示例#1
0
文件: legacy.py 项目: kostyfisik/qpms
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
    """
    r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
    the result indices are in the source-destination order
    TODO
    """
    my, ny = get_mn_y(nmax)
    nelem = len(my)
    #source to origin
    so_sph = cart2sph(-source_cart)
    kd_so = k_e * so_sph[0]
    θ_so = so_sph[1]
    φ_so = so_sph[2]
    # Decomposition of the source N_0,1, N_-1,1, and N_1,1 in the nanoparticle center
    p_0 = np.empty((nelem), dtype=np.complex_)
    q_0 = np.empty((nelem), dtype=np.complex_)
    p_minus = np.empty((nelem), dtype=np.complex_)
    q_minus = np.empty((nelem), dtype=np.complex_)
    p_plus = np.empty((nelem), dtype=np.complex_)
    q_plus = np.empty((nelem), dtype=np.complex_)
    for y in range(nelem):
        m = my[y]
        n = ny[y]
        p_0[y]     = Ã(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
        q_0[y]     = B̃(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat)
        p_minus[y] = Ã(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
        q_minus[y] = B̃(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat)
        p_plus[y]  = Ã(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
        q_plus[y]  = B̃(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat)
    a_0 = RV[ny] * p_0
    b_0 = RH[ny] * q_0
    a_plus = RV[ny] * p_plus
    b_plus = RH[ny] * q_plus
    a_minus = RV[ny] * p_minus
    b_minus = RH[ny] * q_minus
    orig2dest_sph = cart2sph(dest_cart)
    orig2dest_sph[0] = k_e*orig2dest_sph[0]
    M_dest_y, N_dest_y = vswf_yr1(orig2dest_sph,nmax,J=J_scat)
    # N.B. these are in the local cartesian coordinates (r̂,θ̂,φ̂)
    N_dest_0     = np.sum(a_0[:,ň]    * N_dest_y, axis=-2)
    M_dest_0     = np.sum(b_0[:,ň]    * M_dest_y, axis=-2)
    N_dest_plus  = np.sum(a_plus[:,ň] * N_dest_y, axis=-2)
    M_dest_plus  = np.sum(b_plus[:,ň] * M_dest_y, axis=-2)
    N_dest_minus = np.sum(a_minus[:,ň]* N_dest_y, axis=-2)
    M_dest_minus = np.sum(b_minus[:,ň]* M_dest_y, axis=-2)
    prefac = math.sqrt(1/(4*3*π))#/ε_0
    G_sourcez_dest = prefac * (N_dest_0+M_dest_0)
    G_sourcex_dest = prefac * (N_dest_minus+M_dest_minus-N_dest_plus-M_dest_plus)/math.sqrt(2)
    G_sourcey_dest = prefac * (N_dest_minus+M_dest_minus+N_dest_plus+M_dest_plus)/(1j*math.sqrt(2))
    G_source_dest = np.array([G_sourcex_dest, G_sourcey_dest, G_sourcez_dest])
    # To global cartesian coordinates:
    G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
    return G_source_dest
示例#2
0
 def build_interaction_matrix(self,verbose = False):
     btime = _time_b(verbose)
     N = self.N
     my, ny = get_mn_y(self.lMax)
     nelem = len(my)
     leftmatrix = np.zeros((N,2,nelem,N,2,nelem), dtype=complex)
     sbtime = _time_b(verbose, step = 'Calculating interparticle translation coefficients')
     """
     for i in range(N):
         for j in range(N):
             for yi in range(nelem):
                 for yj in range(nelem):
                     if(i != j):
                         d_i2j = cart2sph(self.positions[j]-self.positions[i])
                         a = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
