示例#1
0
    def test_init(self):
        """Test initialization."""
        hermitian_part = np.eye(2)
        antisymmetric_part = np.array([[0, 1], [-1, 0]])
        constant = 1.0
        zero = np.zeros((2, 2))

        quad_ham = QuadraticHamiltonian(hermitian_part, antisymmetric_part,
                                        constant)
        np.testing.assert_allclose(quad_ham.hermitian_part, hermitian_part)
        np.testing.assert_allclose(quad_ham.antisymmetric_part,
                                   antisymmetric_part)
        np.testing.assert_allclose(quad_ham.constant, constant)
        self.assertEqual(quad_ham.num_modes, 2)

        quad_ham = QuadraticHamiltonian(None, antisymmetric_part)
        np.testing.assert_allclose(quad_ham.hermitian_part, zero)
        self.assertEqual(quad_ham.num_modes, 2)

        quad_ham = QuadraticHamiltonian(hermitian_part)
        np.testing.assert_allclose(quad_ham.antisymmetric_part, zero)
        self.assertEqual(quad_ham.num_modes, 2)

        quad_ham = QuadraticHamiltonian(num_modes=2)
        np.testing.assert_allclose(quad_ham.hermitian_part, zero)
        np.testing.assert_allclose(quad_ham.antisymmetric_part, zero)
        self.assertEqual(quad_ham.num_modes, 2)

        with self.assertRaisesRegex(ValueError, "specified"):
            _ = QuadraticHamiltonian()
示例#2
0
    def test_diagonalizing_bogoliubov_transform_non_particle_number_conserving(self, n_orbitals):
        """Test diagonalizing Bogoliubov transform, non-particle-number-conserving case."""
        hermitian_part = random_hermitian(n_orbitals).data
        antisymmetric_part = _random_antisymmetric(n_orbitals)
        constant = np.random.uniform(-10, 10)
        quad_ham = QuadraticHamiltonian(hermitian_part, antisymmetric_part, constant=constant)
        (
            transformation_matrix,
            orbital_energies,
            transformed_constant,
        ) = quad_ham.diagonalizing_bogoliubov_transform()

        left = transformation_matrix[:, :n_orbitals]
        right = transformation_matrix[:, n_orbitals:]
        full_transformation_matrix = np.block([[left, right], [right.conj(), left.conj()]])
        eye = np.eye(n_orbitals, dtype=complex)
        majorana_basis = np.block([[eye, eye], [1j * eye, -1j * eye]]) / np.sqrt(2)
        basis_change = majorana_basis @ full_transformation_matrix @ majorana_basis.T.conj()
        majorana_matrix, majorana_constant = quad_ham.majorana_form()
        canonical = basis_change @ majorana_matrix @ basis_change.T

        zero = np.zeros((n_orbitals, n_orbitals))
        diagonal = np.diag(orbital_energies)
        expected = np.block([[zero, diagonal], [-diagonal, zero]])

        np.testing.assert_allclose(orbital_energies, np.sort(orbital_energies))
        np.testing.assert_allclose(canonical, expected, atol=1e-7)
        np.testing.assert_allclose(
            transformed_constant, majorana_constant - 0.5 * np.sum(orbital_energies)
        )
示例#3
0
    def test_diagonalizing_bogoliubov_transform(self):
        """Test diagonalizing Bogoliubov transform."""
        hermitian_part = np.array(
            [[0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 0.0]], dtype=complex)
        antisymmetric_part = np.array(
            [[0.0, 1.0j, 0.0], [-1.0j, 0.0, 1.0j], [0.0, -1.0j, 0.0]],
            dtype=complex)
        quad_ham = QuadraticHamiltonian(hermitian_part, antisymmetric_part)
        (
            transformation_matrix,
            orbital_energies,
            transformed_constant,
        ) = quad_ham.diagonalizing_bogoliubov_transform()

        # test that the transformation diagonalizes the Hamiltonian
        left = transformation_matrix[:, :3]
        right = transformation_matrix[:, 3:]
        full_transformation_matrix = np.block([[left, right],
                                               [right.conj(),
                                                left.conj()]])
        eye = np.eye(3, dtype=complex)
        majorana_basis = np.block([[eye, eye], [1j * eye, -1j * eye]
                                   ]) / np.sqrt(2)
        basis_change = majorana_basis @ full_transformation_matrix @ majorana_basis.T.conj(
        )
        majorana_matrix, majorana_constant = quad_ham.majorana_form()
        canonical = basis_change @ majorana_matrix @ basis_change.T

        zero = np.zeros((3, 3))
        diagonal = np.diag(orbital_energies)
        expected = np.block([[zero, diagonal], [-diagonal, zero]])

        np.testing.assert_allclose(orbital_energies, np.sort(orbital_energies))
        np.testing.assert_allclose(canonical, expected, atol=1e-7)
        np.testing.assert_allclose(
            transformed_constant,
            majorana_constant - 0.5 * np.sum(orbital_energies))

