def test_to_matrix(self):
        """to matrix text """
        np.testing.assert_array_equal(X.to_matrix(),
                                      Operator.from_label('X').data)
        np.testing.assert_array_equal(Y.to_matrix(),
                                      Operator.from_label('Y').data)
        np.testing.assert_array_equal(Z.to_matrix(),
                                      Operator.from_label('Z').data)

        op1 = Y + H
        np.testing.assert_array_almost_equal(op1.to_matrix(),
                                             Y.to_matrix() + H.to_matrix())

        op2 = op1 * .5
        np.testing.assert_array_almost_equal(op2.to_matrix(),
                                             op1.to_matrix() * .5)

        op3 = (4 - .6j) * op2
        np.testing.assert_array_almost_equal(op3.to_matrix(),
                                             op2.to_matrix() * (4 - .6j))

        op4 = op3.tensor(X)
        np.testing.assert_array_almost_equal(
            op4.to_matrix(), np.kron(op3.to_matrix(), X.to_matrix()))

        op5 = op4.compose(H ^ I)
        np.testing.assert_array_almost_equal(
            op5.to_matrix(), np.dot(op4.to_matrix(), (H ^ I).to_matrix()))

        op6 = op5 + PrimitiveOp(Operator.from_label('+r').data)
        np.testing.assert_array_almost_equal(
            op6.to_matrix(),
            op5.to_matrix() + Operator.from_label('+r').data)
    def test_evals(self):
        """ evals test """
        # pylint: disable=no-member
        # TODO: Think about eval names
        self.assertEqual(Z.eval('0').eval('0'), 1)
        self.assertEqual(Z.eval('1').eval('0'), 0)
        self.assertEqual(Z.eval('0').eval('1'), 0)
        self.assertEqual(Z.eval('1').eval('1'), -1)
        self.assertEqual(X.eval('0').eval('0'), 0)
        self.assertEqual(X.eval('1').eval('0'), 1)
        self.assertEqual(X.eval('0').eval('1'), 1)
        self.assertEqual(X.eval('1').eval('1'), 0)
        self.assertEqual(Y.eval('0').eval('0'), 0)
        self.assertEqual(Y.eval('1').eval('0'), -1j)
        self.assertEqual(Y.eval('0').eval('1'), 1j)
        self.assertEqual(Y.eval('1').eval('1'), 0)

        with self.assertRaises(ValueError):
            Y.eval('11')

        with self.assertRaises(ValueError):
            (X ^ Y).eval('1111')

        with self.assertRaises(ValueError):
            Y.eval((X ^ X).to_matrix_op())

        # Check that Pauli logic eval returns same as matrix logic
        self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('0'), 1)
        self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('0'), 0)
        self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('0').eval('1'), 0)
        self.assertEqual(PrimitiveOp(Z.to_matrix()).eval('1').eval('1'), -1)
        self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('0'), 0)
        self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('0'), 1)
        self.assertEqual(PrimitiveOp(X.to_matrix()).eval('0').eval('1'), 1)
        self.assertEqual(PrimitiveOp(X.to_matrix()).eval('1').eval('1'), 0)
        self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('0'), 0)
        self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('0'), -1j)
        self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('0').eval('1'), 1j)
        self.assertEqual(PrimitiveOp(Y.to_matrix()).eval('1').eval('1'), 0)

        pauli_op = Z ^ I ^ X ^ Y
        mat_op = PrimitiveOp(pauli_op.to_matrix())
        full_basis = list(map(''.join, itertools.product('01', repeat=pauli_op.num_qubits)))
        for bstr1, bstr2 in itertools.product(full_basis, full_basis):
            # print('{} {} {} {}'.format(bstr1, bstr2, pauli_op.eval(bstr1, bstr2),
            # mat_op.eval(bstr1, bstr2)))
            np.testing.assert_array_almost_equal(pauli_op.eval(bstr1).eval(bstr2),
                                                 mat_op.eval(bstr1).eval(bstr2))

        gnarly_op = SummedOp([(H ^ I ^ Y).compose(X ^ X ^ Z).tensor(Z),
                              PrimitiveOp(Operator.from_label('+r0I')),
                              3 * (X ^ CX ^ T)], coeff=3 + .2j)
        gnarly_mat_op = PrimitiveOp(gnarly_op.to_matrix())
        full_basis = list(map(''.join, itertools.product('01', repeat=gnarly_op.num_qubits)))
        for bstr1, bstr2 in itertools.product(full_basis, full_basis):
            np.testing.assert_array_almost_equal(gnarly_op.eval(bstr1).eval(bstr2),
                                                 gnarly_mat_op.eval(bstr1).eval(bstr2))
示例#3
0
    def test_to_matrix(self):
        """to matrix text """
        np.testing.assert_array_equal(X.to_matrix(),
                                      Operator.from_label('X').data)
        np.testing.assert_array_equal(Y.to_matrix(),
                                      Operator.from_label('Y').data)
        np.testing.assert_array_equal(Z.to_matrix(),
                                      Operator.from_label('Z').data)

