示例#1
0
    def test_paper_example(self):
        """Test synthesis of a diagonal operator from the paper.

        The diagonal operator in Example 4.2
            U|x> = e^(2.pi.i.f(x))|x>,
        where
            f(x) = 1/8*(x1^x2 + x0 + x0^x3 + x0^x1^x2 + x0^x1^x3 + x0^x1)

        The algorithm should take the following matrix as an input:
        S = [[0, 1, 1, 1, 1, 1],
             [1, 0, 0, 1, 1, 1],
             [1, 0, 0, 1, 0, 0],
             [0, 0, 1, 0, 1, 0]]

        and only T gates as phase rotations,

        And should return the following circuit (or an equivalent one):
                ┌───┐┌───┐     ┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐     ┌───┐┌───┐
        q_0: |0>┤ T ├┤ X ├─────┤ T ├┤ X ├┤ X ├┤ T ├┤ X ├┤ T ├┤ X ├┤ T ├─────┤ X ├┤ X ├
                ├───┤└─┬─┘┌───┐└───┘└─┬─┘└─┬─┘└───┘└─┬─┘└───┘└─┬─┘└───┘┌───┐└─┬─┘└─┬─┘
        q_1: |0>┤ X ├──┼──┤ T ├───────■────┼─────────┼─────────┼───────┤ X ├──■────┼──
                └─┬─┘  │  └───┘            │         │         │       └─┬─┘       │
        q_2: |0>──■────┼───────────────────┼─────────■─────────┼─────────■─────────┼──
                       │                   │                   │                   │
        q_3: |0>───────■───────────────────■───────────────────■───────────────────■──
        """
        cnots = [[0, 1, 1, 1, 1, 1],
                 [1, 0, 0, 1, 1, 1],
                 [1, 0, 0, 1, 0, 0],
                 [0, 0, 1, 0, 1, 0]]
        angles = ['t'] * 6
        c_gray = graysynth(cnots, angles)
        unitary_gray = UnitaryGate(Operator(c_gray))

        # Create the circuit displayed above:
        q = QuantumRegister(4, 'q')
        c_compare = QuantumCircuit(q)
        c_compare.t(q[0])
        c_compare.cx(q[2], q[1])
        c_compare.cx(q[3], q[0])
        c_compare.t(q[0])
        c_compare.t(q[1])
        c_compare.cx(q[1], q[0])
        c_compare.cx(q[3], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[2], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[3], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[2], q[1])
        c_compare.cx(q[1], q[0])
        c_compare.cx(q[3], q[0])
        unitary_compare = UnitaryGate(Operator(c_compare))

        # Check if the two circuits are equivalent
        self.assertEqual(unitary_gray, unitary_compare)
示例#2
0
    def test_ccz(self):
        """Test synthesis of the doubly-controlled Z gate.

        The diagonal operator in Example 4.3
            U|x> = e^(2.pi.i.f(x))|x>,
        where
            f(x) = 1/8*(x0 + x1 + x2 - x0^x1 - x0^x2 - x1^x2 + x0^x1^x2)

        The algorithm should take the following matrix as an input:
        S = [[1, 0, 0, 1, 1, 0, 1],
             [0, 1, 0, 1, 0, 1, 1],
             [0, 0, 1, 0, 1, 1, 1]]

        and only T and T* gates as phase rotations,

        And should return the following circuit (or an equivalent one):
                ┌───┐
        q_0: |0>┤ T ├───────■──────────────■───────────────────■──────────────■──
                └───┘┌───┐┌─┴─┐┌───┐       │                   │            ┌─┴─┐
        q_1: |0>─────┤ T ├┤ X ├┤ T*├───────┼─────────■─────────┼─────────■──┤ X ├
                     └───┘└───┘└───┘┌───┐┌─┴─┐┌───┐┌─┴─┐┌───┐┌─┴─┐┌───┐┌─┴─┐└───┘
        q_2: |0>────────────────────┤ T ├┤ X ├┤ T*├┤ X ├┤ T*├┤ X ├┤ T ├┤ X ├─────
                                    └───┘└───┘└───┘└───┘└───┘└───┘└───┘└───┘
        """
        cnots = [[1, 0, 0, 1, 1, 0, 1],
                 [0, 1, 0, 1, 0, 1, 1],
                 [0, 0, 1, 0, 1, 1, 1]]
        angles = ['t', 't', 't', 'tdg', 'tdg', 'tdg', 't']
        c_gray = graysynth(cnots, angles)
        unitary_gray = UnitaryGate(Operator(c_gray))