        # confirm eigenvalues match with Jordan-Wigner transformed Hamiltonian
        hamiltonian_jw = (QubitConverter(mapper=JordanWignerMapper()).convert(
            quad_ham.to_fermionic_op()).primitive.to_matrix())
        eigs, _ = np.linalg.eigh(hamiltonian_jw)
        expected_eigs = np.array([
            np.sum(orbital_energies[list(occupied_orbitals)]) +
            transformed_constant for occupied_orbitals in [(), (0, ), (
                1, ), (2, ), (0, 1), (0, 2), (1, 2), (0, 1, 2)]
        ])
        np.testing.assert_allclose(np.sort(eigs),
                                   np.sort(expected_eigs),
                                   atol=1e-7)
示例#4
0
    def test_diagonalizing_bogoliubov_transform_particle_number_conserving(self, n_orbitals):
        """Test diagonalizing Bogoliubov transform, particle-number-conserving case."""
        hermitian_part = random_hermitian(n_orbitals).data
        constant = np.random.uniform(-10, 10)
        quad_ham = QuadraticHamiltonian(hermitian_part, constant=constant)
        (
            transformation_matrix,
            orbital_energies,
            transformed_constant,
        ) = quad_ham.diagonalizing_bogoliubov_transform()
        diagonalized = transformation_matrix @ hermitian_part.T @ transformation_matrix.T.conj()

        np.testing.assert_allclose(orbital_energies, np.sort(orbital_energies))
        np.testing.assert_allclose(diagonalized, np.diag(orbital_energies), atol=1e-7)
        np.testing.assert_allclose(transformed_constant, constant)
示例#5
0
 def test_fermionic_op(self):
     """Test conversion to FermionicOp."""
     hermitian_part = np.array([[1, 2j], [-2j, 3]])
     antisymmetric_part = np.array([[0, 4j], [-4j, 0]])
     constant = 5.0
     quad_ham = QuadraticHamiltonian(hermitian_part, antisymmetric_part, constant)
     fermionic_op = quad_ham.to_fermionic_op()
     expected_terms = [
         ("NI", 1.0),
         ("IN", 3.0),
         ("+-", 2j),
         ("-+", 2j),
         ("++", 4j),
         ("--", 4j),
         ("II", 5.0),
     ]
     expected_op = FermionicOp(expected_terms)
     matrix = fermionic_op.to_matrix(sparse=False)
     expected_matrix = expected_op.to_matrix(sparse=False)
     np.testing.assert_allclose(matrix, expected_matrix)
示例#6
0
    def test_conserves_particle_number(self):
        """Test particle number conservation predicate."""
        hermitian_part = np.eye(2)
        antisymmetric_part = np.array([[0, 1], [-1, 0]])

        quad_ham = QuadraticHamiltonian(hermitian_part)
        assert quad_ham.conserves_particle_number()

        quad_ham = QuadraticHamiltonian(hermitian_part, antisymmetric_part)
        assert not quad_ham.conserves_particle_number()
示例#7
0
    def test_validate(self):
        """Test input validation."""
        mat = np.array([[1, 2], [3, 4]])
        _ = QuadraticHamiltonian(hermitian_part=mat, antisymmetric_part=None, validate=False)
        with self.assertRaisesRegex(ValueError, "Hermitian"):
            _ = QuadraticHamiltonian(hermitian_part=mat, antisymmetric_part=None)
        with self.assertRaisesRegex(ValueError, "Antisymmetric"):
            _ = QuadraticHamiltonian(hermitian_part=None, antisymmetric_part=mat)

        hermitian_part = np.array([[1, 2j], [-2j, 3]])
        antisymmetric_part = np.array([[0, 4, 0], [-4, 0, 4], [0, -4, 0]])
        with self.assertRaisesRegex(ValueError, "same shape"):
            _ = QuadraticHamiltonian(hermitian_part, antisymmetric_part)
        with self.assertRaisesRegex(ValueError, "num_modes"):
            _ = QuadraticHamiltonian(hermitian_part, num_modes=5)
        with self.assertRaisesRegex(ValueError, "num_modes"):
            _ = QuadraticHamiltonian(antisymmetric_part=antisymmetric_part, num_modes=5)