                         b = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
                         leftmatrix[j,0,yj,i,0,yi] = a
                         leftmatrix[j,1,yj,i,1,yi] = a
                         leftmatrix[j,0,yj,i,1,yi] = b
                         leftmatrix[j,1,yj,i,0,yi] = b
     """
     kdji = cart2sph(self.positions[:,nx,:] - self.positions[nx,:,:])
     kdji[:,:,0] *= self.k_0
     # get_AB array structure: [j,yj,i,yi]
     a, b = self.tc.get_AB(my[nx,:,nx,nx],ny[nx,:,nx,nx],my[nx,nx,nx,:],ny[nx,nx,nx,:],
             (kdji[:,:,0])[:,nx,:,nx], (kdji[:,:,1])[:,nx,:,nx], (kdji[:,:,2])[:,nx,:,nx],
             False,self.J_scat)
     mask = np.broadcast_to(np.eye(N,dtype=bool)[:,nx,:,nx],(N,nelem,N,nelem))
     a[mask] = 0 # no self-translations
     b[mask] = 0 
     leftmatrix[:,0,:,:,0,:] = a
     leftmatrix[:,1,:,:,1,:] = a
     leftmatrix[:,0,:,:,1,:] = b
     leftmatrix[:,1,:,:,0,:] = b
     _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients')
     # at this point, leftmatrix is the translation matrix
     n2id = np.identity(2*nelem)
     n2id.shape = (2,nelem,2,nelem)
     for j in range(N):
         leftmatrix[j] = - np.tensordot(self.TMatrices[j],leftmatrix[j],axes=([-2,-1],[0,1]))
         # at this point, jth row of leftmatrix is that of -MT
         leftmatrix[j,:,:,j,:,:] += n2id
         # now we are done, 1-MT
     leftmatrix.shape=(N*2*nelem,N*2*nelem)
     self.interaction_matrix = leftmatrix
     _time_e(btime, verbose)
示例#3
0
 def __init__(self, positions, TMatrices, k_0, lMax = None, verbose=False, J_scat=3):
     Scattering.__init__(self, positions, TMatrices, k_0, lMax, verbose, J_scat)
     #TODO some checks on TMatrices symmetry
     self.TE_yz = np.arange(self.nelem)
     self.TM_yz = self.TE_yz
     self.my, self.ny = get_mn_y(self.lMax)
     self.TE_NMz = (self.my + self.ny) % 2
     self.TM_NMz = 1 - self.TE_NMz
     self.tc = trans_calculator(self.lMax)
     # TODO možnost zadávat T-matice rovnou ve zhuštěné podobě
     TMatrices_TE = TMatrices[...,self.TE_NMz[:,nx],self.TE_yz[:,nx],self.TE_NMz[nx,:],self.TE_yz[nx,:]]
     TMatrices_TM = TMatrices[...,self.TM_NMz[:,nx],self.TM_yz[:,nx],self.TM_NMz[nx,:],self.TM_yz[nx,:]]
     self.TMatrices_TE = np.broadcast_to(TMatrices_TE, (self.N, self.nelem, self.nelem))
     self.TMatrices_TM = np.broadcast_to(TMatrices_TM, (self.N, self.nelem, self.nelem))
     self.prepared_TE = False
     self.prepared_TM = False
     self.interaction_matrix_TE = None
     self.interaction_matrix_TM= None
示例#4
0
 def build_interaction_matrix(self,TE_or_TM = None, verbose = False):
     #None means both
     btime = _time_b(verbose)
     N = self.N
     my, ny = get_mn_y(self.lMax)
     nelem = len(my)
     idm = np.identity(nelem)
     if (TE_or_TM == 0):
         EoMl = (0,)
     elif (TE_or_TM == 1):
         EoMl = (1,)
     elif (TE_or_TM is None):
         EoMl = (0,1)
     sbtime = _time_b(verbose, step = 'Calculating interparticle translation coefficients')
     kdji = cart2sph(self.positions[:,nx,:] - self.positions[nx,:,:], allow2d=True)
     kdji[:,:,0] *= self.k_0
     # get_AB array structure: [j,yj,i,yi]
