示例#1
0
def train_only():

    SIGMA = 10.0

    # Read training data from file
    X, dX, Q, E, F = get_data_from_file(FILENAME_TRAIN, n=40)

    offset = E.mean()
    E -= offset
    print(offset)

    F = np.concatenate(F)
    Y = np.concatenate((E, F.flatten()))

    print("Kernels ...")
    Kte = get_atomic_local_kernel(X, X, Q, Q, SIGMA)
    Kt = get_atomic_local_gradient_kernel(X, X, dX, Q, Q, SIGMA)

    C = np.concatenate((Kte, Kt))

    print("Alphas operator ...")
    alpha = svd_solve(C, Y, rcond=1e-11)

    np.save("data/training_alphas.npy", alpha)
    np.save("data/training_Q.npy", Q)
    np.save("data/training_X.npy", X)
示例#2
0
文件: train.py 项目: andersx/qml-ase
def train(dataname, n_train=100):

    SIGMA = 10.0

    filename_train = "data/" + dataname + "-train.npz"

    # Read training data from file
    X,  dX,  Q,  E,  F  = get_data_from_file(filename_train, n=n_train)

    offset = E.mean()
    E  -= offset
    print("OFFSET: ", offset)

    F = np.concatenate(F)
    Y = np.concatenate((E, F.flatten()))

    print("Generating Kernels ...")
    Kte = get_atomic_local_kernel(X, X,  Q, Q,  SIGMA)
    Kt = get_atomic_local_gradient_kernel(X, X,  dX,  Q, Q,  SIGMA)

    C = np.concatenate((Kte, Kt))

    print("Alphas operator ...")
    alpha = svd_solve(C, Y, rcond=1e-11)

    np.save("data/"+dataname+"_offset.npy", offset)
    np.save("data/"+dataname+"_sigma.npy", SIGMA)
    np.save("data/"+dataname+"_alphas.npy", alpha)
    np.save("data/"+dataname+"_Q.npy", Q)
    np.save("data/"+dataname+"_X.npy", X)

    return
示例#3
0
def predict(nuclear_charges, coordinates):
    """

    Given a query molecule (charges and coordinates) predict energy and forces

    """

    # Initialize training data (only need to do this once)
    alpha = np.load(FILENAME_ALPHAS)
    X = np.load(FILENAME_REPRESENTATIONS)
    Q = np.load(FILENAME_CHARGES)

    # Generate representation
    max_atoms = X.shape[1]
    (rep, drep) = generate_fchl_acsf(nuclear_charges,
                                     coordinates,
                                     gradients=True,
                                     pad=max_atoms)

    # Put data into arrays
    Qs = [nuclear_charges]
    Xs = np.array([rep])
    dXs = np.array([drep])

    # Get kernels
    Kse = get_atomic_local_kernel(X, Xs, Q, Qs, SIGMA)
    Ks = get_atomic_local_gradient_kernel(X, Xs, dXs, Q, Qs, SIGMA)

    # Offset from training
    offset = -97084.83100465109

    # Energy prediction
    energy_predicted = np.dot(Kse, alpha)[0] + offset

    energy_true = -97086.55524903

    print("True energy      %16.4f kcal/mol" % energy_true)
    print("Predicted energy %16.4f kcal/mol" % energy_predicted)

    # Force prediction
    forces_predicted = np.dot(Ks, alpha).reshape((len(nuclear_charges), 3))

    forces_true = np.array([[-66.66673100, 2.45752385, 49.92224945],
                            [-17.98600137, 68.72856500, -28.82689294],
                            [31.88432927, 8.98739402, -18.11946195],
                            [4.19798833, -31.31692744, 8.12825145],
                            [16.78395377, -24.76072606, -38.99054658],
                            [6.03046276, -7.24928076, -3.88797517],
                            [17.44954868, 0.21604968, 8.56118603],
                            [11.73901551, -19.38200606, 13.26191987],
                            [-3.43256595, 2.31940789, 9.95126984]])

    print("True forces [kcal/mol]")
    print(forces_true)
    print("Predicted forces [kcal/mol]")
    print(forces_predicted)

    return
示例#4
0
    def query(self, atoms=None, print_time=True):

        if print_time:
            start = time.time()

