示例#1
0
 def test_gauss_square_samples(self):
     """Test that the gaussian square samples match the formula."""
     duration = 125
     sigma = 4
     amp = 0.5j
     # formulaic
     times = np.array(range(25), dtype=np.complex_)
     times = times - (25 / 2) + 0.5
     gauss = amp * np.exp(-(times / sigma)**2 / 2)
     # command
     command = GaussianSquare(duration=duration, sigma=sigma, amp=amp, width=100)
     samples = command.get_sample_pulse().samples
     np.testing.assert_almost_equal(samples[50], amp)
     np.testing.assert_almost_equal(samples[100], amp)
     np.testing.assert_almost_equal(samples[:10], gauss[:10])
示例#2
0
 def test_repr(self):
     """Test the repr methods for parametric pulses."""
     gaus = Gaussian(duration=25, amp=0.7, sigma=4)
     self.assertEqual(repr(gaus), 'Gaussian(duration=25, amp=(0.7+0j), sigma=4)')
     gaus_square = GaussianSquare(duration=20, sigma=30, amp=1.0, width=3)
     self.assertEqual(repr(gaus_square),
                      'GaussianSquare(duration=20, amp=(1+0j), sigma=30, width=3)')
     drag = Drag(duration=5, amp=0.5, sigma=7, beta=1)
     self.assertEqual(repr(drag), 'Drag(duration=5, amp=(0.5+0j), sigma=7, beta=1)')
     const = ConstantPulse(duration=150, amp=0.1 + 0.4j)
     self.assertEqual(repr(const), 'ConstantPulse(duration=150, amp=(0.1+0.4j))')
示例#3
0
 def test_param_validation(self):
     """Test that parametric pulse parameters are validated when initialized."""
     with self.assertRaises(PulseError):
         Gaussian(duration=25, sigma=0, amp=0.5j)
     with self.assertRaises(PulseError):
         GaussianSquare(duration=150, amp=0.2, sigma=8, width=160)
     with self.assertRaises(PulseError):
         ConstantPulse(duration=150, amp=0.9 + 0.8j)
     with self.assertRaises(PulseError):
         Drag(duration=25, amp=0.2 + 0.3j, sigma=-7.8, beta=4)
     with self.assertRaises(PulseError):
         Drag(duration=25, amp=0.2 + 0.3j, sigma=7.8, beta=4j)
示例#4
0
 def test_gauss_square_extremes(self):
     """Test that the gaussian square pulse can build a gaussian."""
     duration = 125
     sigma = 4
     amp = 0.5j
     gaus_square = GaussianSquare(duration=duration, sigma=sigma, amp=amp, width=0)
     gaus = Gaussian(duration=duration, sigma=sigma, amp=amp)
     np.testing.assert_almost_equal(gaus_square.get_sample_pulse().samples,
                                    gaus.get_sample_pulse().samples)
     gaus_square = GaussianSquare(duration=duration, sigma=sigma, amp=amp, width=121)
     const = ConstantPulse(duration=duration, amp=amp)
     np.testing.assert_almost_equal(gaus_square.get_sample_pulse().samples[2:-2],
                                    const.get_sample_pulse().samples[2:-2])
示例#5
0
def cr_drive_experiments(drive_idx,
                         target_idx,
                         flip_drive_qubit = False,

                         #cr_drive_amps=np.linspace(0, 0.9, 16),
                         #cr_drive_samples=800,
                         #cr_drive_sigma=4,
                         #pi_drive_samples=128,
                         #pi_drive_sigma=16
                         #meas_amp = Dims/128*0.025/2
                         #meas_width = int(rows/128*1150/2)
                         cr_drive_amps=np.linspace(0, 0.9, meas_width**2),
                         cr_drive_samples=sum(label1[:] == label2[:]),
                         cr_drive_sigma=meas_sigma,
                         pi_drive_samples=sum((label1[:] ==1)*(label2[:] ==1)), #label1[:] ==1 and label2[:] ==1
                         pi_drive_sigma=cr_drive_sigma**2):
    """Generate schedules corresponding to CR drive experiments.

