示例#1
0
    def test_second_q_ops_with_active_space(self):
        """Tests that the correct second quantized operator is created if an active space
        transformer is provided."""
        expected_num_of_sec_quant_ops = 6
        expected_fermionic_op_path = self.get_resource_path(
            "H2_631g_ferm_op_active_space",
            "second_q/problems/resources",
        )
        expected_fermionic_op = read_expected_file(expected_fermionic_op_path)
        driver = HDF5Driver(
            hdf5_input=self.get_resource_path("H2_631g.hdf5", "second_q/transformers")
        )
        trafo = ActiveSpaceTransformer(num_electrons=2, num_molecular_orbitals=2)

        electronic_structure_problem = ElectronicStructureProblem(driver, [trafo])
        electr_sec_quant_op, second_quantized_ops = electronic_structure_problem.second_q_ops()

        with self.subTest("Check that the correct properties aren't None"):
            # properties should never be None
            self.assertIsNotNone(electronic_structure_problem.grouped_property)
            self.assertIsNotNone(electronic_structure_problem.grouped_property_transformed)

        with self.subTest("Check expected length of the list of second quantized operators."):
            assert len(second_quantized_ops) == expected_num_of_sec_quant_ops
        with self.subTest("Check types in the list of second quantized operators."):
            for second_quantized_op in second_quantized_ops.values():
                assert isinstance(second_quantized_op, SecondQuantizedOp)
        with self.subTest("Check components of electronic second quantized operator."):
            assert all(
                s[0] == t[0] and np.isclose(s[1], t[1])
                for s, t in zip(expected_fermionic_op, electr_sec_quant_op.to_list())
            )
示例#2
0
    def test_mp2_initial_point_with_real_molecules(
        self,
        atom,
    ):
        """Test MP2InitialPoint with real molecules."""
        from pyscf import gto  # pylint: disable=import-error

        # Compute the PySCF result
        pyscf_mol = gto.M(atom=atom, basis="sto3g", verbose=0)
        pyscf_mp = pyscf_mol.MP2().run(verbose=0)

        driver = PySCFDriver(atom=atom, basis="sto3g")

        problem = ElectronicStructureProblem(driver)
        problem.second_q_ops()
        grouped_property = problem.grouped_property_transformed

        particle_number = grouped_property.get_property(ParticleNumber)
        num_particles = (particle_number.num_alpha, particle_number.num_beta)
        num_spin_orbitals = particle_number.num_spin_orbitals

        qubit_converter = QubitConverter(mapper=JordanWignerMapper())

        initial_state = HartreeFock(
            num_spin_orbitals=num_spin_orbitals,
            num_particles=num_particles,
            qubit_converter=qubit_converter,
        )
        ansatz = UCC(
            num_spin_orbitals=num_spin_orbitals,
            num_particles=num_particles,
            excitations="sd",
            qubit_converter=qubit_converter,
            initial_state=initial_state,
        )

        mp2_initial_point = MP2InitialPoint()
        mp2_initial_point.grouped_property = grouped_property
        mp2_initial_point.ansatz = ansatz

        with self.subTest("Test the MP2 energy correction."):
            np.testing.assert_almost_equal(mp2_initial_point.energy_correction,
                                           pyscf_mp.e_corr,
                                           decimal=4)

        with self.subTest("Test the total MP2 energy."):
            np.testing.assert_almost_equal(mp2_initial_point.total_energy,
                                           pyscf_mp.e_tot,
                                           decimal=4)

        with self.subTest("Test the T2 amplitudes."):
            mp2_initial_point.compute()
            np.testing.assert_array_almost_equal(
                mp2_initial_point.t2_amplitudes, pyscf_mp.t2, decimal=4)
    def setUp(self):
        super().setUp()
        algorithm_globals.random_seed = 8
        self.driver = PySCFDriver(
            atom="H .0 .0 .0; H .0 .0 0.75",
            unit=UnitsType.ANGSTROM,
            charge=0,
            spin=0,
            basis="sto3g",
        )

        self.reference_energies = [
            -1.8427016,
            -1.8427016 + 0.5943372,
            -1.8427016 + 0.95788352,
            -1.8427016 + 1.5969296,
        ]
        self.qubit_converter = QubitConverter(JordanWignerMapper())
        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        solver = NumPyEigensolver()
        self.ref = solver
        self.quantum_instance = QuantumInstance(
            BasicAer.get_backend("statevector_simulator"),
            seed_transpiler=90,
            seed_simulator=12,
        )
    def setUp(self):
        super().setUp()
        self.driver = HDF5Driver(
            self.get_resource_path("test_driver_hdf5.hdf5",
                                   "second_q/drivers/hdf5d"))
        self.seed = 56
        algorithm_globals.random_seed = self.seed

