def setUp(self): # define the molecule at = 'C 0 0 0' basis = 'dzp' self.mol = Molecule(atom=at, calculator='pyscf', basis=basis, unit='bohr') self.m = gto.M(atom=at, basis=basis, unit='bohr') # define the wave function self.wf = Orbital(self.mol) self.pos = torch.zeros(100, self.mol.nelec * 3) self.pos[:, 0] = torch.linspace(-5, 5, 100) self.pos[:, 1] = torch.linspace(-5, 5, 100) self.pos[:, 2] = torch.linspace(-5, 5, 100) self.pos = Variable(self.pos) self.pos.requires_grad = True self.x = self.pos[:, 0].detach().numpy()
class TestAOderivativesADF(unittest.TestCase): def setUp(self): # define the molecule path_hdf5 = PATH_TEST / 'hdf5/C_adf_dzp.hdf5' self.mol = Molecule(load=path_hdf5) # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points npts = 11 self.pos = torch.rand(npts, self.mol.nelec * 3) self.pos = Variable(self.pos) self.pos.requires_grad = True def test_ao_deriv(self): ao = self.wf.ao(self.pos) dao = self.wf.ao(self.pos, derivative=1) dao_grad = grad( ao, self.pos, grad_outputs=torch.ones_like(ao))[0] gradcheck(self.wf.ao, self.pos) assert(torch.allclose(dao.sum(), dao_grad.sum())) def test_ao_hess(self): ao = self.wf.ao(self.pos) d2ao = self.wf.ao(self.pos, derivative=2) d2ao_grad = hess(ao, self.pos) assert(torch.allclose(d2ao.sum(), d2ao_grad.sum()))
def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule mol = Molecule(atom='Li 0 0 0; H 0 0 1.', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) self.wf = Orbital(mol, kinetic='auto', configs='ground_state', jastrow_type=FullyConnectedJastrow) self.random_fc_weight = torch.rand(self.wf.fc.weight.shape) self.wf.fc.weight.data = self.random_fc_weight self.nbatch = 10 self.pos = 1E-2 * torch.tensor( np.random.rand(self.nbatch, self.wf.nelec * 3)) self.pos.requires_grad = True
def setUp(self): torch.manual_seed(0) np.random.seed(0) # optimal parameters self.opt_r = 0.69 # the two h are at +0.69 and -0.69 self.opt_sigma = 1.24 # molecule self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='sto-3g') # wave function self.wf = Orbital(self.mol, kinetic='auto', configs='single(2,2)', use_jastrow=True) # sampler self.sampler = Metropolis(nwalkers=1000, nstep=2000, step_size=0.5, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal' }) self.hmc_sampler = Hamiltonian(nwalkers=100, nstep=200, step_size=0.1, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal')) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) # ground state energy self.ground_state_energy = -1.16 # ground state pos self.ground_state_pos = 0.69
def setUp(self): # define the molecule path_hdf5 = PATH_TEST / 'hdf5/C_adf_dzp.hdf5' self.mol = Molecule(load=path_hdf5) # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points npts = 11 self.pos = torch.rand(npts, self.mol.nelec * 3) self.pos = Variable(self.pos) self.pos.requires_grad = True
class TestMOvaluesADF(unittest.TestCase): def setUp(self): # define the molecule path_hdf5 = (PATH_TEST / 'hdf5/C_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points self.npts = 21 pts = get_pts(self.npts) self.pos = 10 * torch.ones(self.npts**2, self.mol.nelec * 3) self.pos[:, :3] = pts self.pos = Variable(self.pos) self.pos.requires_grad = True def test_mo(self): movals = self.wf.mo_scf(self.wf.ao(self.pos)).detach().numpy() for iorb in range(self.mol.basis.nmo): path_cube = PATH_TEST / f'cube/C_MO_%SCF_A%{iorb + 1}.cub' fname = path_cube.absolute().as_posix() adf_ref_data = np.array(read_cubefile(fname)).reshape( self.npts, self.npts)**2 qmctorch_data = (movals[:, 0, iorb]).reshape(self.npts, self.npts)**2 delta = np.abs(adf_ref_data - qmctorch_data) if __PLOT__: plt.subplot(1, 3, 1) plt.imshow(adf_ref_data) plt.subplot(1, 3, 2) plt.imshow(qmctorch_data) plt.subplot(1, 3, 3) plt.imshow(delta) plt.show() # the 0,0 point is much larger due to num instabilities delta = np.sort(delta.flatten()) delta = delta[:-1] assert (delta.mean() < 1E-3)