        # kcal/mol til ev
        # kcal/mol/aangstrom til ev / aangstorm
        conv_energy = 0.0433635093659
        conv_force = 0.0433635093659

        coordinates = atoms.get_positions()
        nuclear_charges = atoms.get_atomic_numbers()
        n_atoms = coordinates.shape[0]

        new_cut = 4.0

        cut_parameters = {
            "rcut": new_cut,
            "acut": new_cut,
            # "nRs2": int(24 * new_cut / 8.0),
            # "nRs3": int(20 * new_cut / 8.0),
        }

        rep, drep = generate_fchl_acsf(nuclear_charges,
                                       coordinates,
                                       gradients=True,
                                       elements=[1, 6, 8],
                                       pad=self.max_atoms,
                                       **cut_parameters)

        # Put data into arrays
        Qs = [nuclear_charges]
        Xs = np.array([rep], order="F")
        dXs = np.array([drep], order="F")

        # Get kernels
        Kse = get_atomic_local_kernel(self.repr, Xs, self.charges, Qs,
                                      self.sigma)
        Ks = get_atomic_local_gradient_kernel(self.repr, Xs, dXs, self.charges,
                                              Qs, self.sigma)

        # Energy prediction
        energy_predicted = np.dot(Kse, self.alphas)[0] + self.offset
        self.energy = energy_predicted * conv_energy

        # Force prediction
        forces_predicted = np.dot(Ks, self.alphas).reshape((n_atoms, 3))
        self.forces = forces_predicted * conv_force

        if print_time:
            end = time.time()
            print("qml query {:7.3f}s {:10.3f} ".format(
                end - start, energy_predicted))

        return
示例#5
0
def generate_kernel(X1, X2, dX, charges1, charges2, sigma=10.0, **kwargs):
    """
    x representations
    dx d_representations
    """

    Kte = get_atomic_local_kernel(X1, X2, charges1, charges2, sigma)
    Kt = get_atomic_local_gradient_kernel(X1, X2, dX, charges1, charges2,
                                          sigma)

    return Kte, Kt
示例#6
0
def get_kernel(X1, X2, charges1, charges2, sigma=1, mode="local"):
    """

    mode local or atomic
    """

    if len(X1.shape) > 2:

        K = get_atomic_local_kernel(X1, X2, charges1, charges2, sigma)

    else:

        K = laplacian_kernel(X2, X1, sigma)

    return K
示例#7
0
def train(dataname, n_train=100):

    SIGMA = 10.0

    # Read training data from file
    # X,  dX,  Q,  E,  F  = get_data_from_file(filename_train, n=n_train)

    Xall, dXall, Qall, Eall, Fall = csvdir_to_reps(dataname)

    if len(Eall) < n_train:
        print("Not enough training data for", n_train)
        exit()

    idx = list(range(len(Eall)))
    np.random.shuffle(idx)

    train = idx[:n_train]

    print(len(train))

    X = Xall[train]
    dX = dXall[train]
    Q = [Qall[i] for i in train]
    E = Eall[train]
    F = [Fall[i] for i in train]

    offset = 0.0
    print("OFFSET: ", offset)

    F = np.concatenate(F)
    Y = np.concatenate((E, F.flatten()))

    print("Generating Kernels ...")
    Kte = get_atomic_local_kernel(X, X, Q, Q, SIGMA)
    Kt = get_atomic_local_gradient_kernel(X, X, dX, Q, Q, SIGMA)

    C = np.concatenate((Kte, Kt))

    print("Alphas operator ...")
    alpha = svd_solve(C, Y, rcond=1e-11)

    np.save("data/" + dataname + "_offset.npy", offset)
    np.save("data/" + dataname + "_sigma.npy", SIGMA)
    np.save("data/" + dataname + "_alphas.npy", alpha)
    np.save("data/" + dataname + "_Q.npy", Q, allow_pickle=True)
    np.save("data/" + dataname + "_X.npy", X)

    return
    def query(self, atoms=None):

        if self.debug:
            start = time.time()

        # kcal/mol til ev
        # kcal/mol/aangstrom til ev / aangstorm
        conv_energy = 0.0433635093659
        conv_force = 0.0433635093659

        coordinates = atoms.get_positions()
        nuclear_charges = atoms.get_atomic_numbers()
        n_atoms = coordinates.shape[0]

        # Calculate representation for query molecule
        rep, drep = generate_fchl_acsf(nuclear_charges,
                                       coordinates,
                                       gradients=True,
                                       **self.parameters)