        self.reference_energy = -1.1373060356951838

        self.qubit_converter = QubitConverter(JordanWignerMapper())
        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        self.num_spin_orbitals = 4
        self.num_particles = (1, 1)
示例#5
0
 def test_sector_locator_h2o(self):
     """Test sector locator."""
     driver = PySCFDriver(
         atom="O 0.0000 0.0000 0.1173; H 0.0000 0.07572 -0.4692;H 0.0000 -0.07572 -0.4692",
         basis="sto-3g",
     )
     es_problem = ElectronicStructureProblem(driver)
     qubit_conv = QubitConverter(
         mapper=ParityMapper(), two_qubit_reduction=True, z2symmetry_reduction="auto"
     )
     main_op, _ = es_problem.second_q_ops()
     qubit_conv.convert(
         main_op,
         num_particles=es_problem.num_particles,
         sector_locator=es_problem.symmetry_sector_locator,
     )
     self.assertListEqual(qubit_conv.z2symmetries.tapering_values, [1, -1])
    def setUp(self):
        super().setUp()
        self.driver = PySCFDriver(atom="H 0 0 0.735; H 0 0 0", basis="631g")

        self.qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True)

        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver, [FreezeCoreTransformer()]
        )

        self.num_spin_orbitals = 8
        self.num_particles = (1, 1)

        # because we create the initial state and ansatzes early, we need to ensure the qubit
        # converter already ran such that convert_match works as expected
        main_op, _ = self.electronic_structure_problem.second_q_ops()
        _ = self.qubit_converter.convert(
            main_op,
            self.num_particles,
        )

        self.reference_energy_pUCCD = -1.1434447924298028
        self.reference_energy_UCCD0 = -1.1476045878481704
        self.reference_energy_UCCD0full = -1.1515491334334347
        # reference energy of UCCSD/VQE with tapering everywhere
        self.reference_energy_UCCSD = -1.1516142309717594
        # reference energy of UCCSD/VQE when no tapering on excitations is used
        self.reference_energy_UCCSD_no_tap_exc = -1.1516142309717594
        # excitations for succ
        self.reference_singlet_double_excitations = [
            [0, 1, 4, 5],
            [0, 1, 4, 6],
            [0, 1, 4, 7],
            [0, 2, 4, 6],
            [0, 2, 4, 7],
            [0, 3, 4, 7],
        ]
        # groups for succ_full
        self.reference_singlet_groups = [
            [[0, 1, 4, 5]],
            [[0, 1, 4, 6], [0, 2, 4, 5]],
            [[0, 1, 4, 7], [0, 3, 4, 5]],
            [[0, 2, 4, 6]],
            [[0, 2, 4, 7], [0, 3, 4, 6]],
            [[0, 3, 4, 7]],
        ]
    def test_custom_filter_criterion(self):
        """Test NumPyEigenSolverFactory with ExcitedStatesEigensolver + Custom filter criterion
        for doublet states"""

        driver = PySCFDriver(
            atom="Be .0 .0 .0; H .0 .0 0.75",
            unit=UnitsType.ANGSTROM,
            charge=0,
            spin=1,
            basis="sto3g",
        )

        transformer = ActiveSpaceTransformer(
            num_electrons=(1, 2),
            num_molecular_orbitals=4,
        )
        # We define an ActiveSpaceTransformer to reduce the duration of this test example.

        converter = QubitConverter(JordanWignerMapper(),
                                   z2symmetry_reduction="auto")

        esp = ElectronicStructureProblem(driver, [transformer])

        expected_spin = 0.75  # Doublet states
        expected_num_electrons = 3  # 1 alpha electron + 2 beta electrons

        # pylint: disable=unused-argument
        def custom_filter_criterion(eigenstate, eigenvalue, aux_values):
            num_particles_aux = aux_values["ParticleNumber"][0]
            total_angular_momentum_aux = aux_values["AngularMomentum"][0]

            return np.isclose(expected_spin,
                              total_angular_momentum_aux) and np.isclose(
                                  expected_num_electrons, num_particles_aux)

        solver = NumPyEigensolverFactory(
            filter_criterion=custom_filter_criterion)
        esc = ExcitedStatesEigensolver(converter, solver)
        results = esc.solve(esp)