     # FIXME I could save some memory by calculating only half of these coefficients
     a, b = self.tc.get_AB(my[nx,:,nx,nx],ny[nx,:,nx,nx],my[nx,nx,nx,:],ny[nx,nx,nx,:],
             (kdji[:,:,0])[:,nx,:,nx], (kdji[:,:,1])[:,nx,:,nx], (kdji[:,:,2])[:,nx,:,nx],
             False,self.J_scat)
     mask = np.broadcast_to(np.eye(N,dtype=bool)[:,nx,:,nx],(N,nelem,N,nelem))
     a[mask] = 0 # no self-translations
     b[mask] = 0
     if np.isnan(np.min(a)) or np.isnan(np.min(b)):
         warnings.warn("Some of the translation coefficients is a NaN. Expect invalid results.")
     _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients')
     for EoM in EoMl:
         leftmatrix = np.zeros((N,nelem,N,nelem), dtype=complex)
         y = np.arange(nelem)
         yi = y[nx,nx,nx,:]
         yj = y[nx,:,nx,nx]
         mask = np.broadcast_to((((yi - yj) % 2) == 0),(N,nelem,N,nelem))
         leftmatrix[mask] = a[mask]
         mask = np.broadcast_to((((yi - yj) % 2) != 0),(N,nelem,N,nelem))
         leftmatrix[mask] = b[mask]
         """ # we use to calculate the AB coefficients here
         for i in range(N):
             for j in range(i):
                 for yi in range(nelem):
                     for yj in range(nelem):
                         d_i2j = cart2sph(self.positions[j]-self.positions[i])
                         if ((yi - yj) % 2) == 0:
                             tr = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
                         else:
                             tr = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat)
                         leftmatrix[j,yj,i,yi] = tr
                         leftmatrix[i,yi,j,yj] = tr if (0 == (my[yj]+my[yi]) % 2) else -tr
         _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients, T%s part' % ('M' if EoM else 'E'))
         """
         for j in range(N):
             leftmatrix[j] = - np.tensordot(self.TMatrices_TM[j] if EoM else self.TMatrices_TE[j],leftmatrix[j],
                     axes = ([-1],[0]))
             leftmatrix[j,:,j,:] += idm
         leftmatrix.shape = (self.N*self.nelem, self.N*self.nelem)
         if np.isnan(np.min(leftmatrix)):
             warnings.warn("Interaction matrix contains some NaNs. Expect invalid results.")
         if EoM == 0:
             self.interaction_matrix_TE = leftmatrix
         if EoM == 1:
             self.interaction_matrix_TM = leftmatrix
     a = None
     b = None
     _time_e(btime, verbose)
示例#5
0
文件: legacy.py 项目: kostyfisik/qpms
def hexlattice_get_AB(lMax, k_hexside, maxlayer, circular=True, return_points = True, J_scat=3):
    params = {
        'lMax' : lMax,
        'k_hexside' : k_hexside,
        'maxlayer' : maxlayer,
        'circular' : circular,
        'savepointinfo' : return_points, # should I delete this key?
        'J_scat' : J_scat
    }
    tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
    tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
    my, ny = get_mn_y(lMax)
    nelem = len(my)
    a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    
    k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
    tc = trans_calculator(lMax)
    