    Args:
        drive_idx (int): label of driven qubit
        target_idx (int): label of target qubit
        flip_drive_qubit (bool): whether or not to start the driven qubit in the ground or excited state
        cr_drive_amps (array): list of drive amplitudes to use
        cr_drive_samples (int): number samples for each CR drive signal
        cr_drive_sigma (float): standard deviation of CR Gaussian pulse
        pi_drive_samples (int): number samples for pi pulse on drive
        pi_drive_sigma (float): standard deviation of Gaussian pi pulse on drive

    Returns:
        list[Schedule]: A list of Schedule objects for each experiment
    """

    # Construct measurement commands to be used for all schedules
    #meas_amp = 0.025
    #meas_samples = 1200
    #meas_sigma = 4
    #meas_width = 1150
    meas_amp = 0.025
    meas_sigma = 4
    ni = int(np.ceil(cols/meas_sigma))
    print(ni)
    meas_samples = rows*ni
    meas_width = int(rows*ni*23/24)
    meas_pulse = GaussianSquare(duration=meas_samples, amp=meas_amp/np.linalg.norm(meas_amp),
                               sigma=meas_sigma, width=meas_width)

    acq_sched = pulse.Acquire(meas_samples, pulse.AcquireChannel(0), pulse.MemorySlot(0))
    acq_sched += pulse.Acquire(meas_samples, pulse.AcquireChannel(1), pulse.MemorySlot(1))

    # create measurement schedule
    measure_sched = (pulse.Play(meas_pulse, pulse.MeasureChannel(0)) |
                     pulse.Play(meas_pulse, pulse.MeasureChannel(1))|
                     acq_sched)

    # Create schedule
    schedules = []
    for ii, cr_drive_amp in enumerate(cr_drive_amps):

        # pulse for flipping drive qubit if desired
        pi_pulse = Gaussian(duration=pi_drive_samples, amp=pi_amps[drive_idx], sigma=pi_drive_sigma)

        # cr drive pulse
        cr_width = cr_drive_samples - 2*cr_drive_sigma*4
        cr_rabi_pulse = GaussianSquare(duration=cr_drive_samples,
                                       amp=cr_drive_amp/np.linalg.norm(cr_drive_amp),
                                       sigma=cr_drive_sigma,
                                       width=cr_width)

        # add commands to schedule
        schedule = pulse.Schedule(name='cr_rabi_exp_amp_%s' % cr_drive_amp)
        #schedule = pulse.Schedule(name='cr_rabi_exp_amp_%s' % cr_drive_amp/np.linalg.norm(cr_drive_amp))

        # flip drive qubit if desired
        if flip_drive_qubit:
            schedule += pulse.Play(pi_pulse, pulse.DriveChannel(drive_idx))

        # do cr drive
        # First, get the ControlChannel index for CR drive from drive to target
        cr_idx = two_qubit_model.control_channel_index((drive_idx, target_idx))
        schedule += pulse.Play(cr_rabi_pulse, pulse.ControlChannel(cr_idx))  << schedule.duration


        schedule += measure_sched << schedule.duration

        schedules.append(schedule)
    return schedules
示例#6
0
                                       dt=dt)

#calibrate pi pulse on each qubit using Ihnis(default GaussianSquare)
#4.1 Constructing the schedules
# list of qubits to be used throughout the notebook

qubits = [0, 1]
# Construct a measurement schedule and add it to an InstructionScheduleMap
meas_amp = 0.025
meas_sigma = 4
ni = int(np.ceil(cols/meas_sigma))
print(ni)
meas_samples = rows*ni
meas_width = int(rows*ni*23/24)

meas_pulse = GaussianSquare(duration=meas_samples, amp=meas_amp,
                            sigma=meas_sigma, width=meas_width)

acq_sched = pulse.Acquire(meas_samples, pulse.AcquireChannel(0), pulse.MemorySlot(0))
acq_sched += pulse.Acquire(meas_samples, pulse.AcquireChannel(1), pulse.MemorySlot(1))

measure_sched = pulse.Play(meas_pulse, pulse.MeasureChannel(0)) | pulse.Play(meas_pulse, pulse.MeasureChannel(1)) | acq_sched

inst_map = pulse.InstructionScheduleMap()
inst_map.add('measure', qubits, measure_sched)