        # filter duplicates from list
        computed_energies = [results.computed_energies[0]]
        for comp_energy in results.computed_energies[1:]:
            if not np.isclose(comp_energy, computed_energies[-1]):
                computed_energies.append(comp_energy)

        ref_energies = [
            -2.6362023196223254,
            -2.2971398524128923,
            -2.2020252702733165,
            -2.1044859216523752,
            -1.696132447109807,
            -1.6416831059956618,
        ]

        for idx, energy in enumerate(ref_energies):
            self.assertAlmostEqual(computed_energies[idx], energy, places=3)
    def test_molecular_problem_sector_locator_z2_symmetry(self):
        """Test mapping to qubit operator with z2 symmetry tapering and two qubit reduction"""

        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "test_driver_hdf5.hdf5", "second_q/drivers/hdf5d"))
        problem = ElectronicStructureProblem(driver)

        mapper = JordanWignerMapper()
        qubit_conv = QubitConverter(mapper,
                                    two_qubit_reduction=True,
                                    z2symmetry_reduction="auto")
        main_op, _ = problem.second_q_ops()
        qubit_op = qubit_conv.convert(
            main_op,
            self.num_particles,
            sector_locator=problem.symmetry_sector_locator,
        )
        self.assertEqual(qubit_op, TestQubitConverter.REF_H2_JW_TAPERED)
示例#9
0
    def test_excitation_preserving(self):
        """Test the excitation preserving wavefunction on a chemistry example."""

        driver = HDF5Driver(
            self.get_resource_path("test_driver_hdf5.hdf5",
                                   "second_q/drivers/hdf5d"))

        converter = QubitConverter(ParityMapper())

        problem = ElectronicStructureProblem(driver)

        _ = problem.second_q_ops()

        particle_number = cast(
            ParticleNumber,
            problem.grouped_property_transformed.get_property(ParticleNumber))
        num_particles = (particle_number.num_alpha, particle_number.num_beta)
        num_spin_orbitals = particle_number.num_spin_orbitals

        optimizer = SLSQP(maxiter=100)

        initial_state = HartreeFock(num_spin_orbitals, num_particles,
                                    converter)

        wavefunction = ExcitationPreserving(num_spin_orbitals)
        wavefunction.compose(initial_state, front=True, inplace=True)

        solver = VQE(
            ansatz=wavefunction,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator"),
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        gsc = GroundStateEigensolver(converter, solver)

        result = gsc.solve(problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=4)
示例#10
0
    def setUp(self):
        super().setUp()
        algorithm_globals.random_seed = 42

        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "test_driver_hdf5.hdf5", "second_q/drivers/hdf5d"))
        problem = ElectronicStructureProblem(driver)
        main_op, aux_ops = problem.second_q_ops()
        converter = QubitConverter(mapper=ParityMapper(),
                                   two_qubit_reduction=True)
        num_particles = (
            problem.grouped_property_transformed.get_property(
                "ParticleNumber").num_alpha,
            problem.grouped_property_transformed.get_property(
                "ParticleNumber").num_beta,
        )
        self.qubit_op = converter.convert(main_op, num_particles)
        self.aux_ops = converter.convert_match(aux_ops)
        self.reference_energy = -1.857275027031588
示例#11
0
 def test_sector_locator_homonuclear(self):
     """Test sector locator."""
     molecule = Molecule(
         geometry=[("Li", [0.0, 0.0, 0.0]), ("Li", [0.0, 0.0, 2.771])], charge=0, multiplicity=1
     )
     freeze_core_transformer = FreezeCoreTransformer(True)
     driver = ElectronicStructureMoleculeDriver(
         molecule, basis="sto3g", driver_type=ElectronicStructureDriverType.PYSCF
     )
     es_problem = ElectronicStructureProblem(driver, transformers=[freeze_core_transformer])
     qubit_conv = QubitConverter(
         mapper=ParityMapper(), two_qubit_reduction=True, z2symmetry_reduction="auto"
     )
     main_op, _ = es_problem.second_q_ops()
     qubit_conv.convert(
         main_op,
         num_particles=es_problem.num_particles,
         sector_locator=es_problem.symmetry_sector_locator,
     )
     self.assertListEqual(qubit_conv.z2symmetries.tapering_values, [-1, 1])
示例#12
0
    def _run_driver(
        driver: ElectronicStructureDriver,
        converter: QubitConverter = QubitConverter(JordanWignerMapper()),
        transformers: Optional[List[BaseTransformer]] = None,
    ):

        problem = ElectronicStructureProblem(driver, transformers)

        solver = NumPyMinimumEigensolver()

        gsc = GroundStateEigensolver(converter, solver)

        result = gsc.solve(problem)
        return result
    def test_freeze_core_z2_symmetry_compatibility(self):
        """Regression test against #192.