    y = np.arange(nelem)

    points = tpdict['points'][tpdict['nmi']]
    d_i2j = cart2sph(points)
    a_self_nm, b_self_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)

    points = tpdict['points'][tpdict['mi'][0]]
    d_i2j = cart2sph(points)
    a_self_m0, b_self_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
   
    points = tphcdict['points'][tphcdict['nmi']]
    d_i2j = cart2sph(points)
    a_d2u_nm, b_d2u_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
  
    points = tphcdict['points'][tphcdict['mi'][0]]
    d_i2j = cart2sph(points)
    a_d2u_m0, b_d2u_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
    '''
    tosave = {
        'a_self_nm' : a_self_nm,
        'a_self_m0' : a_self_m0,
        'b_self_nm' : b_self_nm,
        'b_self_m0' : b_self_m0,
        'a_d2u_nm' : a_d2u_nm,
        'a_d2u_m0' : a_d2u_m0,
        'b_d2u_nm' : b_d2u_nm,
        'b_d2u_m0' : b_d2u_m0,
        'precalc_params' : params
    }
    if savepointinfo:
        tosave['tp_points'] = tpdict['points'],
        tosave['tp_si'] = tpdict['si'],
        tosave['tp_mi'] = tpdict['mi'],
        tosave['tp_nmi'] = tpdict['nmi']
        tosave['tphc_points'] = tphcdict['points'],
        tosave['tphc_ti'] = tphcdict['ti'],
        tosave['tphc_mi'] = tphcdict['mi'],
        tosave['tphc_nmi'] = tphcdict['nmi']
    np.savez(file, **tosave)
    '''
    self_tr = tpdict['points'] 
    d2u_tr = tphcdict['points']
    if len(self_tr.shape)>2:
        self_tr = np.reshape(self_tr, self_tr.shape[1::])
    if len(d2u_tr.shape)>2:
        d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::])
    u2d_tr = -d2u_tr
    a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
    b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
    a_d2u  = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
    b_d2u  = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
    a_self[tpdict['nmi']]=a_self_nm
    a_self[tpdict['mi'][0]]=a_self_m0
    b_self[tpdict['nmi']]=b_self_nm
    b_self[tpdict['mi'][0]]=b_self_m0
    mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2]
    a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    for i in range(1,6):
        a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
        b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
    a_d2u[tphcdict['nmi']]=a_d2u_nm
    a_d2u[tphcdict['mi'][0]]=a_d2u_m0
    b_d2u[tphcdict['nmi']]=b_d2u_nm
    b_d2u[tphcdict['mi'][0]]=b_d2u_m0
    mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2]
    a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    for i in (1,-1):
        a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
        b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
    a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx])
    b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx])
    d = {
        'a_self' : a_self,
        'b_self' : b_self,
        'a_d2u'  : a_d2u,
        'b_d2u'  : b_d2u,
        'a_u2d'  : a_u2d,
        'b_u2d'  : b_u2d,
    }
    for k in params.keys():
        d[k] = params[k]
    if return_points:
        d['d2u_tr'] = tphcdict['points']
        d['u2d_tr'] = -tphcdict['points']
        d['self_tr'] = tpdict['points']
    return d
示例#6
0
文件: legacy.py 项目: kostyfisik/qpms
def hexlattice_precalc_AB_loadunwrap(file, tpdict = None, tphcdict = None, return_points = False):
    npz = np.load(file)
    precalc_params = npz['precalc_params'][()]
    my, ny = get_mn_y(precalc_params['lMax'])
    nelem = len(my)
    # this I should have made more universal...
    if precalc_params['savepointinfo']:
        if not tpdict:
            tpdict = {
                'points' : npz['tp_points'],
                'si' : npz['tp_si'],
                'mi' : npz['tp_mi'],
                'nmi' : npz['tp_nmi'],
            }
        if not tphcdict:
            tphcdict = {
                'points' : npz['tphc_points'],
                'ti' : npz['tphc_ti'],
                'mi' : npz['tphc_mi'],
                'nmi' : npz['tphc_nmi']            
        }
    else:
        if not tpdict:
            tpdict = generate_trianglepoints(maxlayer = precalc_params['maxlayer'], v3d=True, 
                                             circular=precalc_params['circular'], sixthindices=True, mirrorindices=True)
        if not tphcdict:
            tphcdict = generate_trianglepoints_hexcomplement(maxlayer=precalc_params['maxlayer'], v3d=True, 
                                                             circular=precalc_params['circular'], thirdindices=True, mirrorindices=True)
        
    # For some obscure reason, I keep getting trailing single-dimension in the beginning for these arrays
    for a in (tpdict['points'], tphcdict['points'], tpdict['si'], tpdict['mi'],
             tphcdict['ti'], tphcdict['mi']):
        if len(a.shape) > 2:
            a.shape = a.shape[1::] 
        