def setUp(self): # molecule self.mol = Molecule( atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='dzp') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True) npts = 51 self.pos = torch.zeros(npts, 6) self.pos[:, 2] = torch.linspace(-2, 2, npts)
def setUp(self): # define the molecule path_hdf5 = (PATH_TEST / 'hdf5/C_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points self.npts = 21 pts = get_pts(self.npts) self.pos = torch.zeros(self.npts**2, self.mol.nelec * 3) self.pos[:, :3] = pts self.pos = Variable(self.pos) self.pos.requires_grad = True
def setUp(self): # define the molecule at = 'C 0 0 0' basis = 'dzp' self.mol = Molecule(atom=at, calculator='pyscf', basis=basis, unit='bohr') self.m = gto.M(atom=at, basis=basis, unit='bohr') # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points npts = 11 self.pos = torch.rand(npts, self.mol.nelec * 3) self.pos = Variable(self.pos) self.pos.requires_grad = True
class TestAOderivativesPyscf(unittest.TestCase): def setUp(self): # define the molecule at = 'C 0 0 0' basis = 'dzp' self.mol = Molecule(atom=at, calculator='pyscf', basis=basis, unit='bohr') self.m = gto.M(atom=at, basis=basis, unit='bohr') # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points npts = 11 self.pos = torch.rand(npts, self.mol.nelec * 3) self.pos = Variable(self.pos) self.pos.requires_grad = True def test_ao_deriv(self): ao = self.wf.ao(self.pos) dao = self.wf.ao(self.pos, derivative=1) dao_grad = grad( ao, self.pos, grad_outputs=torch.ones_like(ao))[0] gradcheck(self.wf.ao, self.pos) assert(torch.allclose(dao.sum(), dao_grad.sum())) def test_ao_hess(self): ao = self.wf.ao(self.pos) d2ao = self.wf.ao(self.pos, derivative=2) d2ao_grad = hess(ao, self.pos) assert(torch.allclose(d2ao.sum(), d2ao_grad.sum()))
def setUp(self): torch.manual_seed(0) # molecule path_hdf5 = (PATH_TEST / 'hdf5/H2_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # wave function self.wf = Orbital(self.mol, kinetic='auto', configs='single(2,2)', use_jastrow=True) # sampler self.sampler = Metropolis(nwalkers=1000, nstep=2000, step_size=0.5, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal' }) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) # ground state energy self.ground_state_energy = -1.16 # ground state pos self.ground_state_pos = 0.69
def setUp(self): torch.manual_seed(0) np.random.seed(0) path_hdf5 = (PATH_TEST / 'hdf5/CO2_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='ground_state', use_jastrow=True, include_all_mo=False)
def setUp(self): torch.manual_seed(0) np.random.seed(0) # molecule self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015', unit='bohr', calculator='pyscf', basis='sto-3g') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True, include_all_mo=False) # sampler self.sampler = Metropolis(nwalkers=500, nstep=200, step_size=0.05, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal' }) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt)
def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule mol = Molecule(atom='H 0 0 0; H 0 0 1.', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) self.wf = Orbital(mol, kinetic='auto', include_all_mo=False, configs='single_double(2,2)') self.random_fc_weight = torch.rand(self.wf.fc.weight.shape) self.wf.fc.weight.data = self.random_fc_weight self.pos = torch.tensor(np.random.rand(10, self.wf.nelec * 3)) self.pos.requires_grad = True