        # Put data into arrays
        Qs = [nuclear_charges]
        Xs = np.array([rep], order="F")
        dXs = np.array([drep], order="F")

        # Get kernels
        Kse = get_atomic_local_kernel(self.repr, Xs, self.charges, Qs,
                                      self.sigma)
        Ks = get_atomic_local_gradient_kernel(self.repr, Xs, dXs, self.charges,
                                              Qs, self.sigma)

        # Energy prediction
        energy_predicted = np.dot(Kse, self.alphas)[0] + self.offset
        self.energy = energy_predicted * conv_energy

        # Force prediction
        forces_predicted = np.dot(Ks, self.alphas).reshape((n_atoms, 3))
        self.forces = forces_predicted * conv_force

        if self.debug:
            end = time.time()
            print("fchl19 query {:7.3f}s {:10.3f} ".format(
                end - start, energy_predicted))

        return
示例#9
0
    def get_potential_energy(self, atoms=None, force_consistent=False):
        x = []
        disp_x = []
        q = []

        #		x1 = generate_fchl_acsf(atoms.get_atomic_numbers(), atoms.get_positions(), gradients=False, pad=9, elements=[1,6,7,9,17,35])
        x1 = generate_fchl_acsf(atoms.get_atomic_numbers(),
                                atoms.get_positions(),
                                gradients=False,
                                pad=self.nAtoms)
        x.append(x1)
        q.append(atoms.get_atomic_numbers())

        Xs = np.array(x)
        Qs = q

        Kse = get_atomic_local_kernel(self.X, Xs, self.Q, Qs, self.sigmas)
        energy = (float(np.dot(Kse, self.alphas))) * convback_E

        return energy
def train():
    #	print(" -> Start training")
    #	start = time()
    #	subprocess.Popen(("python3","model_training.py","train"))
    #	end = time()
    #
    #	total_runtime = end - start
    #
    #	print(" -> Training time: {:.3f}".format(total_runtime))
    #data = get_properties("energies.txt")
    data = get_properties("train")
    mols = []
    mols_pred = []

    SIGMA = 2.5  #float(sys.argv[1])

    for name in sorted(data.keys()):
        mol = qml.Compound()
        mol.read_xyz("xyz/" + name + ".xyz")

        # Associate a property (heat of formation) with the object
        mol.properties = data[name][0]
        mols.append(mol)

    shuffle(mols)

    #mols_train = mols[:400]
    #mols_test = mols[400:]

    # REPRESENTATIONS
    print("\n -> calculate representations")
    start = time()
    x = []
    disp_x = []
    f = []
    e = []
    q = []

    for mol in mols:
        (x1, dx1) = generate_fchl_acsf(mol.nuclear_charges,
                                       mol.coordinates,
                                       gradients=True,
                                       pad=23,
                                       elements=[1, 6, 7, 8, 16, 17])

        e.append(mol.properties)
        f.append(data[(mol.name)[4:-4]][1])
        x.append(x1)
        disp_x.append(dx1)
        q.append(mol.nuclear_charges)

    X_train = np.array(x)
    F_train = np.array(f)
    F_train *= -1
    E_train = np.array(e)
    dX_train = np.array(disp_x)
    Q_train = q

    E_mean = np.mean(E_train)

    E_train -= E_mean

    F_train = np.concatenate(F_train)

    end = time()

    print(end - start)
    print("")
    print(" -> calculating Kernels")

    start = time()
    Kte = get_atomic_local_kernel(X_train, X_train, Q_train, Q_train, SIGMA)
    #Kte_test = get_atomic_local_kernel(X_train,  X_test, Q_train,  Q_test,  SIGMA)

    Kt = get_atomic_local_gradient_kernel(X_train, X_train, dX_train, Q_train,
                                          Q_train, SIGMA)
    #Kt_test = get_atomic_local_gradient_kernel(X_train,  X_test, dX_test,  Q_train,  Q_test, SIGMA)

    C = np.concatenate((Kte, Kt))

