def test_usage_in_vqc(self):
        """Test using the circuit the a single VQC iteration works."""

        # specify quantum instance and random seed
        random_seed = 12345
        quantum_instance = QuantumInstance(
            Aer.get_backend('statevector_simulator'),
            seed_simulator=random_seed,
            seed_transpiler=random_seed)
        np.random.seed(random_seed)

        # construct data
        num_samples = 10
        num_inputs = 4
        X = np.random.rand(num_samples, num_inputs)  # pylint: disable=invalid-name
        y = 1.0 * (np.sum(X, axis=1) <= 2)
        while len(np.unique(y, axis=0)) == 1:
            y = 1.0 * (np.sum(X, axis=1) <= 2)
        y = np.array([y, 1 - y]).transpose()

        feature_map = RawFeatureVector(feature_dimension=num_inputs)

        vqc = VQC(feature_map=feature_map,
                  ansatz=RealAmplitudes(feature_map.num_qubits, reps=1),
                  optimizer=COBYLA(maxiter=10),
                  quantum_instance=quantum_instance)

        vqc.fit(X, y)
        score = vqc.score(X, y)
        self.assertGreater(score, 0.5)
    def test_warm_start(self, config):
        """Test VQC with warm_start=True."""
        opt, q_i = config

        if q_i == "statevector":
            quantum_instance = self.sv_quantum_instance
        elif q_i == "qasm":
            quantum_instance = self.qasm_quantum_instance
        else:
            quantum_instance = None

        if opt == "bfgs":
            optimizer = L_BFGS_B(maxiter=5)
        elif opt == "cobyla":
            optimizer = COBYLA(maxiter=25)
        else:
            optimizer = None

        num_inputs = 2
        feature_map = ZZFeatureMap(num_inputs)
        ansatz = RealAmplitudes(num_inputs, reps=1)

        # Construct the data.
        num_samples = 10
        # pylint: disable=invalid-name
        X = algorithm_globals.random.random((num_samples, num_inputs))
        y = 1.0 * (np.sum(X, axis=1) <= 1)
        while len(np.unique(y)) == 1:
            X = algorithm_globals.random.random((num_samples, num_inputs))
            y = 1.0 * (np.sum(X, axis=1) <= 1)
        y = np.array([y, 1 - y
                      ]).transpose()  # VQC requires one-hot encoded input.

        # Initialize the VQC.
        classifier = VQC(
            feature_map=feature_map,
            ansatz=ansatz,
            optimizer=optimizer,
            warm_start=True,
            quantum_instance=quantum_instance,
        )

        # Fit the VQC to the first half of the data.
        num_start = num_samples // 2
        classifier.fit(X[:num_start, :], y[:num_start])
        first_fit_final_point = classifier._fit_result.x

        # Fit the VQC to the second half of the data with a warm start.
        classifier.fit(X[num_start:, :], y[num_start:])
        second_fit_initial_point = classifier._initial_point

        # Check the final optimization point from the first fit was used to start the second fit.
        np.testing.assert_allclose(first_fit_final_point,
                                   second_fit_initial_point)

        # Check score.
        score = classifier.score(X, y)
        self.assertGreater(score, 0.5)
    def test_vqc(self, config):
        """Test VQC."""

        opt, q_i = config

        if q_i == "statevector":
            quantum_instance = self.sv_quantum_instance
        elif q_i == "qasm":
            quantum_instance = self.qasm_quantum_instance
        else:
            quantum_instance = None

        if opt == "bfgs":
            optimizer = L_BFGS_B(maxiter=5)
        elif opt == "cobyla":
            optimizer = COBYLA(maxiter=25)
        else:
            optimizer = None

        num_inputs = 2
        feature_map = ZZFeatureMap(num_inputs)
        ansatz = RealAmplitudes(num_inputs, reps=1)
        # fix the initial point
        initial_point = np.array([0.5] * ansatz.num_parameters)

