def setUp(self): cfg_mgr = ConfigurationManager() hdf5_cfg = OrderedDict([ ('hdf5_input', 'test/test_driver_hdf5.hdf5') ]) section = {'properties': hdf5_cfg} driver = cfg_mgr.get_driver_instance('HDF5') self.qmolecule = driver.run(section) core = get_chemistry_operator_instance('hamiltonian') hamiltonian_cfg = OrderedDict([ ('name', 'hamiltonian'), ('transformation', 'full'), ('qubit_mapping', 'parity'), ('two_qubit_reduction', True), ('freeze_core', False), ('orbital_reduction', []) ]) core.init_params(hamiltonian_cfg) self.algo_input = core.run(self.qmolecule) self.reference_energy = -1.857275027031588
def test_qpe(self, distance): self.algorithm = 'QPE' self.log.debug( 'Testing End-to-End with QPE on H2 with interatomic distance {}.'. format(distance)) cfg_mgr = ConfigurationManager() pyscf_cfg = OrderedDict([('atom', 'H .0 .0 .0; H .0 .0 {}'.format(distance)), ('unit', 'Angstrom'), ('charge', 0), ('spin', 0), ('basis', 'sto3g')]) section = {} section['properties'] = pyscf_cfg driver = cfg_mgr.get_driver_instance('PYSCF') self.molecule = driver.run(section) ferOp = FermionicOperator(h1=self.molecule._one_body_integrals, h2=self.molecule._two_body_integrals) self.qubitOp = ferOp.mapping( map_type='PARITY', threshold=1e-10).two_qubit_reduced_operator(2) exact_eigensolver = get_algorithm_instance('ExactEigensolver') exact_eigensolver.init_args(self.qubitOp, k=1) results = exact_eigensolver.run() self.reference_energy = results['energy'] self.log.debug('The exact ground state energy is: {}'.format( results['energy'])) num_particles = self.molecule._num_alpha + self.molecule._num_beta two_qubit_reduction = True num_orbitals = self.qubitOp.num_qubits + (2 if two_qubit_reduction else 0) qubit_mapping = 'parity' num_time_slices = 50 n_ancillae = 9 qpe = get_algorithm_instance('QPE') qpe.setup_quantum_backend(backend='local_qasm_simulator', shots=100) state_in = get_initial_state_instance('HartreeFock') state_in.init_args(self.qubitOp.num_qubits, num_orbitals, qubit_mapping, two_qubit_reduction, num_particles) iqft = get_iqft_instance('STANDARD') iqft.init_args(n_ancillae) qpe.init_args(self.qubitOp, state_in, iqft, num_time_slices, n_ancillae, paulis_grouping='random', expansion_mode='suzuki', expansion_order=2, use_basis_gates=True) result = qpe.run() self.log.debug('measurement results: {}'.format( result['measurements'])) self.log.debug('top result str label: {}'.format( result['top_measurement_label'])) self.log.debug('top result in decimal: {}'.format( result['top_measurement_decimal'])) self.log.debug('stretch: {}'.format( result['stretch'])) self.log.debug('translation: {}'.format( result['translation'])) self.log.debug('final energy from QPE: {}'.format(result['energy'])) self.log.debug('reference energy: {}'.format( self.reference_energy)) self.log.debug('ref energy (transformed): {}'.format( (self.reference_energy + result['translation']) * result['stretch'])) self.log.debug('ref binary str label: {}'.format( decimal_to_binary((self.reference_energy + result['translation']) * result['stretch'], max_num_digits=n_ancillae + 3, fractional_part_only=True))) np.testing.assert_approx_equal(result['energy'], self.reference_energy, significant=2)
class ACQUAChemistry(object): """Main entry point.""" KEY_HDF5_OUTPUT = 'hdf5_output' _DRIVER_RUN_TO_HDF5 = 1 _DRIVER_RUN_TO_ALGO_INPUT = 2 def __init__(self): """Create an ACQUAChemistry object.""" self._configuration_mgr = ConfigurationManager() self._parser = None self._core = None def get_effective_logging_level(self): """ Returns the logging level being used by ACQUA Chemistry """ levels = get_logger_levels_for_names( ['qiskit_acqua_chemistry', 'qiskit_acqua']) return levels[0] def set_logging(self, level=logging.INFO): """Sets logging output of the logging messages. Sets the output of logging messages (above level `level`) by configuring the logger accordingly. Disables logging if set to logging.NOTSET Params: level (int): minimum severity of the messages that are displayed. """ logging_config = build_logging_config( ['qiskit_acqua_chemistry', 'qiskit_acqua'], level) preferences = Preferences() preferences.set_logging_config(logging_config) preferences.save() set_logger_config(logging_config) def run(self, input, output=None): if input is None: raise ACQUAChemistryError("Missing input.") self._parser = InputParser(input) self._parser.parse() driver_return = self._run_driver_from_parser(self._parser, False) if driver_return[0] == ACQUAChemistry._DRIVER_RUN_TO_HDF5: logger.info('No further process.') return {'printable': [driver_return[1]]} data = run_algorithm(driver_return[1], driver_return[2], True) if not isinstance(data, dict): raise ACQUAChemistryError( "Algorithm run result should be a dictionary") if logger.isEnabledFor(logging.DEBUG): logger.debug('Algorithm returned: {}'.format( json.dumps(data, indent=4))) convert_json_to_dict(data) lines, result = self._format_result(data) logger.info('Processing complete. Final result available') result['printable'] = lines