#Rabi schedules
#recall: Rabii oscillation
# The magnetic moment is thus {\displaystyle {\boldsymbol {\mu }}={\frac {\hbar }{2}}\gamma {\boldsymbol {\sigma }}}{\boldsymbol {\mu }}={\frac {\hbar }{2}}\gamma {\boldsymbol {\sigma }}. 
# The Hamiltonian of this system is then given by {H} =-{{\mu }}\cdot{B} =-{\frac {\hbar }{2}}\omega _{0}\sigma _{z}-{\frac {\hbar }{2}}\omega _{1}(\sigma _{x}\cos \omega t-\sigma _{y}\sin \omega t)}\mathbf {H} =-{\boldsymbol {\mu }}\cdot \mathbf {B} =-{\frac {\hbar }{2}}\omega _{0}\sigma _{z}-{\frac {\hbar }{2}}\omega _{1}(\sigma _{x}\cos \omega t-\sigma _{y}\sin \omega t) where {\displaystyle \omega _{0}=\gamma B_{0}}\omega _{0}=\gamma B_{0} and {\displaystyle \omega _{1}=\gamma B_{1}}\omega _{1}=\gamma B_{1}
# Now, let the qubit be in state {\displaystyle |0\rangle }{\displaystyle |0\rangle } at time {\displaystyle t=0}t=0. Then, at time {\displaystyle t}t, the probability of it being found in state {\displaystyle |1\rangle }|1\rangle  is given by {\displaystyle P_{0\to 1}(t)=\left({\frac {\omega _{1}}{\Omega }}\right)^{2}\sin ^{2}\left({\frac {\Omega t}{2}}\right)}{\displaystyle P_{0\to 1}(t)=\left({\frac {\omega _{1}}{\Omega }}\right)^{2}\sin ^{2}\left({\frac {\Omega t}{2}}\right)} where {\displaystyle \Omega ={\sqrt {(\omega -\omega _{0})^{2}+\omega _{1}^{2}}}}\Omega ={\sqrt {(\omega -\omega _{0})^{2}+\omega _{1}^{2}}}
# the qubit oscillates between the {\displaystyle |0\rangle }|0\rang and {\displaystyle |1\rangle }|1\rangle  states. 
示例#7
0
qregs = QuantumRegister(config.n_qubits)
circuit = QuantumCircuit(qregs)
circuit.append(cr1_gate, qargs = [qregs[1], qregs[0]])
qpt_circuits = process_tomography_circuits(circuit, [qregs[0], qregs[1]])

#Create the QPT pulse scchedules
qpt_circuits = transpile(qpt_circuits, backend, basis_gates)
#qpt_schedules = schedule(qpt_circuits, backend, inst_map)

#Local rotation angles for CNOT(1,0) determined during optimization+
local_rotations10 = [[1.45, 1.91, 1.64],[1.56, 3.08, 2.45],[-2.79, -3.05, -2.79],[2.16, -3.12, 0.02]]
#Local rotation angles for CNOT(1,0) determined during optimization+
local_rotations01 = [[-1.68, 3.04, 1.66],[1.57, 2.28, -0.06],[1.48, -0.46, 3.14],[1.60, -3.14, 0.98]]

#ceate the CR1 schedule
cr1_pulse = GaussianSquare(meas_duration,meas_amp, meas_sigma, meas_square_width)
sched = Schedule()
sched += Play(cr1_pulse, ControlChannel(0))

#Add the CR1 instruction to basis_gates and inst_map
basis_gates += ['cr1']
inst_map.add(gate_name, [1,0], sched)

#Create a quantum gate to reference the CR1 pulse schedule
cr1_gate = Gate(gate_name, 2, [])

#Generate RB circuits (2Q RB)
#number of qubits
nQ=2 
rb_opts = {}
#Number of Cliffords in the sequence
示例#8
0
 def test_construction(self):
     """Test that parametric pulses can be constructed without error."""
     Gaussian(duration=25, sigma=4, amp=0.5j)
     GaussianSquare(duration=150, amp=0.2, sigma=8, width=140)
     ConstantPulse(duration=150, amp=0.1 + 0.4j)
     Drag(duration=25, amp=0.2 + 0.3j, sigma=7.8, beta=4)