        # construct classifier - note: CrossEntropy requires eval_probabilities=True!
        classifier = VQC(
            feature_map=feature_map,
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=quantum_instance,
            initial_point=initial_point,
        )

        # construct data
        num_samples = 5
        # pylint: disable=invalid-name
        X = algorithm_globals.random.random((num_samples, num_inputs))
        y = 1.0 * (np.sum(X, axis=1) <= 1)
        while len(np.unique(y)) == 1:
            X = algorithm_globals.random.random((num_samples, num_inputs))
            y = 1.0 * (np.sum(X, axis=1) <= 1)
        y = np.array([y,
                      1 - y]).transpose()  # VQC requires one-hot encoded input

        # fit to data
        classifier.fit(X, y)

        # score
        score = classifier.score(X, y)
        self.assertGreater(score, 0.5)
    def test_readme_sample(self):
        """ readme sample test """

        # pylint: disable=import-outside-toplevel,redefined-builtin
        def print(*args):
            """ overloads print to log values """
            if args:
                self.log.debug(args[0], *args[1:])

        # --- Exact copy of sample code ----------------------------------------

        from qiskit import BasicAer
        from qiskit.utils import QuantumInstance, algorithm_globals
        from qiskit.algorithms.optimizers import COBYLA
        from qiskit.circuit.library import TwoLocal
        from qiskit_machine_learning.algorithms import VQC
        from qiskit_machine_learning.datasets import wine
        from qiskit_machine_learning.circuit.library import RawFeatureVector

        seed = 1376
        algorithm_globals.random_seed = seed

        # Use Wine data set for training and test data
        feature_dim = 4  # dimension of each data point
        training_size = 12
        test_size = 4

        # training features, training labels, test features, test labels as np.array,
        # one hot encoding for labels
        training_features, training_labels, test_features, test_labels = \
            wine(training_size=training_size, test_size=test_size, n=feature_dim)

        feature_map = RawFeatureVector(feature_dimension=feature_dim)
        ansatz = TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3)
        vqc = VQC(feature_map=feature_map,
                  ansatz=ansatz,
                  optimizer=COBYLA(maxiter=100),
                  quantum_instance=QuantumInstance(
                      BasicAer.get_backend('statevector_simulator'),
                      shots=1024,
                      seed_simulator=seed,
                      seed_transpiler=seed))
        vqc.fit(training_features, training_labels)

        score = vqc.score(test_features, test_labels)
        print('Testing accuracy: {:0.2f}'.format(score))

        # ----------------------------------------------------------------------

        self.assertGreater(score, 0.8)
    def _test_sparse_arrays(self, quantum_instance: QuantumInstance,
                            loss: str):
        classifier = VQC(num_qubits=2,
                         loss=loss,
                         quantum_instance=quantum_instance)
        features = scipy.sparse.csr_matrix([[0, 0], [1, 1]])
        labels = scipy.sparse.csr_matrix([[1, 0], [0, 1]])

        # fit to data
        classifier.fit(features, labels)

        # score
        score = classifier.score(features, labels)
        self.assertGreater(score, 0.5)
    def test_vqc(self, config):
        """ Test VQC."""

        opt, q_i = config

        if q_i == 'statevector':
            quantum_instance = self.sv_quantum_instance
        else:
            quantum_instance = self.qasm_quantum_instance

        if opt == 'bfgs':
            optimizer = L_BFGS_B(maxiter=5)
        else:
            optimizer = COBYLA(maxiter=25)

        num_inputs = 2
        feature_map = ZZFeatureMap(num_inputs)
        ansatz = RealAmplitudes(num_inputs, reps=1)

        # construct classifier - note: CrossEntropy requires eval_probabilities=True!
        classifier = VQC(feature_map=feature_map,
                         ansatz=ansatz,
                         optimizer=optimizer,
                         quantum_instance=quantum_instance)