        op1 = Y + H
        np.testing.assert_array_almost_equal(op1.to_matrix(),
                                             Y.to_matrix() + H.to_matrix())

        op2 = op1 * .5
        np.testing.assert_array_almost_equal(op2.to_matrix(),
                                             op1.to_matrix() * .5)

        op3 = (4 - .6j) * op2
        np.testing.assert_array_almost_equal(op3.to_matrix(),
                                             op2.to_matrix() * (4 - .6j))

        op4 = op3.tensor(X)
        np.testing.assert_array_almost_equal(
            op4.to_matrix(), np.kron(op3.to_matrix(), X.to_matrix()))

        op5 = op4.compose(H ^ I)
        np.testing.assert_array_almost_equal(
            op5.to_matrix(), np.dot(op4.to_matrix(), (H ^ I).to_matrix()))

        op6 = op5 + PrimitiveOp(Operator.from_label('+r').data)
        np.testing.assert_array_almost_equal(
            op6.to_matrix(),
            op5.to_matrix() + Operator.from_label('+r').data)

        param = Parameter("α")
        m = np.array([[0, -1j], [1j, 0]])
        op7 = MatrixOp(m, param)
        np.testing.assert_array_equal(op7.to_matrix(), m * param)

        param = Parameter("β")
        op8 = PauliOp(primitive=Pauli(label="Y"), coeff=param)
        np.testing.assert_array_equal(op8.to_matrix(), m * param)

        param = Parameter("γ")
        qc = QuantumCircuit(1)
        qc.h(0)
        op9 = CircuitOp(qc, coeff=param)
        m = np.array([[1, 1], [1, -1]]) / np.sqrt(2)
        np.testing.assert_array_equal(op9.to_matrix(), m * param)
    def test_io_consistency(self):
        """ consistency test """
        new_op = X ^ Y ^ I
        label = 'XYI'
        # label = new_op.primitive.to_label()
        self.assertEqual(str(new_op.primitive), label)
        np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(),
                                             Operator.from_label(label).data)
        self.assertEqual(new_op.primitive, Pauli(label=label))

        x_mat = X.primitive.to_matrix()
        y_mat = Y.primitive.to_matrix()
        i_mat = np.eye(2, 2)
        np.testing.assert_array_almost_equal(new_op.primitive.to_matrix(),
                                             np.kron(np.kron(x_mat, y_mat), i_mat))

        hi = np.kron(H.to_matrix(), I.to_matrix())
        hi2 = Operator.from_label('HI').data
        hi3 = (H ^ I).to_matrix()
        np.testing.assert_array_almost_equal(hi, hi2)
        np.testing.assert_array_almost_equal(hi2, hi3)

        xy = np.kron(X.to_matrix(), Y.to_matrix())
        xy2 = Operator.from_label('XY').data
        xy3 = (X ^ Y).to_matrix()
        np.testing.assert_array_almost_equal(xy, xy2)
        np.testing.assert_array_almost_equal(xy2, xy3)

        # Check if numpy array instantiation is the same as from Operator
        matrix_op = Operator.from_label('+r')
        np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op).to_matrix(),
                                             PrimitiveOp(matrix_op.data).to_matrix())
        # Ditto list of lists
        np.testing.assert_array_almost_equal(PrimitiveOp(matrix_op.data.tolist()).to_matrix(),
                                             PrimitiveOp(matrix_op.data).to_matrix())
示例#5
0
"""
import numpy as np
from docplex.mp.model import Model
from qiskit.optimization.problems import QuadraticProgram
from qiskit.optimization.converters import QuadraticProgramToIsing
from qiskit import QuantumCircuit
from qiskit.aqua.operators import StateFn

from qiskit.aqua.operators import Z, X, Y, I, H, S
import random

count = 0
w = 0
P_0 = I.to_matrix()
P_1 = X.to_matrix()
P_2 = Y.to_matrix()
P_3 = Z.to_matrix()
HH = H.to_matrix()
S = S.to_matrix()
OPE = [P_0, HH, S]
pauli = [P_0, P_1, P_2, P_3]
Pauli = [I, X, Y, Z]

R = 2 #number of iteration == R

n = 5 #number of qubits
x_matrix = np.zeros((R, n))
z_matrix = np.zeros((R, n))
matrix = np.zeros((R, 2*n))
x_vector = []
z_vector = []