示例#1
0
def trotter_circ(q, exp_args, n_steps):
    qc = QuantumCircuit(q)
    for i in range(n_steps):
        for sub_op in exp_args:
            qc += PauliTrotterEvolution().convert(
                EvolvedOp(sub_op)).to_circuit()
    return qc
示例#2
0
    def exp_i(self) -> OperatorBase:
        """ Return an ``OperatorBase`` equivalent to an exponentiation of self * -i, e^(-i*op)."""
        # pylint: disable=unidiomatic-typecheck
        if type(self) == ListOp:
            return ListOp([op.exp_i() for op in self.oplist], coeff=self.coeff)

        # pylint: disable=import-outside-toplevel
        from qiskit.aqua.operators import EvolvedOp
        return EvolvedOp(self)
示例#3
0
    def test_trotter_with_identity(self):
        """ trotterization of operator with identity term """
        op = (2.0 * I ^ I) + (Z ^ Y)
        exact_matrix = scipy.linalg.expm(-1j * op.to_matrix())
        evo = PauliTrotterEvolution(trotter_mode='suzuki', reps=2)
        with self.subTest('all PauliOp terms'):
            circ_op = evo.convert(EvolvedOp(op))
            circuit_matrix = qiskit.quantum_info.Operator(circ_op.to_circuit()).data
            np.testing.assert_array_almost_equal(exact_matrix, circuit_matrix)

        with self.subTest('MatrixOp identity term'):
            op = (2.0 * I ^ I).to_matrix_op() + (Z ^ Y)
            circ_op = evo.convert(EvolvedOp(op))
            circuit_matrix = qiskit.quantum_info.Operator(circ_op.to_circuit()).data
            np.testing.assert_array_almost_equal(exact_matrix, circuit_matrix)

        with self.subTest('CircuitOp identity term'):
            op = (2.0 * I ^ I).to_circuit_op() + (Z ^ Y)
            circ_op = evo.convert(EvolvedOp(op))
            circuit_matrix = qiskit.quantum_info.Operator(circ_op.to_circuit()).data
            np.testing.assert_array_almost_equal(exact_matrix, circuit_matrix)
示例#4
0
 def exp_i(self) -> OperatorBase:
     """ Return Operator exponentiation, equaling e^(-i * op)"""
     # pylint: disable=cyclic-import,import-outside-toplevel
     from qiskit.aqua.operators import EvolvedOp
     return EvolvedOp(self)
    def test_compose_with_indices(self):
        """ Test compose method using its permutation feature."""

        pauli_op = (X ^ Y ^ Z)
        circuit_op = (T ^ H)
        matrix_op = (X ^ Y ^ H ^ T).to_matrix_op()
        evolved_op = EvolvedOp(matrix_op)

        # composition of PrimitiveOps
        num_qubits = 4
        primitive_op = pauli_op @ circuit_op @ matrix_op
        composed_op = pauli_op @ circuit_op @ evolved_op
        self.assertEqual(primitive_op.num_qubits, num_qubits)
        self.assertEqual(composed_op.num_qubits, num_qubits)

        # with permutation
        num_qubits = 5
        indices = [1, 4]
        permuted_primitive_op = evolved_op @ circuit_op.permute(indices) @ pauli_op @ matrix_op
        composed_primitive_op = \
            evolved_op @ pauli_op.compose(circuit_op, permutation=indices, front=True) @ matrix_op

        self.assertTrue(np.allclose(permuted_primitive_op.to_matrix(),
                                    composed_primitive_op.to_matrix()))
        self.assertEqual(num_qubits, permuted_primitive_op.num_qubits)

        # ListOp
        num_qubits = 6
        tensored_op = TensoredOp([pauli_op, circuit_op])
        summed_op = pauli_op + circuit_op.permute([2, 1])
        composed_op = circuit_op @ evolved_op @ matrix_op

        list_op = summed_op @ composed_op.compose(tensored_op, permutation=[1, 2, 3, 5, 4],
                                                  front=True)
        self.assertEqual(num_qubits, list_op.num_qubits)

        num_qubits = 4
        circuit_fn = CircuitStateFn(primitive=circuit_op.primitive, is_measurement=True)
        operator_fn = OperatorStateFn(primitive=circuit_op ^ circuit_op, is_measurement=True)

        no_perm_op = circuit_fn @ operator_fn
        self.assertEqual(no_perm_op.num_qubits, num_qubits)

        indices = [0, 4]
        perm_op = operator_fn.compose(circuit_fn, permutation=indices, front=True)
        self.assertEqual(perm_op.num_qubits, max(indices) + 1)

        # StateFn
        num_qubits = 3
        dim = 2**num_qubits
        vec = [1.0/(i+1) for i in range(dim)]
        dic = {format(i, 'b').zfill(num_qubits): 1.0/(i+1) for i in range(dim)}

        is_measurement = True
        op_state_fn = OperatorStateFn(matrix_op, is_measurement=is_measurement)  # num_qubit = 4
        vec_state_fn = VectorStateFn(vec, is_measurement=is_measurement)  # 3
        dic_state_fn = DictStateFn(dic, is_measurement=is_measurement)  # 3
        circ_state_fn = CircuitStateFn(circuit_op.to_circuit(), is_measurement=is_measurement)  # 2

        composed_op = op_state_fn @ vec_state_fn @ dic_state_fn @ circ_state_fn
        self.assertEqual(composed_op.num_qubits, op_state_fn.num_qubits)

        # with permutation
        perm = [2, 4, 6]
        composed = \
            op_state_fn @ dic_state_fn.compose(vec_state_fn, permutation=perm, front=True) @ \
            circ_state_fn
        self.assertEqual(composed.num_qubits, max(perm) + 1)
示例#6
0
 def exp_i(self) -> OperatorBase:
     """ Return an ``OperatorBase`` equivalent to an exponentiation of self * -i, e^(-i*op)."""
     # pylint: disable=import-outside-toplevel
     from qiskit.aqua.operators import EvolvedOp
     return EvolvedOp(self)