def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='sto-3g') # orbital self.wf = Orbital(self.mol)
def setUp(self): torch.manual_seed(0) np.random.seed(0) self.mol = Molecule(atom='C 0 0 0; O 0 0 2.190; O 0 0 -2.190', calculator='pyscf', basis='dzp', unit='bohr') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='ground_state', use_jastrow=True, include_all_mo=False)
class TestAOvaluesADF(unittest.TestCase): def setUp(self): # define the molecule path_hdf5 = (PATH_TEST / 'hdf5/C_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # define the wave function self.wf = Orbital(self.mol, include_all_mo=True) # define the grid points self.npts = 21 pts = get_pts(self.npts) self.pos = torch.zeros(self.npts**2, self.mol.nelec * 3) self.pos[:, :3] = pts self.pos = Variable(self.pos) self.pos.requires_grad = True def test_ao(self): aovals = self.wf.ao(self.pos).detach().numpy() for iorb in range(self.mol.basis.nao): path_cube = PATH_TEST / f'cube/C_AO_%Basis%AO{iorb}.cub' fname = path_cube.absolute().as_posix() adf_ref_data = np.array(read_cubefile(fname)).reshape( self.npts, self.npts) qmctorch_data = (aovals[:, 0, iorb]).reshape(self.npts, self.npts) delta = np.abs(adf_ref_data - qmctorch_data) if __PLOT__: plt.subplot(1, 3, 1) plt.imshow(adf_ref_data) plt.subplot(1, 3, 2) plt.imshow(qmctorch_data) plt.subplot(1, 3, 3) plt.imshow(delta) plt.show() assert (delta.mean() < 1E-3)
def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule mol = Molecule(atom='C 0 0 0', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) self.wf = Orbital(mol, kinetic='auto', configs='ground_state').gto2sto() self.pos = -0.25 + 0.5 * torch.tensor(np.random.rand(10, 18)) self.pos.requires_grad = True
class TestInterpolate(unittest.TestCase): def setUp(self): # molecule self.mol = Molecule( atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='dzp') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True) npts = 51 self.pos = torch.zeros(npts, 6) self.pos[:, 2] = torch.linspace(-2, 2, npts) def test_ao(self): interp_ao = InterpolateAtomicOrbitals(self.wf) inter = interp_ao(self.pos) ref = self.wf.ao(self.pos) delta = (inter - ref).abs().mean() assert(delta < 0.1) def test_mo_reg(self): interp_mo = InterpolateMolecularOrbitals(self.wf) inter = interp_mo(self.pos, method='reg') ref = self.wf.mo(self.wf.mo_scf(self.wf.ao(self.pos))) delta = (inter - ref).abs().mean() assert(delta < 0.1) def test_mo_irreg(self): interp_mo = InterpolateMolecularOrbitals(self.wf) inter = interp_mo(self.pos, method='irreg') ref = self.wf.mo(self.wf.mo_scf(self.wf.ao(self.pos))) delta = (inter - ref).abs().mean() assert(delta < 0.1)
class TestH2(unittest.TestCase): def setUp(self): torch.manual_seed(0) np.random.seed(0) # optimal parameters self.opt_r = 0.69 # the two h are at +0.69 and -0.69 self.opt_sigma = 1.24 # molecule self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='sto-3g') # wave function self.wf = Orbital(self.mol, kinetic='auto', configs='single(2,2)', use_jastrow=True) # sampler self.sampler = Metropolis(nwalkers=1000, nstep=2000, step_size=0.5, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal' }) self.hmc_sampler = Hamiltonian(nwalkers=100, nstep=200, step_size=0.1, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal')) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) # ground state energy self.ground_state_energy = -1.16 # ground state pos self.ground_state_pos = 0.69 def test1_single_point(self): self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos self.solver.sampler = self.sampler # sample and compute observables obs = self.solver.single_point() e, v = obs.energy, obs.variance # values on different arch expected_energy = [-1.1464850902557373, -1.14937478612449] # values