        An issue arose when the FreezeCoreTransformer was combined with the automatic Z2Symmetry
        reduction. This regression test ensures that this behavior remains fixed.
        """
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "LiH_sto3g.hdf5", "second_q/transformers"))
        problem = ElectronicStructureProblem(driver, [FreezeCoreTransformer()])
        qubit_converter = QubitConverter(
            ParityMapper(),
            two_qubit_reduction=True,
            z2symmetry_reduction="auto",
        )

        solver = NumPyMinimumEigensolverFactory()
        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(problem)
        self.assertAlmostEqual(result.total_energies[0], -7.882, places=2)
示例#14
0
    def setUp(self):
        super().setUp()

        self.driver = PySCFDriver(
            atom="H .0 .0 .0; H .0 .0 0.75",
            unit=UnitsType.ANGSTROM,
            charge=0,
            spin=0,
            basis="sto3g",
        )

        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        # pylint: disable=unused-argument
        def filter_criterion(eigenstate, eigenvalue, aux_values):
            return np.isclose(aux_values["ParticleNumber"][0], 2.0)

        self.k = 99
        self._numpy_eigensolver_factory = NumPyEigensolverFactory(
            filter_criterion=filter_criterion, k=self.k)
class TestGroundStateEigensolver(QiskitNatureTestCase):
    """Test GroundStateEigensolver"""
    def setUp(self):
        super().setUp()
        self.driver = HDF5Driver(
            self.get_resource_path("test_driver_hdf5.hdf5",
                                   "second_q/drivers/hdf5d"))
        self.seed = 56
        algorithm_globals.random_seed = self.seed

        self.reference_energy = -1.1373060356951838

        self.qubit_converter = QubitConverter(JordanWignerMapper())
        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver)

        self.num_spin_orbitals = 4
        self.num_particles = (1, 1)

    def test_npme(self):
        """Test NumPyMinimumEigensolver"""
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_npme_with_default_filter(self):
        """Test NumPyMinimumEigensolver with default filter"""
        solver = NumPyMinimumEigensolverFactory(
            use_default_filter_criterion=True)
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_uccsd(self):
        """Test VQE UCCSD case"""
        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            ansatz=UCC(excitations="d"),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_uccsd_with_callback(self):
        """Test VQE UCCSD with callback."""
        def callback(nfev, parameters, energy, stddev):
            # pylint: disable=unused-argument
            print(f"iterations {nfev}: energy: {energy}")

        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            callback=callback,
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        with contextlib.redirect_stdout(io.StringIO()) as out:
            res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)
        for idx, line in enumerate(out.getvalue().split("\n")):
            if line.strip():
                self.assertTrue(
                    line.startswith(f"iterations {idx+1}: energy: "))

    def test_vqe_ucc_custom(self):
        """Test custom ansatz in Factory use case"""
        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_aux_ops_reusability(self):
        """Test that the auxiliary operators can be reused"""
        # Regression test against #1475
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)

        modes = 4
        h_1 = np.eye(modes, dtype=complex)
        h_2 = np.zeros((modes, modes, modes, modes))
        aux_ops = list(
            ElectronicEnergy([
                OneBodyElectronicIntegrals(ElectronicBasis.MO, (h_1, None)),
                TwoBodyElectronicIntegrals(ElectronicBasis.MO,
                                           (h_2, None, None, None)),
            ], ).second_q_ops().values())
        aux_ops_copy = copy.deepcopy(aux_ops)

        _ = calc.solve(self.electronic_structure_problem)

        assert all(
            frozenset(a.to_list()) == frozenset(b.to_list())
            for a, b in zip(aux_ops, aux_ops_copy))

    def _setup_evaluation_operators(self):
        # first we run a ground state calculation
        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        # now we decide that we want to evaluate another operator
        # for testing simplicity, we just use some pre-constructed auxiliary operators
        _, second_q_ops = self.electronic_structure_problem.second_q_ops()
        aux_ops_dict = self.qubit_converter.convert_match(second_q_ops)
        return calc, res, aux_ops_dict

    def test_eval_op_single(self):
        """Test evaluating a single additional operator"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = aux_ops["ParticleNumber"][0]

