示例#1
0
    def test_pauli_error_1q_unitary_from_pauli(self):
        """Test single-qubit pauli error as unitary qobj from Pauli obj"""
        paulis = [Pauli.from_label(s) for s in ['I', 'X', 'Y', 'Z']]
        probs = [0.4, 0.3, 0.2, 0.1]
        error = pauli_error(zip(paulis, probs), standard_gates=False)

        target_unitaries = [
            standard_gate_unitary('x'),
            standard_gate_unitary('y'),
            standard_gate_unitary('z')
        ]
        target_probs = probs.copy()
        target_identity_count = 0
        for j in range(len(paulis)):
            circ, p = error.error_term(j)
            name = circ[0]['name']
            self.assertIn(name, ('unitary', 'id'))
            self.assertEqual(circ[0]['qubits'], [0])
            self.remove_if_found(p, target_probs)
            if name == "unitary":
                self.remove_if_found(circ[0]['params'][0], target_unitaries)
            else:
                target_identity_count += 1
        self.assertEqual(target_probs, [], msg="Incorrect probabilities")
        self.assertEqual(target_unitaries, [], msg="Incorrect unitaries")
        self.assertEqual(target_identity_count, 1, msg="Incorrect identities")
示例#2
0
    def test_pauli_error_2q_gate_from_pauli(self):
        """Test two-qubit pauli error as gate qobj from Pauli obj"""
        paulis = [Pauli.from_label(s) for s in ['XZ', 'YX', 'ZY']]
        probs = [0.5, 0.3, 0.2]
        error = pauli_error(zip(paulis, probs), standard_gates=True)

        target_circs = [[{
            "name": "z",
            "qubits": [0]
        }, {
            "name": "x",
            "qubits": [1]
        }], [{
            "name": "x",
            "qubits": [0]
        }, {
            "name": "y",
            "qubits": [1]
        }], [{
            "name": "y",
            "qubits": [0]
        }, {
            "name": "z",
            "qubits": [1]
        }]]
        target_probs = probs.copy()

        for j in range(len(paulis)):
            circ, p = error.error_term(j)
            self.remove_if_found(p, target_probs)
            self.remove_if_found(circ, target_circs)
        self.assertEqual(target_probs, [], msg="Incorrect probabilities")
        self.assertEqual(target_circs, [], msg="Incorrect circuits")
    def test_pauli_error_2q_unitary_from_pauli(self):
        """Test two-qubit pauli error as unitary qobj from Pauli obj"""
        paulis = [Pauli.from_label(s) for s in ['XY', 'YZ', 'ZX']]
        probs = [0.5, 0.3, 0.2]
        error = pauli_error(zip(paulis, probs), standard_gates=False)

        X = standard_gate_unitary('x')
        Y = standard_gate_unitary('y')
        Z = standard_gate_unitary('z')
        target_unitaries = [np.kron(X, Y), np.kron(Y, Z), np.kron(Z, X)]
        target_probs = probs.copy()
        for j in range(len(paulis)):
            circ, p = error.error_term(j)
            name = circ[0]['name']
            self.assertIn(name, 'unitary')
            self.assertEqual(circ[0]['qubits'], [0, 1])
            self.remove_if_found(p, target_probs)
            self.remove_if_found(circ[0]['params'], target_unitaries)
        self.assertEqual(target_probs, [], msg="Incorrect probabilities")
        self.assertEqual(target_unitaries, [], msg="Incorrect unitaries")
def run_exp(num_reps=1):

    # choice of Hi basis
    H_basis = [Pauli.from_label(p) for p in ['II', 'ZI', 'IZ', 'ZZ', 'YY', 'XX']]

    num_qubits = 2
    evo_time = 1
    epsilon = 0.1
    L = 32    ## number of local hamiltonian terms

    ############################################################
    # Generate a random Hamiltonian H as the sum of m basis Hi operators
    ############################################################

    hs = np.random.random(L)
    indexes = np.random.randint(low=0, high=6, size=L)

    ## H in matrix form
    H_matrix = np.zeros((2 ** num_qubits, 2 ** num_qubits))

    ## H as a list of pauli operators (unweighted)
    H_list = []
    for i in range(L):
        H_matrix = H_matrix + hs[i] * H_basis[indexes[i]].to_matrix()
        H_list.append(H_basis[indexes[i]])
    print('matrix H: \n', H_matrix)

    # H as a pauli operator
    H_qubitOp = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=H_matrix))

    # Generate an initial state
    state_in = Custom(num_qubits, state='random')

    ############################################################
    # Ground truth and benchmarks
    ############################################################

    # Ground truth
    state_in_vec = state_in.construct_circuit('vector')
    groundtruth = expm(-1.j * H_matrix * evo_time) @ state_in_vec
    print('The directly computed groundtruth evolution result state is')
    print('{}\n.'.format(groundtruth))

    # Build circuit using Qiskit's evolve algorithm, which based on Trotter-Suzuki.
    quantum_registers = QuantumRegister(num_qubits)
    circuit = state_in.construct_circuit('circuit', quantum_registers)
    circuit += H_qubitOp.evolve(
        None, evo_time, num_time_slices=10,
        quantum_registers=quantum_registers,
        expansion_mode='suzuki',
        expansion_order=1
    )

    # Simulate Trotter-Suzuki circuit and print it
    backend = BasicAer.get_backend('statevector_simulator')
    job = q_execute(circuit, backend)
    circuit_execution_result = np.asarray(job.result().get_statevector(circuit))
    print('The simulated (suzuki) evolution result state is')
    print('{}\n'.format(circuit_execution_result))

    # The difference between the ground truth and the simulated state
    # measured by "Fidelity"
    fidelity_suzuki = state_fidelity(groundtruth, circuit_execution_result)
    print('Fidelity between the groundtruth and the circuit result states is {}.'.format(fidelity_suzuki))
    print('\n')

    ############################################################
    # Our qdrift implementation
    ############################################################

    quantum_registers = QuantumRegister(num_qubits)
    circuit = state_in.construct_circuit('circuit', quantum_registers)

    # Contruct the circuit which implements qdrift
    circuit = time_evolve_qubits(quantum_registers, circuit, num_qubits, H_list, hs, evo_time, epsilon, num_reps)

    # Simulate circuit and print it
    backend = BasicAer.get_backend('statevector_simulator')
    job = q_execute(circuit, backend)
    circuit_execution_result = np.asarray(job.result().get_statevector(circuit))
    print('The simulated (qdrift) evolution result state is\n{}.'.format(circuit_execution_result))
    print('\n')

    # Measure the fidelity
    fidelity_qdrift = state_fidelity(groundtruth, circuit_execution_result)
    print('Fidelity between the groundtruth and the circuit result states is {}.'.format(fidelity_qdrift))
    print('\n')

    print('benchmark, suzuki:', fidelity_suzuki)
    print('qdrift:', fidelity_qdrift)
    return fidelity_qdrift, fidelity_suzuki