on different arch expected_variance = [0.9279592633247375, 0.7445300449383236] assert (np.any(np.isclose(e.data.item(), np.array(expected_energy)))) assert (np.any(np.isclose(v.data.item(), np.array(expected_variance)))) def test2_single_point_hmc(self): self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos self.solver.sampler = self.hmc_sampler # sample and compute observables obs = self.solver.single_point() e, v = obs.energy, obs.variance # values on different arch expected_energy = [-1.077970027923584, -1.027975961270174] # values on different arch expected_variance = [0.17763596773147583, 0.19953053065068135] assert (np.any(np.isclose(e.data.item(), np.array(expected_energy)))) assert (np.any(np.isclose(v.data.item(), np.array(expected_variance)))) def test3_wf_opt(self): self.solver.sampler = self.sampler self.solver.configure(track=['local_energy', 'parameters'], loss='energy', grad='auto') obs = self.solver.run(5) if __PLOT__: plot_energy(obs.local_energy, e0=-1.1645, show_variance=True) def test4_geo_opt(self): self.solver.wf.ao.atom_coords[0, 2].data = torch.tensor(-0.37) self.solver.wf.ao.atom_coords[1, 2].data = torch.tensor(0.37) self.solver.configure(track=['local_energy'], loss='energy', grad='auto') self.solver.geo_opt(5, nepoch_wf_init=10, nepoch_wf_update=5) # load the best model self.solver.wf.load(self.solver.hdf5file, 'geo_opt') self.solver.wf.eval() # sample and compute variables obs = self.solver.single_point() e, v = obs.energy, obs.variance e = e.data.numpy() v = v.data.numpy() # it might be too much to assert with the ground state energy assert (e > 2 * self.ground_state_energy and e < 0.) assert (v > 0 and v < 2.) def test5_sampling_traj(self): self.solver.sampler = self.sampler self.solver.sampler.nstep = 100 self.solver.sampler.ntherm = 0 self.solver.sampler.ndecor = 1 pos = self.solver.sampler(self.solver.wf.pdf) obs = self.solver.sampling_traj(pos) if __PLOT__: plot_walkers_traj(obs.local_energy) plot_block(obs.local_energy) plot_blocking_energy(obs.local_energy, block_size=10) plot_correlation_coefficient(obs.local_energy) plot_integrated_autocorrelation_time(obs.local_energy)
class TestOrbitalWF(unittest.TestCase): def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule mol = Molecule(atom='H 0 0 0; H 0 0 1.', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) self.wf = Orbital(mol, kinetic='auto', include_all_mo=False, configs='single_double(2,2)') self.random_fc_weight = torch.rand(self.wf.fc.weight.shape) self.wf.fc.weight.data = self.random_fc_weight self.pos = torch.tensor(np.random.rand(10, self.wf.nelec * 3)) self.pos.requires_grad = True def test_forward(self): wfvals = self.wf(self.pos) ref = torch.tensor([[0.0977], [0.0618], [0.0587], [0.0861], [0.0466], [0.0406], [0.0444], [0.0728], [0.0809], [0.1868]]) # assert torch.allclose(wfvals.data, ref, rtol=1E-4, atol=1E-4) def test_grad_mo(self): """Gradients of the MOs.""" mo = self.wf.pos2mo(self.pos) dmo = self.wf.pos2mo(self.pos, derivative=1) dmo_grad = grad(mo, self.pos, grad_outputs=torch.ones_like(mo))[0] gradcheck(self.wf.pos2mo, self.pos) assert (torch.allclose(dmo.sum(), dmo_grad.sum())) assert (torch.allclose(dmo.sum(-1), dmo_grad.view(10, self.wf.nelec, 3).sum(-1))) def test_hess_mo(self): """Hessian of the MOs.""" val = self.wf.pos2mo(self.pos) d2val_grad = hess(val, self.pos) d2val = self.wf.pos2mo(self.pos, derivative=2) assert (torch.allclose(d2val.sum(), d2val_grad.sum())) assert (torch.allclose( d2val.sum(-1).sum(-1), d2val_grad.view(10, self.wf.nelec, 3).sum(-1).sum(-1))) assert (torch.allclose(d2val.sum(-1), d2val_grad.view(10, self.wf.nelec, 3).sum(-1))) def