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res[0], complex)
        self.assertAlmostEqual(add_aux_op_res[0].real, 2, places=6)

    def test_eval_op_single_none(self):
        """Test evaluating a single `None` operator"""
        calc, res, _ = self._setup_evaluation_operators()
        # we filter the list because in this test we test a single operator evaluation
        add_aux_op = None

        # now we have the ground state calculation evaluate it
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsNone(add_aux_op_res)

    def test_eval_op_list(self):
        """Test evaluating a list of additional operators"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_list_none(self):
        """Test evaluating a list of additional operators incl. `None`"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ] + [None]

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, list)
        # in this list we require that the order of the results remains unchanged
        for idx, expected in enumerate(expected_results.values()):
            self.assertAlmostEqual(add_aux_op_res[idx][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res[-1])

    def test_eval_op_dict(self):
        """Test evaluating a dict of additional operators"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)

    def test_eval_op_dict_none(self):
        """Test evaluating a dict of additional operators incl. `None`"""
        calc, res, aux_ops = self._setup_evaluation_operators()
        # we filter the list because of simplicity
        expected_results = {
            "number of particles": 2,
            "s^2": 0,
            "magnetization": 0
        }
        add_aux_op = [
            aux_ops["ParticleNumber"],
            aux_ops["AngularMomentum"],
            aux_ops["Magnetization"],
        ]
        # now we convert it into a dictionary
        add_aux_op = dict(zip(expected_results.keys(), add_aux_op))
        add_aux_op["None"] = None

        # now we have the ground state calculation evaluate them
        add_aux_op_res = calc.evaluate_operators(res.raw_result.eigenstate,
                                                 add_aux_op)
        self.assertIsInstance(add_aux_op_res, dict)
        for name, expected in expected_results.items():
            self.assertAlmostEqual(add_aux_op_res[name][0].real,
                                   expected,
                                   places=6)
        self.assertIsNone(add_aux_op_res["None"])

    @slow_test
    def test_eval_op_qasm(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""
        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=PauliExpectation(),
            quantum_instance=QuantumInstance(
                backend=BasicAer.get_backend("qasm_simulator"),
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian, _ = self.electronic_structure_problem.second_q_ops()
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_eval_op_qasm_aer(self):
        """Regression tests against https://github.com/Qiskit/qiskit-nature/issues/53."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        solver = VQEUCCFactory(
            optimizer=SLSQP(maxiter=100),
            expectation=AerPauliExpectation(),
            include_custom=True,
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res_qasm = calc.solve(self.electronic_structure_problem)

        hamiltonian, _ = self.electronic_structure_problem.second_q_ops()
        qubit_op = self.qubit_converter.map(hamiltonian)

        ansatz = solver.get_solver(self.electronic_structure_problem,
                                   self.qubit_converter).ansatz
        circuit = ansatz.assign_parameters(res_qasm.raw_result.optimal_point)
        mean = calc.evaluate_operators(circuit, qubit_op)

        self.assertAlmostEqual(res_qasm.eigenenergies[0], mean[0].real)

    def _prepare_uccsd_hf(self, qubit_converter):
        initial_state = HartreeFock(self.num_spin_orbitals, self.num_particles,
                                    qubit_converter)
        ansatz = UCCSD(
            qubit_converter,
            self.num_particles,
            self.num_spin_orbitals,
            initial_state=initial_state,
        )

        return ansatz

    def test_uccsd_hf(self):
        """uccsd hf test"""
        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        backend = BasicAer.get_backend("statevector_simulator")
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    def test_uccsd_hf_qasm(self):
        """uccsd hf test with qasm simulator."""
        qubit_converter = QubitConverter(ParityMapper())
        ansatz = self._prepare_uccsd_hf(qubit_converter)

        backend = BasicAer.get_backend("qasm_simulator")

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=PauliExpectation(),
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.138, places=2)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_statevector(self):
        """uccsd hf test with Aer statevector"""

        backend = qiskit.providers.aer.Aer.get_backend(
            "aer_simulator_statevector")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SLSQP(maxiter=100)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=6)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_qasm(self):
        """uccsd hf test with Aer qasm simulator."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=PauliExpectation(group_paulis=False),
            quantum_instance=QuantumInstance(
                backend=backend,
                seed_simulator=algorithm_globals.random_seed,
                seed_transpiler=algorithm_globals.random_seed,
            ),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0], -1.131, places=2)

