def __init__(self, args, input_dim, num_actions): nn.Module.__init__(self) self.conv1 = nn.Conv2d(input_dim, 32, 8, stride=4, padding=1) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3) self.fc1 = BayesBackpropLinear(3136, 512) self.fc2 = BayesBackpropLinear(512, num_actions) initialize_weights(self)
def __init__(self, args, action_space): nn.Module.__init__(self) self.features = nn.Sequential( nn.Linear(args.input_dim, 16), nn.ReLU(inplace=True), nn.Linear(16, 16), nn.ReLU(inplace=True) ) self.last_layer = nn.Linear(16, action_space) initialize_weights(self)
def __init__(self, args, input_dim, num_actions): nn.Module.__init__(self) self.conv1 = nn.Conv2d(input_dim, 32, 8, stride=4, padding=1) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 64, 3) self.fc1 = MNFLinear(3136, 512, args.hidden_dim, args.n_hidden, args.n_flows_q, args.n_flows_r) self.fc2 = MNFLinear(512, num_actions, args.hidden_dim, args.n_hidden, args.n_flows_q, args.n_flows_r) initialize_weights(self)
def __init__(self, args, action_space): nn.Module.__init__(self) # self.features = nn.Sequential( # nn.Linear(args.input_dim, 16), # nn.ReLU(inplace=True) # ) self.nheads = args.nheads self.heads = nn.ModuleList([nn.Sequential(nn.Linear(args.input_dim, 16), nn.ReLU(inplace=True), nn.Linear(16, 16), nn.ReLU(inplace=True), nn.Linear(16, action_space)) for _ in range(args.nheads)]) initialize_weights(self)
def __init__(self, args, input_dim, num_actions): nn.Module.__init__(self) self.features = nn.Sequential( nn.Conv2d(input_dim, 32, 8, stride=4, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 64, 4, stride=2), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 3), nn.ReLU(inplace=True) ) self.nheads = args.nheads self.heads = nn.ModuleList([nn.Sequential(nn.Linear(3136, 512), nn.ReLU(inplace=True), nn.Linear(512, num_actions)) for _ in range(args.nheads)]) initialize_weights(self)
def __init__(self, input_dim, hidden_dim, n_hidden): nn.Module.__init__(self) self.input_dim = input_dim self.hidden_dim = hidden_dim self.n_hidden = n_hidden self.first_layer = nn.Sequential(nn.Linear(input_dim, hidden_dim), nn.Tanh()) hidden_modules = [] for _ in range(n_hidden): hidden_modules.append(nn.Linear(hidden_dim, hidden_dim)) hidden_modules.append(nn.Tanh()) self.hidden_layer = nn.Sequential(*hidden_modules) self.mu_layer = nn.Linear(hidden_dim, input_dim) self.sigma_layer = nn.Sequential(nn.Linear(hidden_dim, input_dim), nn.Sigmoid()) self.register_buffer('mask', torch.Tensor(input_dim)) initialize_weights(self)