test_local_energy(self): self.wf.kinetic_energy = self.wf.kinetic_energy_autograd eloc_auto = self.wf.local_energy(self.pos) self.wf.kinetic_energy = self.wf.kinetic_energy_autograd eloc_jac = self.wf.local_energy(self.pos) assert torch.allclose(eloc_auto.data, eloc_jac.data, rtol=1E-4, atol=1E-4) def test_kinetic_energy(self): eauto = self.wf.kinetic_energy_autograd(self.pos) ejac = self.wf.kinetic_energy_jacobi(self.pos, kinpool=False) assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4) def test_gradients_wf(self): grads = self.wf.gradients_jacobi(self.pos) grad_auto = self.wf.gradients_autograd(self.pos) assert torch.allclose(grads, grad_auto) def test_gradients_pdf(self): grads_pdf = self.wf.gradients_jacobi(self.pos, pdf=True) grads_auto = self.wf.gradients_autograd(self.pos, pdf=True) assert torch.allclose(grads_pdf, grads_auto)
class TestH2ADFJacobi(unittest.TestCase): def setUp(self): torch.manual_seed(0) # molecule path_hdf5 = ( PATH_TEST / 'hdf5/H2_adf_dzp.hdf5').absolute().as_posix() self.mol = Molecule(load=path_hdf5) # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True) # sampler self.sampler = Metropolis( nwalkers=1000, nstep=2000, step_size=0.5, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal'}) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) # ground state energy self.ground_state_energy = -1.16 # ground state pos self.ground_state_pos = 0.69 def test_single_point(self): self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos self.solver.sampler = self.sampler # sample and compute observables obs = self.solver.single_point() e, v = obs.energy, obs.variance print(e.data.item(), v.data.item()) # vals on different archs expected_energy = [-1.1571345329284668, -1.1501641653648578] expected_variance = [0.05087674409151077, 0.05094174843043177] assert(np.any(np.isclose(e.data.item(), np.array(expected_energy)))) assert(np.any(np.isclose(v.data.item(), np.array(expected_variance)))) def test_wf_opt_auto_grad(self): self.solver.configure(track=['local_energy'], loss='energy', grad='auto') obs = self.solver.run(5) def test_wf_opt_manual_grad(self): self.solver.configure(track=['local_energy'], loss='energy', grad='manual') obs = self.solver.run(5)
class TestLiH(unittest.TestCase): def setUp(self): torch.manual_seed(0) np.random.seed(0) # molecule self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015', unit='bohr', calculator='pyscf', basis='sto-3g') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True, include_all_mo=False) # sampler self.sampler = Metropolis(nwalkers=500, nstep=200, step_size=0.05, ndim=self.wf.ndim, nelec=self.wf.nelec, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal' }) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) def test1_single_point(self): # sample and compute observables obs = self.solver.single_point() e, v = obs.energy, obs.variance # # values on different arch # expected_energy = [-1.1464850902557373, # -1.14937478612449] # # values on different arch # expected_variance = [0.9279592633247375, # 0.7445300449383236] # assert(np.any(np.isclose(e.data.item(), np.array(expected_energy)))) # assert(np.any(np.isclose(v.data.item(), np.array(expected_variance)))) def test2_wf_opt_grad_auto(self): self.solver.sampler = self.sampler self.solver.configure(track=['local_energy'], loss='energy', grad='auto') obs = self.solver.run(5) def test3_wf_opt_grad_manual(self): self.solver.sampler = self.sampler self.solver.configure(track=['local_energy'], loss='energy', grad='manual') obs = self.solver.run(5)