        # Create the circuit displayed above:
        q = QuantumRegister(3, 'q')
        c_compare = QuantumCircuit(q)
        c_compare.t(q[0])
        c_compare.t(q[1])
        c_compare.cx(q[0], q[1])
        c_compare.tdg(q[1])
        c_compare.t(q[2])
        c_compare.cx(q[0], q[2])
        c_compare.tdg(q[2])
        c_compare.cx(q[1], q[2])
        c_compare.tdg(q[2])
        c_compare.cx(q[0], q[2])
        c_compare.t(q[2])
        c_compare.cx(q[1], q[2])
        c_compare.cx(q[0], q[1])
        unitary_compare = UnitaryGate(Operator(c_compare))

        # Check if the two circuits are equivalent
        self.assertEqual(unitary_gray, unitary_compare)
    def test_gray_synth(self):
        """Test synthesis of a small parity network via gray_synth.

        The algorithm should take the following matrix as an input:
        S =
        [[0, 1, 1, 0, 1, 1],
         [0, 1, 1, 0, 1, 0],
         [0, 0, 0, 1, 1, 0],
         [1, 0, 0, 1, 1, 1],
         [0, 1, 0, 0, 1, 0],
         [0, 1, 0, 0, 1, 0]]

        Along with some rotation angles:
        ['s', 't', 'z', 's', 't', 't'])

        which together specify the Fourier expansion in the sum-over-paths representation
        of a quantum circuit.

        And should return the following circuit (or an equivalent one):
                          ┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐┌───┐
        q_0: |0>──────────┤ X ├┤ X ├┤ T ├┤ X ├┤ X ├┤ X ├┤ X ├┤ T ├┤ X ├┤ T ├┤ X ├┤ X ├┤ Z ├┤ X ├
                          └─┬─┘└─┬─┘└───┘└─┬─┘└─┬─┘└─┬─┘└─┬─┘└───┘└─┬─┘└───┘└─┬─┘└─┬─┘└───┘└─┬─┘
        q_1: |0>────────────┼────┼─────────■────┼────┼────┼─────────┼─────────┼────┼─────────■──
                            │    │              │    │    │         │         │    │
        q_2: |0>───────■────■────┼──────────────■────┼────┼─────────┼────■────┼────┼────────────
                ┌───┐┌─┴─┐┌───┐  │                   │    │         │  ┌─┴─┐  │    │
        q_3: |0>┤ S ├┤ X ├┤ S ├──■───────────────────┼────┼─────────■──┤ X ├──┼────┼────────────
                └───┘└───┘└───┘                      │    │            └───┘  │    │
        q_4: |0>─────────────────────────────────────■────┼───────────────────■────┼────────────
                                                          │                        │
        q_5: |0>──────────────────────────────────────────■────────────────────────■────────────

        """
        cnots = [
            [0, 1, 1, 0, 1, 1],
            [0, 1, 1, 0, 1, 0],
            [0, 0, 0, 1, 1, 0],
            [1, 0, 0, 1, 1, 1],
            [0, 1, 0, 0, 1, 0],
            [0, 1, 0, 0, 1, 0],
        ]
        angles = ["s", "t", "z", "s", "t", "t"]
        c_gray = graysynth(cnots, angles)
        unitary_gray = UnitaryGate(Operator(c_gray))

        # Create the circuit displayed above:
        q = QuantumRegister(6, "q")
        c_compare = QuantumCircuit(q)
        c_compare.s(q[3])
        c_compare.cx(q[2], q[3])
        c_compare.s(q[3])
        c_compare.cx(q[2], q[0])
        c_compare.cx(q[3], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[1], q[0])
        c_compare.cx(q[2], q[0])
        c_compare.cx(q[4], q[0])
        c_compare.cx(q[5], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[3], q[0])
        c_compare.t(q[0])
        c_compare.cx(q[2], q[3])
        c_compare.cx(q[4], q[0])
        c_compare.cx(q[5], q[0])
        c_compare.z(q[0])
        c_compare.cx(q[1], q[0])
        unitary_compare = UnitaryGate(Operator(c_compare))

        # Check if the two circuits are equivalent
        self.assertEqual(unitary_gray, unitary_compare)