > 1: if isinstance(self.generator_circuit, MultivariateVariationalDistribution): pass else: raise AquaError('Set multivariate variational distribution ' 'to represent multivariate data') else: if isinstance(self.generator_circuit, UnivariateVariationalDistribution): pass else: raise AquaError('Set univariate variational distribution ' 'to represent univariate data') # Set optimizer for updating the generator network self._optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-3, beta_1=0.7, beta_2=0.99, noise_factor=1e-6, eps=1e-6, amsgrad=True, snapshot_dir=snapshot_dir) if np.ndim(self._bounds) == 1: bounds = np.reshape(self._bounds, (1, len(self._bounds))) else: bounds = self._bounds for j, prec in enumerate(self._num_qubits): # prepare data grid for dim j grid = np.linspace(bounds[j, 0], bounds[j, 1], (2**prec)) if j == 0: if len(self._num_qubits) > 1: self._data_grid = [grid] else: self._data_grid = grid self._grid_elements = grid elif j == 1: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = [g_e] temp0.append(g) temp.append(temp0) self._grid_elements = temp else: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = deepcopy(g_e) temp0.append(g) temp.append(temp0) self._grid_elements = deepcopy(temp) self._data_grid = np.array(self._data_grid) self._shots = None self._discriminator = None self._ret = {} def set_seed(self, seed): """ Set seed. Args: seed (int): seed """ aqua_globals.random_seed = seed def set_discriminator(self, discriminator): """ Set discriminator network. Args: discriminator (Discriminator): Discriminator used to compute the loss function. """ self._discriminator = discriminator def construct_circuit(self, params=None): """ Construct generator circuit. Args: params (numpy.ndarray): parameters which should be used to run the generator, if None use self._params Returns: Instruction: construct the quantum circuit and return as gate """ q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) if params is None: self.generator_circuit.build(qc=qc, q=q) else: generator_circuit_copy = deepcopy(self.generator_circuit) generator_circuit_copy.params = params generator_circuit_copy.build(qc=qc, q=q) # return qc.copy(name='qc') return qc.to_instruction() def get_output(self, quantum_instance, qc_state_in=None, params=None, shots=None): """ Get classical data samples from the generator. Running the quantum generator circuit results in a quantum state. To train this generator with a classical discriminator, we need to sample classical outputs by measuring the quantum state and mapping them to feature space defined by the training data. Args: quantum_instance (QuantumInstance): Quantum Instance, used to run the generator circuit. qc_state_in (QuantumCircuit): deprecated params (numpy.ndarray): array or None, parameters which should be used to run the generator, if None use self._params shots (int): if not None use a number of shots that is different from the number set in quantum_instance Returns: list: generated samples, array: sample occurrence in percentage """ instance_shots = quantum_instance.run_config.shots q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) qc.append(self.construct_circuit(params), q) if quantum_instance.is_statevector: pass else: c = ClassicalRegister(sum(self._num_qubits), name='c') qc.add_register(c) qc.measure(q, c) if shots is not None: quantum_instance.set_config(shots=shots) result = quantum_instance.execute(qc) generated_samples = [] if quantum_instance.is_statevector: result = result.get_statevector(qc) values = np.multiply(result, np.conj(result)) values = list(values.real) keys = [] for j in range(len(values)): keys.append(np.binary_repr(j, int(sum(self._num_qubits)))) else: result = result.get_counts(qc) keys = list(result) values = list(result.values()) values = [float(v) / np.sum(values) for v in values] generated_samples_weights = values for i, _ in enumerate(keys): index = 0 temp = [] for k, p in enumerate(self._num_qubits): bin_rep = 0 j = 0 while j < p: bin_rep += int(keys[i][index]) * 2**(int(p) - j - 1) j += 1 index += 1 if len(self._num_qubits) > 1: temp.append(self._data_grid[k][int(bin_rep)]) else: temp.append(self._data_grid[int(bin_rep)]) generated_samples.append(temp) self.generator_circuit._probabilities = generated_samples_weights if shots is not None: # Restore the initial quantum_instance configuration quantum_instance.set_config(shots=instance_shots) return generated_samples, generated_samples_weights def loss(self, x, weights): # pylint: disable=arguments-differ """ Loss function for training the generator's parameters. Args: x (numpy.ndarray): sample label (equivalent to discriminator output) weights (numpy.ndarray): probability for measuring the sample Returns: float: loss function """ try: # pylint: disable=no-member loss = (-1) * np.dot(np.log(x).transpose(), weights) except Exception: # pylint: disable=broad-except loss = (-1) * np.dot(np.log(x), weights) return loss.flatten() def _get_objective_function(self, quantum_instance, discriminator): """ Get objective function Args: quantum_instance (QuantumInstance): used to run the quantum circuit. discriminator (torch.nn.Module): discriminator network to compute the sample labels. Returns: objective_function: objective function for quantum generator optimization """ def objective_function(params): """ Objective function Args: params (numpy.ndarray): generator parameters Returns: self.loss: loss function """ generated_data, generated_prob = self.get_output(quantum_instance, params=params, shots=self._shots) prediction_generated = discriminator.get_label(generated_data, detach=True) return self.loss(prediction_generated, generated_prob) return objective_function def train(self, quantum_instance=None, shots=None): """ Perform one training step w.r.t to the generator's parameters Args: quantum_instance (QuantumInstance): used to run the generator circuit. shots (int): Number of shots for hardware or qasm execution. Returns: dict: generator loss(float) and updated parameters (array). """ self._shots = shots # Force single optimization iteration self._optimizer._maxiter = 1 self._optimizer._t = 0 objective = self._get_objective_function(quantum_instance, self._discriminator) self.generator_circuit.params, loss, _ = \ self._optimizer.optimize(num_vars=len(self.generator_circuit.params), objective_function=objective, initial_point=self.generator_circuit.params) self._ret['loss'] = loss self._ret['params'] = self.generator_circuit.params return self._ret
def setUp(self): super().setUp() # Number training data samples N = 5000 # Load data samples from log-normal distribution with mean=1 and standard deviation=1 mu = 1 sigma = 1 self._real_data = np.random.lognormal(mean=mu, sigma=sigma, size=N) # Set the data resolution # Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]] self._bounds = [0., 3.] # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1] num_qubits = [2] # Batch size batch_size = 100 # Set number of training epochs num_epochs = 10 self._params_torch = { 'algorithm': { 'name': 'QGAN', 'num_qubits': num_qubits, 'batch_size': batch_size, 'num_epochs': num_epochs }, 'problem': { 'name': 'distribution_learning_loading', 'random_seed': 7 }, 'generative_network': { 'name': 'QuantumGenerator', 'bounds': self._bounds, 'num_qubits': num_qubits, 'init_params': None, 'snapshot_dir': None }, 'discriminative_network': { 'name': 'PytorchDiscriminator', 'n_features': len(num_qubits) } } self._params_numpy = { 'algorithm': { 'name': 'QGAN', 'num_qubits': num_qubits, 'batch_size': batch_size, 'num_epochs': num_epochs }, 'problem': { 'name': 'distribution_learning_loading', 'random_seed': 7 }, 'generative_network': { 'name': 'QuantumGenerator', 'bounds': self._bounds, 'num_qubits': num_qubits, 'init_params': None, 'snapshot_dir': None }, 'discriminative_network': { 'name': 'NumpyDiscriminator', 'n_features': len(num_qubits) } } # Initialize qGAN self.qgan = QGAN(self._real_data, self._bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None) self.qgan.seed = 7 # Set quantum instance to run the quantum generator self.quantum_instance_statevector = QuantumInstance( backend=BasicAer.get_backend('statevector_simulator'), circuit_caching=False, seed_simulator=2, seed_transpiler=2) self.quantum_instance_qasm = QuantumInstance( backend=BasicAer.get_backend('qasm_simulator'), shots=1000, circuit_caching=False, seed_simulator=2, seed_transpiler=2) # Set entangler map entangler_map = [[0, 1]] # Set an initial state for the generator circuit init_dist = UniformDistribution(sum(num_qubits), low=self._bounds[0], high=self._bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set variational form var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') # Set generator's initial parameters init_params = aqua_globals.random.rand( var_form._num_parameters) * 2 * 1e-2 # Set generator circuit g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params, low=self._bounds[0], high=self._bounds[1]) # initial_distribution=init_distribution, # Set quantum generator self.qgan.set_generator(generator_circuit=g_circuit)
quantum_instance = QuantumInstance( backend=BasicAer.get_backend('statevector_simulator')) print("quantum_instance set") # Set entangler map entangler_map = [[0, 1]] # Set an initial state for the generator circuit init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = TwoLocal(int(np.sum(num_qubits)), 'ry', 'cz', entanglement=entangler_map, reps=1, initial_state=init_distribution) # Set generator's initial parameters init_params = aqua_globals.random.rand( var_form.num_parameters_settable) * 2 * np.pi # Set generator circuit g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) print("g_circuit set") # Set quantum generator qgan.set_generator(generator_circuit=g_circuit) # Set classical discriminator neural network discriminator = NumPyDiscriminator(len(num_qubits)) qgan.set_discriminator(discriminator)