from qmctorch.scf import Molecule from qmctorch.wavefunction import Orbital from qmctorch.sampler import Metropolis from qmctorch.solver import SolverOrbital from qmctorch.utils import plot_walkers_traj # define the molecule mol = Molecule(atom='water.xyz', unit='angs', calculator='pyscf', basis='sto-3g', name='water') # define the wave function wf = Orbital(mol, kinetic='jacobi', configs='ground_State', use_jastrow=True) # sampler sampler = Metropolis(nwalkers=100, nstep=500, step_size=0.25, nelec=wf.nelec, ndim=wf.ndim, init=mol.domain('atomic'), move={ 'type': 'one-elec', 'proba': 'normal' }) # solver solver = SolverOrbital(wf=wf, sampler=sampler)
class TestGenericJastrowWF(unittest.TestCase): def setUp(self): torch.manual_seed(101) np.random.seed(101) set_torch_double_precision() # molecule mol = Molecule(atom='Li 0 0 0; H 0 0 1.', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) self.wf = Orbital(mol, kinetic='auto', configs='ground_state', jastrow_type=FullyConnectedJastrow) self.random_fc_weight = torch.rand(self.wf.fc.weight.shape) self.wf.fc.weight.data = self.random_fc_weight self.nbatch = 10 self.pos = 1E-2 * torch.tensor( np.random.rand(self.nbatch, self.wf.nelec * 3)) self.pos.requires_grad = True def test_forward(self): wfvals = self.wf(self.pos) def test_grad_mo(self): """Gradients of the MOs.""" mo = self.wf.pos2mo(self.pos) dmo = self.wf.pos2mo(self.pos, derivative=1) dmo_grad = grad(mo, self.pos, grad_outputs=torch.ones_like(mo))[0] gradcheck(self.wf.pos2mo, self.pos) assert (torch.allclose(dmo.sum(), dmo_grad.sum())) assert (torch.allclose( dmo.sum(-1), dmo_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1))) def test_hess_mo(self): """Hessian of the MOs.""" val = self.wf.pos2mo(self.pos) d2val_grad = hess(val, self.pos) d2val = self.wf.pos2mo(self.pos, derivative=2) assert (torch.allclose(d2val.sum(), d2val_grad.sum())) assert (torch.allclose( d2val.sum(-1).sum(-1), d2val_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1).sum(-1))) assert (torch.allclose( d2val.sum(-1), d2val_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1))) def test_local_energy(self): self.wf.kinetic_energy = self.wf.kinetic_energy_autograd eloc_auto = self.wf.local_energy(self.pos) self.wf.kinetic_energy = self.wf.kinetic_energy_autograd eloc_jac = self.wf.local_energy(self.pos) assert torch.allclose(eloc_auto.data, eloc_jac.data, rtol=1E-4, atol=1E-4) def test_kinetic_energy(self): eauto = self.wf.kinetic_energy_autograd(self.pos) ejac = self.wf.kinetic_energy_jacobi(self.pos, kinpool=False) assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4) def test_gradients_wf(self): grads = self.wf.gradients_jacobi(self.pos) grad_auto = self.wf.gradients_autograd(self.pos) assert torch.allclose(grads, grad_auto) def test_gradients_pdf(self): grads_pdf = self.wf.gradients_jacobi(self.pos, pdf=True) grads_auto = self.wf.gradients_autograd(self.pos, pdf=True) assert torch.allclose(grads_pdf, grads_auto)
# optimal H positions +0.69 and -0.69 # ground state energy : -31.688 eV -> -1.16 hartree # bond dissociation energy 4.478 eV -> 0.16 hartree set_torch_double_precision() # define the molecule mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', calculator='adf', basis='dzp', unit='bohr') # define the wave function wf = Orbital(mol, kinetic='jacobi', configs='cas(2,2)', use_jastrow=True, cuda=True) wf.jastrow.weight.data[0] = 1. # sampler sampler = Metropolis(nwalkers=2000, nstep=2000, step_size=0.2, ntherm=-1, ndecor=100, nelec=wf.nelec, init=mol.domain('atomic'), move={ 'type': 'all-elec',
class TestH2Stat(unittest.TestCase): def setUp(self): torch.manual_seed(0) np.random.seed(0) # optimal parameters self.opt_r = 0.69 # the two h are at +0.69 and -0.69 self.opt_sigma = 1.24 # molecule self.mol = Molecule( atom='H 0 0 -0.69; H 0 0 