    Y = np.concatenate((E_train, F_train.flatten()))
    end = time()
    print(end - start)
    print("")

    print("Alphas operator ...")
    start = time()
    alpha = svd_solve(C, Y, rcond=1e-12)
    end = time()
    print(end - start)
    print("")

    print("save X")
    np.save('X_active_learning.npy', X_train)
    #    with open("X_mp2.cpickle", 'wb') as f:
    #      cPickle.dump(X_train, f, protocol=2)

    print("save alphas")
    np.save('alphas_active_learning.npy', alpha)
    #    with open("alphas_mp2.cpickle", 'wb') as f:
    #      cPickle.dump(alpha, f, protocol=2)

    print("save Q")
    np.save('Q_active_learning.npy', Q_train)
    #    with open("Q_mp2.cpickle", 'wb') as f:
    #      cPickle.dump(Q_train, f, protocol=2)

    eYt = np.dot(Kte, alpha)
    fYt = np.dot(Kt, alpha)
    #eYt_test = np.dot(Kte_test, alpha)
    #fYt_test = np.dot(Kt_test, alpha)

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        E_train, eYt)
    print("TRAINING ENERGY   MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(E_train - eYt)), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        F_train.flatten(), fYt.flatten())
    print("TRAINING FORCE    MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
             (np.mean(np.abs(F_train.flatten() - fYt.flatten())), slope, intercept, r_value ))
示例#11
0
def train_alphas(reps, dreps, nuclear_charges, E, F, train_idx, parameters):

    print(reps.shape)

    all_idx = np.array(list(range(4001)))
    test_idx = np.array([i for i in all_idx if i not in train_idx])

    print(train_idx)
    print(test_idx)

    natoms = reps.shape[1]
    nmols = len(E)
    atoms = np.array([i for i in range(natoms * 3)])

    train_idx_force = np.array(
        [atoms + (3 * natoms) * j + nmols for j in train_idx]).flatten()
    test_idx_force = np.array(
        [atoms + (3 * natoms) * j + nmols for j in test_idx]).flatten()

    idx = np.concatenate((train_idx, train_idx_force))

    n_train = len(train_idx)
    n_test = len(test_idx)

    X = reps[train_idx]
    Xs = reps[test_idx]
    dX = dreps[train_idx]
    dXs = dreps[test_idx]
    Q = [nuclear_charges[i] for i in train_idx]
    Qs = [nuclear_charges[i] for i in test_idx]

    Ke = get_atomic_local_kernel(X, X, Q, Q, parameters["sigma"])
    Kf = get_atomic_local_gradient_kernel(X, X, dX, Q, Q, parameters["sigma"])

    C = np.concatenate((Ke, Kf))

    Kes = get_atomic_local_kernel(X, Xs, Q, Qs, parameters["sigma"])
    Kfs = get_atomic_local_gradient_kernel(X, Xs, dXs, Q, Qs,
                                           parameters["sigma"])

    Y = np.concatenate((E[train_idx], F[train_idx].flatten()))

    alphas = svd_solve(C, Y, rcond=parameters["llambda"])

    eYs = deepcopy(E[test_idx])
    fYs = deepcopy(F[test_idx]).flatten()

    eYss = np.dot(Kes, alphas)
    fYss = np.dot(Kfs, alphas)

    ermse_test = np.sqrt(np.mean(np.square(eYss - eYs)))
    emae_test = np.mean(np.abs(eYss - eYs))

    frmse_test = np.sqrt(np.mean(np.square(fYss - fYs)))
    fmae_test = np.mean(np.abs(fYss - fYs))

    schnet_score = 0.01 * sum(np.square(eYss - eYs))
    schnet_score += sum(np.square(fYss - fYs)) / natoms

    print("TEST  %5.2f  %.2E  %6.4e  %10.8f  %10.8f  %10.8f  %10.8f" % \
            (parameters["sigma"], parameters["llambda"], schnet_score, emae_test, ermse_test, fmae_test, frmse_test))

    return alphas
示例#12
0
    def query(self, atoms=None, print_time=True):

        if print_time:
            start = time.time()

        # kcal/mol til ev
        # kcal/mol/aangstrom til ev / aangstorm
        conv_energy = 1.0  #0.0433635093659
        conv_force = 1.0  # 0.0433635093659

        coordinates = atoms.get_positions()
        nuclear_charges = atoms.get_atomic_numbers()
        n_atoms = coordinates.shape[0]

        rep_start = time.time()

        rep, drep = generate_fchl_acsf(
            nuclear_charges,
            coordinates,
            gradients=True,
            elements=[1, 6, 8],
            pad=self.max_atoms,
        )