class QuantumGenerator(GenerativeNetwork): """ Generator """ CONFIGURATION = { 'name': 'QuantumGenerator', 'description': 'qGAN Generator Network', 'input_schema': { '$schema': 'http://json-schema.org/draft-07/schema#', 'id': 'generator_schema', 'type': 'object', 'properties': { 'bounds': { 'type': 'array' }, 'num_qubits': { 'type': 'array' }, 'init_params': { 'type': ['array', 'null'], 'default': None }, 'snapshot_dir': { 'type': ['string', 'null'], 'default': None } }, 'additionalProperties': False } } def __init__(self, bounds, num_qubits, generator_circuit=None, init_params=None, snapshot_dir=None): """ Initialize the generator network. Args: bounds (numpy.ndarray): k min/max data values [[min_1,max_1],...,[min_k,max_k]], given input data dim k num_qubits (list): k numbers of qubits to determine representation resolution, i.e. n qubits enable the representation of 2**n values [n_1,..., n_k] generator_circuit (Union): generator circuit UnivariateVariationalDistribution for univariate data/ MultivariateVariationalDistribution for multivariate data, Quantum circuit to implement the generator. init_params (Union(list, numpy.ndarray)): 1D numpy array or list, Initialization for the generator's parameters. snapshot_dir (str): str or None, if not None save the optimizer's parameter after every update step to the given directory Raises: AquaError: Set multivariate variational distribution to represent multivariate data """ super().__init__() self._bounds = bounds self._num_qubits = num_qubits self.generator_circuit = generator_circuit if self.generator_circuit is None: entangler_map = [] if np.sum(num_qubits) > 2: for i in range(int(np.sum(num_qubits))): entangler_map.append( [i, int(np.mod(i + 1, np.sum(num_qubits)))]) else: if np.sum(num_qubits) > 1: entangler_map.append([0, 1]) if len(num_qubits) > 1: num_qubits = list(map(int, num_qubits)) low = bounds[:, 0].tolist() high = bounds[:, 1].tolist() init_dist = MultivariateUniformDistribution(num_qubits, low=low, high=high) q = QuantumRegister(sum(num_qubits)) qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) # Set variational form var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = MultivariateVariationalDistribution( num_qubits, var_form, init_params, low=low, high=high) else: init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = RY(sum(num_qubits), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if init_params is None: init_params = aqua_globals.random.rand( var_form.num_parameters) * 2 * 1e-2 # Set generator circuit self.generator_circuit = UnivariateVariationalDistribution( int(np.sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) if len(num_qubits) > 1: if isinstance(self.generator_circuit, MultivariateVariationalDistribution): pass else: raise AquaError('Set multivariate variational distribution ' 'to represent multivariate data') else: if isinstance(self.generator_circuit, UnivariateVariationalDistribution): pass else: raise AquaError('Set univariate variational distribution ' 'to represent univariate data') # Set optimizer for updating the generator network self._optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-3, beta_1=0.7, beta_2=0.99, noise_factor=1e-6, eps=1e-6, amsgrad=True, snapshot_dir=snapshot_dir) if np.ndim(self._bounds) == 1: bounds = np.reshape(self._bounds, (1, len(self._bounds))) else: bounds = self._bounds for j, prec in enumerate(self._num_qubits): # prepare data grid for dim j grid = np.linspace(bounds[j, 0], bounds[j, 1], (2**prec)) if j == 0: if len(self._num_qubits) > 1: self._data_grid = [grid] else: self._data_grid = grid self._grid_elements = grid elif j == 1: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = [g_e] temp0.append(g) temp.append(temp0) self._grid_elements = temp else: self._data_grid.append(grid) temp = [] for g_e in self._grid_elements: for g in grid: temp0 = deepcopy(g_e) temp0.append(g) temp.append(temp0) self._grid_elements = deepcopy(temp) self._data_grid = np.array(self._data_grid) self._shots = None self._discriminator = None self._ret = {} @classmethod def init_params(cls, params): """ Initialize via parameters dictionary and algorithm input instance. Args: params (dict): parameters dictionary Returns: QuantumGenerator: vqe object Raises: AquaError: invalid input """ generator_params = params.get(Pluggable.SECTION_KEY_GENERATIVE_NETWORK) bounds = generator_params.get('bounds') if bounds is None: raise AquaError("Data value bounds are required.") num_qubits = generator_params.get('num_qubits') if num_qubits is None: raise AquaError("Numbers of qubits per dimension required.") init_params = generator_params.get('init_params') snapshot_dir = generator_params.get('snapshot_dir') return cls(bounds, num_qubits, generator_circuit=None, init_params=init_params, snapshot_dir=snapshot_dir) @classmethod