        # construct data
        num_samples = 5
        X = np.random.rand(num_samples, num_inputs)  # pylint: disable=invalid-name
        y = 1.0 * (np.sum(X, axis=1) <= 1)
        while len(np.unique(y)) == 1:
            X = np.random.rand(num_samples, num_inputs)  # pylint: disable=invalid-name
            y = 1.0 * (np.sum(X, axis=1) <= 1)
        y = np.array([y,
                      1 - y]).transpose()  # VQC requires one-hot encoded input

        # fit to data
        classifier.fit(X, y)

        # score
        score = classifier.score(X, y)
        self.assertGreater(score, 0.5)
    def test_default_parameters(self, config):
        """Test VQC instantiation with default parameters."""

        provide_num_qubits, provide_feature_map, provide_ansatz = config
        num_inputs = 2

        num_qubits, feature_map, ansatz = None, None, None

        if provide_num_qubits:
            num_qubits = num_inputs
        if provide_feature_map:
            feature_map = ZZFeatureMap(num_inputs)
        if provide_ansatz:
            ansatz = RealAmplitudes(num_inputs, reps=1)

        classifier = VQC(
            num_qubits=num_qubits,
            feature_map=feature_map,
            ansatz=ansatz,
            quantum_instance=self.qasm_quantum_instance,
        )

        # construct data
        num_samples = 5
        # pylint: disable=invalid-name
        X = algorithm_globals.random.random((num_samples, num_inputs))
        y = 1.0 * (np.sum(X, axis=1) <= 1)
        while len(np.unique(y)) == 1:
            X = algorithm_globals.random.random((num_samples, num_inputs))
            y = 1.0 * (np.sum(X, axis=1) <= 1)
        y = np.array([y,
                      1 - y]).transpose()  # VQC requires one-hot encoded input

        # fit to data
        classifier.fit(X, y)

        # score
        score = classifier.score(X, y)
        self.assertGreater(score, 0.5)
示例#8
0
    def test_usage_in_vqc(self):
        """Test using the circuit the a single VQC iteration works."""

        # specify quantum instance and random seed
        algorithm_globals.random_seed = 12345
        quantum_instance = QuantumInstance(
            Aer.get_backend("aer_simulator_statevector"),
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )

        # construct data
        num_samples = 10
        num_inputs = 4
        X = algorithm_globals.random.random(  # pylint: disable=invalid-name
            (num_samples, num_inputs))
        y = 1.0 * (np.sum(X, axis=1) <= 2)
        while len(np.unique(y, axis=0)) == 1:
            y = 1.0 * (np.sum(X, axis=1) <= 2)
        y = np.array([y, 1 - y]).transpose()

        feature_map = RawFeatureVector(feature_dimension=num_inputs)
        ansatz = RealAmplitudes(feature_map.num_qubits, reps=1)
        # classification may fail sometimes, so let's fix initial point
        initial_point = np.array([0.5] * ansatz.num_parameters)

        vqc = VQC(
            feature_map=feature_map,
            ansatz=ansatz,
            optimizer=COBYLA(maxiter=10),
            quantum_instance=quantum_instance,
            initial_point=initial_point,
        )

        vqc.fit(X, y)
        score = vqc.score(X, y)
        self.assertGreater(score, 0.5)
    def test_batches_with_incomplete_labels(self, config):
        """Test VQC when some batches do not include all possible labels."""
        opt, q_i = config

        if q_i == "statevector":
            quantum_instance = self.sv_quantum_instance
        elif q_i == "qasm":
            quantum_instance = self.qasm_quantum_instance
        else:
            quantum_instance = None

        if opt == "bfgs":
            optimizer = L_BFGS_B(maxiter=5)
        elif opt == "cobyla":
            optimizer = COBYLA(maxiter=25)
        else:
            optimizer = None

        num_inputs = 2
        feature_map = ZZFeatureMap(num_inputs)
        ansatz = RealAmplitudes(num_inputs, reps=1)

        # Construct the data.
        features = algorithm_globals.random.random((15, num_inputs))
        target = np.asarray([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2])
        num_classes = len(np.unique(target))