0.69', unit='bohr', calculator='pyscf', basis='sto-3g') # wave function self.wf = Orbital(self.mol, kinetic='jacobi', configs='single(2,2)', use_jastrow=True) # sampler self.sampler = Metropolis( nwalkers=100, nstep=500, step_size=0.5, ndim=self.wf.ndim, nelec=self.wf.nelec, ntherm=0, ndecor=1, init=self.mol.domain('normal'), move={ 'type': 'all-elec', 'proba': 'normal'}) # optimizer self.opt = optim.Adam(self.wf.parameters(), lr=0.01) # solver self.solver = SolverOrbital(wf=self.wf, sampler=self.sampler, optimizer=self.opt) def test_sampling_traj(self): pos = self.solver.sampler(self.solver.wf.pdf) obs = self.solver.sampling_traj(pos) plot_walkers_traj(obs.local_energy) plot_block(obs.local_energy) def test_stat(self): pos = self.solver.sampler(self.solver.wf.pdf) obs = self.solver.sampling_traj(pos) if __PLOT__: plot_blocking_energy(obs.local_energy, block_size=10) plot_correlation_coefficient(obs.local_energy) plot_integrated_autocorrelation_time(obs.local_energy)
mol = Molecule(atom='Li 0 0 0; H 0 0 3.015', unit='bohr', calculator='pyscf', basis='sto-3g', redo_scf=True) # wf wfc = CorrelatedOrbital(mol, kinetic='auto', jastrow_type='pade_jastrow', configs='single_double(2,4)', include_all_mo=True) # wf wf = Orbital(mol, kinetic='auto', jastrow_type='pade_jastrow', configs='single_double(2,4)', include_all_mo=True) random_fc_weight = torch.rand(wf.fc.weight.shape) wf.fc.weight.data = random_fc_weight wfc.fc.weight.data = random_fc_weight nbatch = 3 pos = torch.tensor(np.random.rand(nbatch, wf.nelec * 3)) pos.requires_grad = True print(wf(pos)) print(wfc(pos))
# bond distance : 0.74 A -> 1.38 a # optimal H positions +0.69 and -0.69 # ground state energy : -31.688 eV -> -1.16 hartree # bond dissociation energy 4.478 eV -> 0.16 hartree set_torch_double_precision() # define the molecule mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69', calculator='adf', basis='dzp', unit='bohr') # define the wave function wf = Orbital(mol, kinetic='jacobi', configs='single_double(2,2)', use_jastrow=True) wf.jastrow.weight.data[0] = 1. # sampler sampler = Metropolis(nwalkers=200, nstep=200, step_size=0.2, ntherm=-1, ndecor=100, nelec=wf.nelec, init=mol.domain('atomic'), move={ 'type': 'all-elec', 'proba': 'normal'
class TestAOvaluesPyscf(unittest.TestCase): def setUp(self): # define the molecule at = 'C 0 0 0' basis = 'dzp' self.mol = Molecule(atom=at, calculator='pyscf', basis=basis, unit='bohr') self.m = gto.M(atom=at, basis=basis, unit='bohr') # define the wave function self.wf = Orbital(self.mol) self.pos = torch.zeros(100, self.mol.nelec * 3) self.pos[:, 0] = torch.linspace(-5, 5, 100) self.pos[:, 1] = torch.linspace(-5, 5, 100) self.pos[:, 2] = torch.linspace(-5, 5, 100) self.pos = Variable(self.pos) self.pos.requires_grad = True self.x = self.pos[:, 0].detach().numpy() def test_ao(self): nzlm = np.linalg.norm(self.m.cart2sph_coeff(), axis=1) aovals = self.wf.ao(self.pos).detach().numpy() / nzlm aovals_ref = self.m.eval_ao('GTOval_cart', self.pos.detach().numpy()[:, :3]) for iorb in range(self.mol.basis.nao): if __PLOT__: plt.plot(self.x, aovals[:, 0, iorb]) plt.plot(self.x, aovals_ref[:, iorb]) plt.show() assert np.allclose(aovals[:, 0, iorb], aovals_ref[:, iorb]) def test_ao_deriv(self): nzlm = np.linalg.norm(self.m.cart2sph_coeff(), axis=1) daovals = self.wf.ao(self.pos, derivative=1).detach().numpy() / nzlm daovals_ref = self.m.eval_gto('GTOval_ip_cart', self.pos.detach().numpy()[:, :3]) daovals_ref = daovals_ref.sum(0) for iorb in range(self.mol.basis.nao): if __PLOT__: plt.plot(self.x, daovals[:, 0, iorb]) plt.plot(self.x, daovals_ref[:, iorb]) plt.show() assert np.allclose(daovals[:, 0, iorb], daovals_ref[:, iorb])