        Qs = [nuclear_charges]
        Xs = np.array([rep], order="F")
        dXs = np.array([drep], order="F")

        if self.reducer is not None:
            Xs = np.einsum("ijk,kl->ijl", Xs, self.reducer)
            dXs = np.einsum("ijkmn,kl->ijlmn", dXs, self.reducer)

        rep_end = time.time()

        kernel_start = time.time()
        # Ks = get_gp_kernel(self.repr, Xs, self.drepr, dXs, self.charges, Qs, self.sigma)

        Kse = get_atomic_local_kernel(self.repr, Xs, self.charges, Qs,
                                      self.sigma)
        Ksf = get_atomic_local_gradient_kernel(self.repr, Xs, dXs,
                                               self.charges, Qs, self.sigma)

        kernel_end = time.time()

        pred_start = time.time()
        # Energy prediction
        energy_predicted = np.dot(Kse, self.alphas)[0] + self.offset
        self.energy = energy_predicted * conv_energy

        # Force prediction
        forces_predicted = np.dot(Ksf, self.alphas).reshape((n_atoms, 3))
        self.forces = forces_predicted * conv_force

        pred_end = time.time()

        if print_time:
            end = time.time()
            # print("rep        ", rep_end - rep_start)
            # print("kernel     ", kernel_end - kernel_start)
            # print("prediciton ", pred_end - pred_start)
            # print("qml query {:7.3f}s {:10.3f} ".format(end-start, energy_predicted))

        return
示例#13
0
def predict_only():

    # Initialize training data (only need to do this once)
    alpha = np.load("data/training_alphas.npy")
    X = np.load("data/training_X.npy")
    Q = np.load("data/training_Q.npy")

    # Define a molecule
    nuclear_charges = np.array([6, 6, 8, 1, 1, 1, 1, 1, 1])
    coordinates = np.array([[0.07230959, 0.61441211, -0.03115568],
                            [-1.26644639, -0.27012846, -0.00720771],
                            [1.11516977, -0.30732869, 0.06414394],
                            [0.10673943, 1.44346835, -0.79573006],
                            [-0.02687486, 1.19350887, 0.98075343],
                            [-2.06614011, 0.38757505, 0.39276693],
                            [-1.68213881, -0.60620688, -0.97804526],
                            [-1.18668224, -1.07395366, 0.67075071],
                            [1.37492532, -0.56618891, -0.83172035]])

    # Generate representation
    max_atoms = X.shape[1]
    (rep, drep) = generate_fchl_acsf(nuclear_charges,
                                     coordinates,
                                     gradients=True,
                                     pad=max_atoms)

    # Put data into arrays
    Qs = [nuclear_charges]
    Xs = np.array([rep])
    dXs = np.array([drep])

    SIGMA = 10.0

    # Get kernels
    Kse = get_atomic_local_kernel(X, Xs, Q, Qs, SIGMA)
    Ks = get_atomic_local_gradient_kernel(X, Xs, dXs, Q, Qs, SIGMA)

    # Offset from training
    offset = -97084.83100465109

    # Energy prediction
    energy_predicted = np.dot(Kse, alpha)[0] + offset

    energy_true = -97086.55524903

    print("True energy      %16.4f kcal/mol" % energy_true)
    print("Predicted energy %16.4f kcal/mol" % energy_predicted)

    # Force prediction
    forces_predicted = np.dot(Ks, alpha).reshape((len(nuclear_charges), 3))

    forces_true = np.array([[-66.66673100, 2.45752385, 49.92224945],
                            [-17.98600137, 68.72856500, -28.82689294],
                            [31.88432927, 8.98739402, -18.11946195],
                            [4.19798833, -31.31692744, 8.12825145],
                            [16.78395377, -24.76072606, -38.99054658],
                            [6.03046276, -7.24928076, -3.88797517],
                            [17.44954868, 0.21604968, 8.56118603],
                            [11.73901551, -19.38200606, 13.26191987],
                            [-3.43256595, 2.31940789, 9.95126984]])

    print("True forces [kcal/mol]")
    print(forces_true)
    print("Predicted forces [kcal/mol]")
    print(forces_predicted)
示例#14
0
def test_fchl_acsf_operator_dft():