    self_tr = tpdict['points'] 
    d2u_tr = tphcdict['points']
    if len(self_tr.shape)>2:
        self_tr = np.reshape(self_tr, self_tr.shape[1::])
    if len(d2u_tr.shape)>2:
        d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::])
    u2d_tr = -d2u_tr
    a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
    b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
    a_d2u  = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
    b_d2u  = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
    a_self[tpdict['nmi']]=npz['a_self_nm']
    a_self[tpdict['mi'][0]]=npz['a_self_m0']
    b_self[tpdict['nmi']]=npz['b_self_nm']
    b_self[tpdict['mi'][0]]=npz['b_self_m0']
    mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2]
    a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    for i in range(1,6):
        a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
        b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
    a_d2u[tphcdict['nmi']]=npz['a_d2u_nm']
    a_d2u[tphcdict['mi'][0]]=npz['a_d2u_m0']
    b_d2u[tphcdict['nmi']]=npz['b_d2u_nm']
    b_d2u[tphcdict['mi'][0]]=npz['b_d2u_m0']
    mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2]
    a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
    for i in (1,-1):
        a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
        b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
    a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx])
    b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx])
    d = {
        'a_self' : a_self,
        'b_self' : b_self,
        'a_d2u'  : a_d2u,
        'b_d2u'  : b_d2u,
        'a_u2d'  : a_u2d,
        'b_u2d'  : b_u2d,
    }
    for k in precalc_params.keys():
        d[k] = precalc_params[k]
    if return_points:
        d['d2u_tr'] = tphcdict['points']
        d['u2d_tr'] = -tphcdict['points']
        d['self_tr'] = tpdict['points']
    return d
示例#7
0
文件: legacy.py 项目: kostyfisik/qpms
def hexlattice_precalc_AB_save_purepy(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
    params = {
        'lMax' : lMax,
        'k_hexside' : k_hexside,
        'maxlayer' : maxlayer,
        'circular' : circular,
        'savepointinfo' : savepointinfo,
        'J_scat' : J_scat
    }
    tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
    tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
    my, ny = get_mn_y(lMax)
    nelem = len(my)
    a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    
    k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
    
    points = tpdict['points'][tpdict['nmi']]
    for j in range(points.shape[0]):
        d_i2j = cart2sph(points[j])
        for yi in range(nelem):
            for yj in range(nelem):
                a_self_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
                b_self_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
    points = tpdict['points'][tpdict['mi'][0]]
    for j in range(points.shape[0]):
        d_i2j = cart2sph(points[j])
        for yi in range(nelem):
            for yj in range(nelem):
                a_self_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
                b_self_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
    points = tphcdict['points'][tphcdict['nmi']]
    for j in range(points.shape[0]):
        d_i2j = cart2sph(points[j])
        for yi in range(nelem):
            for yj in range(nelem):
                a_d2u_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
                b_d2u_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
    points = tphcdict['points'][tphcdict['mi'][0]]
    for j in range(points.shape[0]):
        d_i2j = cart2sph(points[j])
        for yi in range(nelem):
            for yj in range(nelem):
                a_d2u_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
                b_d2u_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat)
    tosave = {
        'a_self_nm' : a_self_nm,
        'a_self_m0' : a_self_m0,
        'b_self_nm' : b_self_nm,
        'b_self_m0' : b_self_m0,
        'a_d2u_nm' : a_d2u_nm,
        'a_d2u_m0' : a_d2u_m0,
        'b_d2u_nm' : b_d2u_nm,
        'b_d2u_m0' : b_d2u_m0,
        'precalc_params' : params
    }
    if savepointinfo:
        tosave['tp_points'] = tpdict['points'],
        tosave['tp_si'] = tpdict['si'],
        tosave['tp_mi'] = tpdict['mi'],
        tosave['tp_nmi'] = tpdict['nmi']
        tosave['tphc_points'] = tphcdict['points'],
        tosave['tphc_ti'] = tphcdict['ti'],
        tosave['tphc_mi'] = tphcdict['mi'],
        tosave['tphc_nmi'] = tphcdict['nmi']
    np.savez(file, **tosave)
示例#8
0
文件: legacy.py 项目: kostyfisik/qpms
def hexlattice_precalc_AB_save2(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
    params = {
        'lMax' : lMax,
        'k_hexside' : k_hexside,
        'maxlayer' : maxlayer,
        'circular' : circular,
        'savepointinfo' : savepointinfo,
        'J_scat' : J_scat
    }
    tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
    tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
    my, ny = get_mn_y(lMax)
    nelem = len(my)
    a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
    a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
    a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
    
    k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
    tc = trans_calculator(lMax)
    
    y = np.arange(nelem)

    points = tpdict['points'][tpdict['nmi']]
    d_i2j = cart2sph(points)
    a_self_nm, b_self_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)

    points = tpdict['points'][tpdict['mi'][0]]
    d_i2j = cart2sph(points)
    a_self_m0, b_self_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
   
    points = tphcdict['points'][tphcdict['nmi']]
    d_i2j = cart2sph(points)
    a_d2u_nm, b_d2u_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
  
    points = tphcdict['points'][tphcdict['mi'][0]]
    d_i2j = cart2sph(points)
    a_d2u_m0, b_d2u_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat)
  