def get_section_key_name(cls): return Pluggable.SECTION_KEY_GENERATIVE_NETWORK def set_seed(self, seed): """ Set seed. Args: seed (int): seed """ aqua_globals.random_seed = seed def set_discriminator(self, discriminator): """ Set discriminator Args: discriminator (Discriminator): Discriminator used to compute the loss function. """ self._discriminator = discriminator def construct_circuit(self, params=None): """ Construct generator circuit. Args: params (numpy.ndarray): parameters which should be used to run the generator, if None use self._params Returns: Instruction: construct the quantum circuit and return as gate """ q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) if params is None: self.generator_circuit.build(qc=qc, q=q) else: generator_circuit_copy = deepcopy(self.generator_circuit) generator_circuit_copy.params = params generator_circuit_copy.build(qc=qc, q=q) # return qc.copy(name='qc') return qc.to_instruction() def get_output(self, quantum_instance, qc_state_in=None, params=None, shots=None): """ Get data samples from the generator. Args: quantum_instance (QuantumInstance): Quantum Instance, used to run the generator circuit. qc_state_in (QuantumCircuit): depreciated params (numpy.ndarray): array or None, parameters which should be used to run the generator, if None use self._params shots (int): if not None use a number of shots that is different from the number set in quantum_instance Returns: list: generated samples, array: sample occurrence in percentage """ instance_shots = quantum_instance.run_config.shots q = QuantumRegister(sum(self._num_qubits), name='q') qc = QuantumCircuit(q) qc.append(self.construct_circuit(params), q) if quantum_instance.is_statevector: pass else: c = ClassicalRegister(sum(self._num_qubits), name='c') qc.add_register(c) qc.measure(q, c) if shots is not None: quantum_instance.set_config(shots=shots) result = quantum_instance.execute(qc) generated_samples = [] if quantum_instance.is_statevector: result = result.get_statevector(qc) values = np.multiply(result, np.conj(result)) values = list(values.real) keys = [] for j in range(len(values)): keys.append(np.binary_repr(j, int(sum(self._num_qubits)))) else: result = result.get_counts(qc) keys = list(result) values = list(result.values()) values = [float(v) / np.sum(values) for v in values] generated_samples_weights = values for i, _ in enumerate(keys): index = 0 temp = [] for k, p in enumerate(self._num_qubits): bin_rep = 0 j = 0 while j < p: bin_rep += int(keys[i][index]) * 2**(int(p) - j - 1) j += 1 index += 1 if len(self._num_qubits) > 1: temp.append(self._data_grid[k][int(bin_rep)]) else: temp.append(self._data_grid[int(bin_rep)]) generated_samples.append(temp) self.generator_circuit._probabilities = generated_samples_weights if shots is not None: # Restore the initial quantum_instance configuration quantum_instance.set_config(shots=instance_shots) return generated_samples, generated_samples_weights def loss(self, x, weights): # pylint: disable=arguments-differ """ Loss function Args: x (numpy.ndarray): sample label (equivalent to discriminator output) weights (numpy.ndarray): probability for measuring the sample Returns: float: loss function """ try: # pylint: disable=no-member loss = (-1) * np.dot(np.log(x).transpose(), weights) except Exception: # pylint: disable=broad-except loss = (-1) * np.dot(np.log(x), weights) return loss.flatten() def _get_objective_function(self, quantum_instance, discriminator): """ Get objective function Args: quantum_instance (QuantumInstance): used to run the quantum circuit. discriminator (torch.nn.Module): discriminator network to compute the sample labels. Returns: objective_function: objective function for quantum generator optimization """ def objective_function(params): """ Objective function Args: params (numpy.ndarray): generator parameters Returns: self.loss: loss function """ generated_data, generated_prob = self.get_output(quantum_instance, params=params, shots=self._shots) prediction_generated = discriminator.get_label(generated_data, detach=True) return self.loss(prediction_generated, generated_prob) return objective_function def train(self, quantum_instance=None, shots=None): """ Perform one training step w.r.t to the generator's parameters Args: quantum_instance (QuantumInstance): used to run the generator circuit. shots (int): Number of shots for hardware or qasm execution. Returns: dict: generator loss(float) and updated parameters (array). """ self._shots = shots # Force single optimization iteration self._optimizer._maxiter = 1 self._optimizer._t = 0 objective = self._get_objective_function(quantum_instance, self._discriminator) self.generator_circuit.params, loss, _ = \ self._optimizer.optimize(num_vars=len(self.generator_circuit.params), objective_function=objective, initial_point=self.generator_circuit.params) self._ret['loss'] = loss self._ret['params'] = self.generator_circuit.params return self._ret