    @slow_test
    @unittest.skipUnless(optionals.HAS_AER,
                         "qiskit-aer is required to run this test")
    def test_uccsd_hf_aer_qasm_snapshot(self):
        """uccsd hf test with Aer qasm simulator snapshot."""

        backend = qiskit.providers.aer.Aer.get_backend("aer_simulator")

        ansatz = self._prepare_uccsd_hf(self.qubit_converter)

        optimizer = SPSA(maxiter=200, last_avg=5)
        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            expectation=AerPauliExpectation(),
            quantum_instance=QuantumInstance(backend=backend),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(result.total_energies[0],
                               self.reference_energy,
                               places=3)

    def test_freeze_core_z2_symmetry_compatibility(self):
        """Regression test against #192.

        An issue arose when the FreezeCoreTransformer was combined with the automatic Z2Symmetry
        reduction. This regression test ensures that this behavior remains fixed.
        """
        driver = HDF5Driver(hdf5_input=self.get_resource_path(
            "LiH_sto3g.hdf5", "second_q/transformers"))
        problem = ElectronicStructureProblem(driver, [FreezeCoreTransformer()])
        qubit_converter = QubitConverter(
            ParityMapper(),
            two_qubit_reduction=True,
            z2symmetry_reduction="auto",
        )

        solver = NumPyMinimumEigensolverFactory()
        gsc = GroundStateEigensolver(qubit_converter, solver)

        result = gsc.solve(problem)
        self.assertAlmostEqual(result.total_energies[0], -7.882, places=2)

    def test_total_dipole(self):
        """Regression test against #198.

        An issue with calculating the dipole moment that had division None/float.
        """
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        self.assertAlmostEqual(res.total_dipole_moment_in_debye[0],
                               0.0,
                               places=1)

    def test_print_result(self):
        """Regression test against #198 and general issues with printing results."""
        solver = NumPyMinimumEigensolverFactory()
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        with contextlib.redirect_stdout(io.StringIO()) as out:
            print(res)
        # do NOT change the below! Lines have been truncated as to not force exact numerical matches
        expected = """\
            === GROUND STATE ENERGY ===

            * Electronic ground state energy (Hartree): -1.857
              - computed part:      -1.857
            ~ Nuclear repulsion energy (Hartree): 0.719
            > Total ground state energy (Hartree): -1.137

            === MEASURED OBSERVABLES ===

              0:  # Particles: 2.000 S: 0.000 S^2: 0.000 M: 0.000

            === DIPOLE MOMENTS ===

            ~ Nuclear dipole moment (a.u.): [0.0  0.0  1.38

              0:
              * Electronic dipole moment (a.u.): [0.0  0.0  -1.38
                - computed part:      [0.0  0.0  -1.38
              > Dipole moment (a.u.): [0.0  0.0  0.0]  Total: 0.
                             (debye): [0.0  0.0  0.0]  Total: 0.
        """
        for truth, expected in zip(out.getvalue().split("\n"),
                                   expected.split("\n")):
            assert truth.strip().startswith(expected.strip())

    def test_default_initial_point(self):
        """Test when using the default initial point."""

        solver = VQEUCCFactory(quantum_instance=QuantumInstance(
            BasicAer.get_backend("statevector_simulator")))
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        np.testing.assert_array_equal(solver.initial_point.to_numpy_array(),
                                      [0.0, 0.0, 0.0])
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)

    def test_vqe_ucc_factory_with_user_initial_point(self):
        """Test VQEUCCFactory when using it with a user defined initial point."""

        initial_point = np.asarray(
            [1.28074029e-19, 5.92226076e-08, 1.11762559e-01])
        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            initial_point=initial_point,
            optimizer=SLSQP(maxiter=1),
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)
        np.testing.assert_array_almost_equal(res.raw_result.optimal_point,
                                             initial_point)

    def test_vqe_ucc_factory_with_mp2(self):
        """Test when using MP2InitialPoint to generate the initial point."""

        informed_start = MP2InitialPoint()

        solver = VQEUCCFactory(
            quantum_instance=QuantumInstance(
                BasicAer.get_backend("statevector_simulator")),
            initial_point=informed_start,
        )
        calc = GroundStateEigensolver(self.qubit_converter, solver)
        res = calc.solve(self.electronic_structure_problem)

        np.testing.assert_array_almost_equal(
            solver.initial_point.to_numpy_array(), [0.0, 0.0, -0.07197145])
        self.assertAlmostEqual(res.total_energies[0],
                               self.reference_energy,
                               places=6)
class TestUCCSDHartreeFock(QiskitNatureTestCase):
    """Test for these extensions."""