if output is not None: with open(output, 'w') as f: for line in lines: print(line, file=f) return result def save_input(self, input_file): """Save the input of a run to a file. Params: input_file (string): file path """ if self._parser is None: raise ACQUAChemistryError("Missing input information.") self._parser.save_to_file(input_file) def run_drive_to_jsonfile(self, input, jsonfile): if jsonfile is None: raise ACQUAChemistryError("Missing json file") data = self._run_drive(input, True) if data is None: logger.info('No data to save. No further process.') return logger.debug('Result: {}'.format( json.dumps(data, sort_keys=True, indent=4))) with open(jsonfile, 'w') as fp: json.dump(data, fp, sort_keys=True, indent=4) print("Algorithm input file saved: '{}'".format(jsonfile)) def run_algorithm_from_jsonfile(self, jsonfile, output=None): with open(jsonfile) as json_file: return self.run_algorithm_from_json(json.load(json_file), output) def run_algorithm_from_json(self, params, output=None): ret = run_algorithm(params, None, True) if not isinstance(ret, dict): raise ACQUAChemistryError( "Algorithm run result should be a dictionary") logger.debug('Algorithm returned: {}'.format(json.dumps(ret, indent=4))) convert_json_to_dict(ret) print('Output:') if isinstance(ret, dict): for k, v in ret.items(): print("'{}': {}".format(k, v)) else: print(ret) return ret def _format_result(self, data): lines, result = self._core.process_algorithm_result(data) return lines, result def run_drive(self, input): return self._run_drive(input, False) def _run_drive(self, input, save_json_algo_file): if input is None: raise ACQUAChemistryError("Missing input.") self._parser = InputParser(input) self._parser.parse() driver_return = self._run_driver_from_parser(self._parser, save_json_algo_file) driver_return[1]['input'] = driver_return[2].to_params() driver_return[1]['input']['name'] = driver_return[2].configuration[ 'name'] return driver_return[1] def _run_driver_from_parser(self, p, save_json_algo_file): if p is None: raise ACQUAChemistryError("Missing parser") p.validate_merge_defaults() #logger.debug('ALgorithm Input Schema: {}'.format(json.dumps(p.to_JSON(), sort_keys=True, indent=4))) experiment_name = "-- no &NAME section found --" if InputParser.NAME in p.get_section_names(): name_sect = p.get_section(InputParser.NAME) if 'data' in name_sect: experiment_name = name_sect['data'] logger.info('Running chemistry problem from input file: {}'.format( p.get_filename())) logger.info('Experiment description: {}'.format( experiment_name.rstrip())) driver_name = p.get_section_property(InputParser.DRIVER, InputParser.NAME) if driver_name is None: raise ACQUAChemistryError( 'Property "{0}" missing in section "{1}"'.format( InputParser.NAME, InputParser.DRIVER)) hdf5_file = p.get_section_property(InputParser.DRIVER, ACQUAChemistry.KEY_HDF5_OUTPUT) section = p.get_section(driver_name) if 'data' not in section: raise ACQUAChemistryError( 'Property "data" missing in section "{0}"'.format(driver_name)) if driver_name not in self._configuration_mgr.module_names: raise ACQUAChemistryError( 'Driver "{0}" missing in local drivers'.format(driver_name)) work_path = None input_file = p.get_filename() if input_file is not None: work_path = os.path.dirname(os.path.realpath(input_file)) driver = self._configuration_mgr.get_driver_instance(driver_name) driver.work_path = work_path molecule = driver.run(section) if work_path is not None and hdf5_file is not None and not os.path.isabs( hdf5_file): hdf5_file = os.path.abspath(os.path.join(work_path, hdf5_file)) molecule.log() if hdf5_file is not None: molecule._origin_driver_name = driver_name molecule._origin_driver_config = section['data'] molecule.save(hdf5_file) text = "HDF5 file saved '{}'".format(hdf5_file) logger.info(text) if not save_json_algo_file: logger.info('Run ended with hdf5 file saved.') return ACQUAChemistry._DRIVER_RUN_TO_HDF5, text # Run the Hamiltonian to process the QMolecule and get an input for algorithms self._core = get_chemistry_operator_instance( p.get_section_property(InputParser.OPERATOR, InputParser.NAME)) self._core.init_params(p.get_section_properties(InputParser.OPERATOR)) input_object = self._core.run(molecule) logger.debug('Core computed substitution variables {}'.format( self._core.molecule_info)) result = p.process_substitutions(self._core.molecule_info) logger.debug('Substitutions {}'.format(result)) params = {} for section_name, section in p.get_sections().items(): if section_name == InputParser.NAME or \ section_name == InputParser.DRIVER or \ section_name == driver_name.lower() or \ section_name == InputParser.OPERATOR or \ 'properties' not in section: continue params[section_name] = copy.deepcopy(section['properties']) if InputParser.PROBLEM == section_name and \ InputParser.ENABLE_SUBSTITUTIONS in params[section_name]: del params[section_name][InputParser.ENABLE_SUBSTITUTIONS] return ACQUAChemistry._DRIVER_RUN_TO_ALGO_INPUT, params, input_object