    SIGMA = 10.0

    Xall, dXall, Qall, Eall, Fall = csvdir_to_reps("csv_data")

    idx = list(range(len(Eall)))
    np.random.shuffle(idx)

    print(len(idx))
    train = idx[:100]
    test = idx[100:]
    print("train = ", len(train), "      test = ", len(test))

    X = Xall[train]
    dX = dXall[train]
    Q = [Qall[i] for i in train]
    E = Eall[train]
    F = [Fall[i] for i in train]

    Xs = Xall[test]
    dXs = dXall[test]
    Qs = [Qall[i] for i in test]
    Es = Eall[test]
    Fs = [Fall[i] for i in test]

    print("Representations ...")
    F = np.concatenate(F)
    Fs = np.concatenate(Fs)

    print("Kernels ...")
    Kte = get_atomic_local_kernel(X, X, Q, Q, SIGMA)
    Kse = get_atomic_local_kernel(X, Xs, Q, Qs, SIGMA)

    Kt = get_atomic_local_gradient_kernel(X, X, dX, Q, Q, SIGMA)
    Ks = get_atomic_local_gradient_kernel(X, Xs, dXs, Q, Qs, SIGMA)

    C = np.concatenate((Kte, Kt))
    Y = np.concatenate((E, F.flatten()))

    print("Alphas operator ...")
    alpha = svd_solve(C, Y, rcond=1e-11)

    eYt = np.dot(Kte, alpha)
    eYs = np.dot(Kse, alpha)

    fYt = np.dot(Kt, alpha)
    fYs = np.dot(Ks, alpha)

    print(
        "==============================================================================================="
    )
    print(
        "====  OPERATOR, FORCE + ENERGY  ==============================================================="
    )
    print(
        "==============================================================================================="
    )

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        E, eYt)
    print("TRAINING ENERGY   MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(E - eYt)), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        F.flatten(), fYt.flatten())
    print("TRAINING FORCE    MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
             (np.mean(np.abs(F.flatten() - fYt.flatten())), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        Es.flatten(), eYs.flatten())
    print("TEST     ENERGY   MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(Es - eYs)), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        Fs.flatten(), fYs.flatten())
    print("TEST     FORCE    MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(Fs.flatten() - fYs.flatten())), slope, intercept, r_value ))
示例#15
0
def test_fchl_acsf_operator_ccsd():

    SIGMA = 10.0

    X, dX, Q, E, F = get_data_from_file(FILENAME_TRAIN, n=40)
    Xs, dXs, Qs, Es, Fs = get_data_from_file(FILENAME_TEST, n=20)

    offset = E.mean()
    E -= offset
    Es -= offset

    print("Representations ...")
    F = np.concatenate(F)
    Fs = np.concatenate(Fs)

    print("Kernels ...")
    Kte = get_atomic_local_kernel(X, X, Q, Q, SIGMA)
    Kse = get_atomic_local_kernel(X, Xs, Q, Qs, SIGMA)

    Kt = get_atomic_local_gradient_kernel(X, X, dX, Q, Q, SIGMA)
    Ks = get_atomic_local_gradient_kernel(X, Xs, dXs, Q, Qs, SIGMA)

    C = np.concatenate((Kte, Kt))
    Y = np.concatenate((E, F.flatten()))

    print("Alphas operator ...")
    alpha = svd_solve(C, Y, rcond=1e-11)

    eYt = np.dot(Kte, alpha)
    eYs = np.dot(Kse, alpha)

    fYt = np.dot(Kt, alpha)
    fYs = np.dot(Ks, alpha)

    print(
        "==============================================================================================="
    )
    print(
        "====  OPERATOR, FORCE + ENERGY  ==============================================================="
    )
    print(
        "==============================================================================================="
    )

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        E, eYt)
    print("TRAINING ENERGY   MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(E - eYt)), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        F.flatten(), fYt.flatten())
    print("TRAINING FORCE    MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
             (np.mean(np.abs(F.flatten() - fYt.flatten())), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        Es.flatten(), eYs.flatten())
    print("TEST     ENERGY   MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(Es - eYs)), slope, intercept, r_value ))

    slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(
        Fs.flatten(), fYs.flatten())
    print("TEST     FORCE    MAE = %10.4f  slope = %10.4f  intercept = %10.4f  r^2 = %9.6f" % \
            (np.mean(np.abs(Fs.flatten() - fYs.flatten())), slope, intercept, r_value ))