    @unittest.skipIf(not _optionals.HAS_PYSCF, "pyscf not available.")
    def setUp(self):
        super().setUp()
        self.driver = PySCFDriver(atom="H 0 0 0.735; H 0 0 0", basis="631g")

        self.qubit_converter = QubitConverter(ParityMapper(), two_qubit_reduction=True)

        self.electronic_structure_problem = ElectronicStructureProblem(
            self.driver, [FreezeCoreTransformer()]
        )

        self.num_spin_orbitals = 8
        self.num_particles = (1, 1)

        # because we create the initial state and ansatzes early, we need to ensure the qubit
        # converter already ran such that convert_match works as expected
        main_op, _ = self.electronic_structure_problem.second_q_ops()
        _ = self.qubit_converter.convert(
            main_op,
            self.num_particles,
        )

        self.reference_energy_pUCCD = -1.1434447924298028
        self.reference_energy_UCCD0 = -1.1476045878481704
        self.reference_energy_UCCD0full = -1.1515491334334347
        # reference energy of UCCSD/VQE with tapering everywhere
        self.reference_energy_UCCSD = -1.1516142309717594
        # reference energy of UCCSD/VQE when no tapering on excitations is used
        self.reference_energy_UCCSD_no_tap_exc = -1.1516142309717594
        # excitations for succ
        self.reference_singlet_double_excitations = [
            [0, 1, 4, 5],
            [0, 1, 4, 6],
            [0, 1, 4, 7],
            [0, 2, 4, 6],
            [0, 2, 4, 7],
            [0, 3, 4, 7],
        ]
        # groups for succ_full
        self.reference_singlet_groups = [
            [[0, 1, 4, 5]],
            [[0, 1, 4, 6], [0, 2, 4, 5]],
            [[0, 1, 4, 7], [0, 3, 4, 5]],
            [[0, 2, 4, 6]],
            [[0, 2, 4, 7], [0, 3, 4, 6]],
            [[0, 3, 4, 7]],
        ]

    @slow_test
    def test_uccsd_hf_qpUCCD(self):
        """paired uccd test"""
        optimizer = SLSQP(maxiter=100)

        initial_state = HartreeFock(
            self.num_spin_orbitals, self.num_particles, self.qubit_converter
        )

        ansatz = PUCCD(
            self.qubit_converter,
            self.num_particles,
            self.num_spin_orbitals,
            initial_state=initial_state,
        )

        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=BasicAer.get_backend("statevector_simulator")),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0], self.reference_energy_pUCCD, places=6)

    @slow_test
    def test_uccsd_hf_qUCCD0(self):
        """singlet uccd test"""
        optimizer = SLSQP(maxiter=100)

        initial_state = HartreeFock(
            self.num_spin_orbitals, self.num_particles, self.qubit_converter
        )

        ansatz = SUCCD(
            self.qubit_converter,
            self.num_particles,
            self.num_spin_orbitals,
            initial_state=initial_state,
        )

        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=BasicAer.get_backend("statevector_simulator")),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0], self.reference_energy_UCCD0, places=6)

    @unittest.skip("Skip until https://github.com/Qiskit/qiskit-nature/issues/91 is closed.")
    def test_uccsd_hf_qUCCD0full(self):
        """singlet full uccd test"""
        optimizer = SLSQP(maxiter=100)

        initial_state = HartreeFock(
            self.num_spin_orbitals, self.num_particles, self.qubit_converter
        )

        # TODO: add `full` option
        ansatz = SUCCD(
            self.qubit_converter,
            self.num_particles,
            self.num_spin_orbitals,
            initial_state=initial_state,
        )

        solver = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=QuantumInstance(backend=BasicAer.get_backend("statevector_simulator")),
        )

        gsc = GroundStateEigensolver(self.qubit_converter, solver)

        result = gsc.solve(self.electronic_structure_problem)

        self.assertAlmostEqual(result.total_energies[0], self.reference_energy_UCCD0full, places=6)