def test_ecev(self, use_circuits): """ European Call Expected Value test """ if not use_circuits: # ignore deprecation warnings from the deprecation of VariationalForm as input for # the univariate variational distribution warnings.filterwarnings("ignore", category=DeprecationWarning) bounds = np.array([0., 7.]) num_qubits = [3] entangler_map = [] for i in range(sum(num_qubits)): entangler_map.append([i, int(np.mod(i + 1, sum(num_qubits)))]) g_params = [ 0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225 ] # Set an initial state for the generator circuit init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1]) init_distribution = np.sqrt(init_dist.probabilities) init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution) var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') if use_circuits: theta = ParameterVector('θ', var_form.num_parameters) var_form = var_form.construct_circuit(theta) uncertainty_model = UnivariateVariationalDistribution(int( sum(num_qubits)), var_form, g_params, low=bounds[0], high=bounds[1]) if use_circuits: uncertainty_model._var_form_params = theta strike_price = 2 c_approx = 0.25 european_call = EuropeanCallExpectedValue(uncertainty_model, strike_price=strike_price, c_approx=c_approx) uncertainty_model.set_probabilities( QuantumInstance(BasicAer.get_backend('statevector_simulator'))) algo = AmplitudeEstimation(5, european_call) result = algo.run( quantum_instance=BasicAer.get_backend('statevector_simulator')) self.assertAlmostEqual(result['estimation'], 1.2580, places=4) self.assertAlmostEqual(result['max_probability'], 0.8785, places=4) if not use_circuits: warnings.filterwarnings(action="always", category=DeprecationWarning)
def QGAN_method(kk, num_qubit, epochs, batch, bound, snap, data): start = time.time() real_data = data # In[41]: # Number training data samples N = 1000 # Load data samples from log-normal distribution with mean=1 and standard deviation=1 mu = 1 sigma = 1 # real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N) # print(real_data) # Set the data resolution # Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]] bounds = np.array([0, bound]) # Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1] num_qubits = [num_qubit] k = kk # In[52]: # Set number of training epochs # Note: The algorithm's runtime can be shortened by reducing the number of training epochs. num_epochs = epochs # Batch size batch_size = batch # Initialize qGAN qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=snap) qgan.seed = 1 # Set quantum instance to run the quantum generator quantum_instance = QuantumInstance( backend=BasicAer.get_backend('statevector_simulator')) # Set entangler map entangler_map = [[0, 1]] # Set an initial state for the generator circuit init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1]) q = QuantumRegister(sum(num_qubits), name='q') qc = QuantumCircuit(q) init_dist.build(qc, q) init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc) var_form = RY(int(np.sum(num_qubits)), depth=k, initial_state=init_distribution, entangler_map=entangler_map, entanglement_gate='cz') # Set generator's initial parameters init_params = aqua_globals.random.rand( var_form._num_parameters) * 2 * np.pi # Set generator circuit g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, init_params, low=bounds[0], high=bounds[1]) # Set quantum generator qgan.set_generator(generator_circuit=g_circuit) # Set classical discriminator neural network discriminator = NumPyDiscriminator(len(num_qubits)) qgan.set_discriminator(discriminator) # In[53]: # Run qGAN qgan.run(quantum_instance) # Runtime end = time.time() print('qGAN training runtime: ', (end - start) / 60., ' min') return qgan
# Load the trained circuit parameters g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225] # Set an initial state for the generator circuit init_dist = NormalDistribution(sum(num_qubits), mu=1., sigma=1., low=bounds[0], high=bounds[1]) init_distribution = np.sqrt(init_dist.probabilities) init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution) # construct the variational form var_form = RealAmplitudes(sum(num_qubits), entanglement=entangler_map, reps=1, initial_state=init_distribution) var_form.entanglement_blocks = 'cz' theta = ParameterVector('θ', var_form.num_parameters) var_form = var_form.assign_parameters(theta) # Set generator circuit g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, g_params, low=bounds[0], high=bounds[1]) g_circuit._var_form_params = theta # construct circuit factory for uncertainty model uncertainty_model = g_circuit # set the strike price (should be within the low and the high value of the uncertainty) strike_price = 2 # set the approximation scaling for the payoff function c_approx = 0.25 # construct circuit factory for payoff function european_call = EuropeanCallExpectedValue( uncertainty_model,