        # One-hot encode the target.
        target_onehot = np.zeros((target.size, int(target.max() + 1)))
        target_onehot[np.arange(target.size), target.astype(int)] = 1

        # Initialize the VQC.
        classifier = VQC(
            feature_map=feature_map,
            ansatz=ansatz,
            optimizer=optimizer,
            warm_start=True,
            quantum_instance=quantum_instance,
        )

        classifier._get_interpret = self.get_num_classes(
            classifier._get_interpret)

        # Fit the VQC to the first third of the data.
        classifier.fit(features[:5, :], target_onehot[:5])

        # Fit the VQC to the second third of the data with a warm start.
        classifier.fit(features[5:10, :], target_onehot[5:10])

        # Fit the VQC to the third third of the data with a warm start.
        classifier.fit(features[10:, :], target_onehot[10:])

        # Check all batches assume the correct number of classes
        self.assertTrue(
            (np.asarray(self.num_classes_by_batch) == num_classes).all())
from qiskit_machine_learning.datasets import ad_hoc_data
from qiskit_machine_learning.algorithms import VQC
from qiskit.circuit.library import ZZFeatureMap, RealAmplitudes
from qiskit.algorithms.optimizers import L_BFGS_B
from qiskit.providers.aer import QasmSimulator
X_train, y_train, X_test, y_test = ad_hoc_data(20, 10, 2, 0.1)
num_qubits = 2
vqc = VQC(feature_map=ZZFeatureMap(num_qubits),
          ansatz=RealAmplitudes(num_qubits, reps=1),
          loss='cross_entropy',
          optimizer=L_BFGS_B(),
          quantum_instance=QasmSimulator())

vqc.fit(X_train, y_train)
vqc.score(X_test, y_test)
    def test_multiclass(self, config):
        """Test multiclass VQC."""
        opt, q_i = config

        if q_i == "statevector":
            quantum_instance = self.sv_quantum_instance
        elif q_i == "qasm":
            quantum_instance = self.qasm_quantum_instance
        else:
            quantum_instance = None

        if opt == "bfgs":
            optimizer = L_BFGS_B(maxiter=5)
        elif opt == "cobyla":
            optimizer = COBYLA(maxiter=25)
        else:
            optimizer = None

        num_inputs = 2
        feature_map = ZZFeatureMap(num_inputs)
        ansatz = RealAmplitudes(num_inputs, reps=1)
        # fix the initial point
        initial_point = np.array([0.5] * ansatz.num_parameters)

        # construct classifier - note: CrossEntropy requires eval_probabilities=True!
        classifier = VQC(
            feature_map=feature_map,
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=quantum_instance,
            initial_point=initial_point,
        )

        # construct data
        num_samples = 5
        num_classes = 5
        # pylint: disable=invalid-name

        # We create a dataset that is random, but has some training signal, as follows:
        # First, we create a random feature matrix X, but sort it by the row-wise sum in ascending
        # order.
        X = algorithm_globals.random.random((num_samples, num_inputs))
        X = X[X.sum(1).argsort()]

        # Next we create an array which contains all class labels, multiple times if num_samples <
        # num_classes, and in ascending order (e.g. [0, 0, 1, 1, 2]). So now we have a dataset
        # where the row-sum of X is correlated with the class label (i.e. smaller row-sum is more
        # likely to belong to class 0, and big row-sum is more likely to belong to class >0)
        y_indices = (np.digitize(np.arange(0, 1, 1 / num_samples),
                                 np.arange(0, 1, 1 / num_classes)) - 1)

        # Third, we random shuffle both X and y_indices
        permutation = np.random.permutation(np.arange(num_samples))
        X = X[permutation]
        y_indices = y_indices[permutation]

        # Lastly we create a 1-hot label matrix y
        y = np.zeros((num_samples, num_classes))
        for e, index in enumerate(y_indices):
            y[e, index] = 1

        # fit to data
        classifier.fit(X, y)

        # score
        score = classifier.score(X, y)
        self.assertGreater(score, 1 / num_classes)