    tosave = {
        'a_self_nm' : a_self_nm,
        'a_self_m0' : a_self_m0,
        'b_self_nm' : b_self_nm,
        'b_self_m0' : b_self_m0,
        'a_d2u_nm' : a_d2u_nm,
        'a_d2u_m0' : a_d2u_m0,
        'b_d2u_nm' : b_d2u_nm,
        'b_d2u_m0' : b_d2u_m0,
        'precalc_params' : params
    }
    if savepointinfo:
        tosave['tp_points'] = tpdict['points'],
        tosave['tp_si'] = tpdict['si'],
        tosave['tp_mi'] = tpdict['mi'],
        tosave['tp_nmi'] = tpdict['nmi']
        tosave['tphc_points'] = tphcdict['points'],
        tosave['tphc_ti'] = tphcdict['ti'],
        tosave['tphc_mi'] = tphcdict['mi'],
        tosave['tphc_nmi'] = tphcdict['nmi']
    np.savez(file, **tosave)
示例#9
0
文件: legacy.py 项目: kostyfisik/qpms
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1, 
        return_pq= False, return_xy = False, watch_time = False):
    """
    Solves the plane wave linear scattering problem for a rectangular array of particles
    for one frequency and constant exciting spherical waves throughout the array.
    
    Parameters
    ----------
    omega : positive number
        The frequency of the field.
    epsilon_b : complex number
        Permittivity of the background medium (which has to be isotropic).
    xN, yN : positive integers
        Particle numbers in the x and y dimensions
    xd, yd : positive numbers
        Periodicities in the x and y direction
    TMatrices : (xN, yN,2,nelem,2,nelem) or compatible or (2,nelem,2,nelem)
        The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle.
        If all the particles are identical and equally oriented, only one T-matrix can be given.
        nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering
        is calculated.
        Electric wave index is 0, magnetic wave index is 1.
    pq_0_c : (nelem)-shaped complex array or compatible
        The initial excitation coefficients for the ("complex") multipole waves, in Taylor's convention.
    return_pq : bool NOT IMPLEMENTED
        Return also the multipole decomposition coefficients of the field incoming to each
        particle (inc. the field scattered from other particles.
    return_xy : bool
        Return also the cartesian x, y positions of the particles. 
    watch_time : bool
        Inform about the progress on stderr
        
    Returns
    -------
    ab : (nelem, xN, yN, 2, nelem)-shaped complex array
        The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle.
        If none of return_pq or return_xy is set, the array is not enclosed in a tuple.
    pq : (nelem, xN, yN, 2, nelem)-shaped complex array NOT IMPLEMENTED
        The p (electric wave), q (magnetic wave) coefficients of the total exciting field
        for each particle (including the field scattered from other particles)
    x, y : (xN, yN)-shaped real array
        The x,y positions of the nanoparticles.
    """
    if (watch_time):
        timec = time.time()
        print('%.4f: running scatter_plane_wave_rectarray' % timec, file = sys.stderr)
        sys.stderr.flush()
    nelem = TMatrices.shape[-1]
    if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])):
        raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),))
    lMax = nelem2lMax(nelem)
    if not lMax:
        raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem)
    if (watch_time):
        print('xN = %d, yN = %d, lMax = %d' % (xN, yN, lMax), file = sys.stderr)
        sys.stderr.flush()
    # TODO perhaps more checks.
    k_out = omega * math.sqrt(epsilon_b) / c # wave number
    my, ny = get_mn_y(lMax)
    N = yN * xN
    
    J_scat=3
    J_ext=1
    
    # Do something with this ugly indexing crap
    xind, yind = np.meshgrid(np.arange(xN),np.arange(yN), indexing='ij')
    xind = xind.flatten()
    yind = yind.flatten()
    xyind = np.stack((xind, yind, np.zeros((xind.shape),dtype=int)),axis=-1)
    cart_lattice=xyind * np.array([xd, yd, 0])
    x=cart_lattice[:,0]
    y=cart_lattice[:,1]
    xyind = xyind[:,0:2]
    
    # Lattice speedup
    if (watch_time):
        timec = time.time()
        print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr)
        sys.stderr.flush()
    Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
    Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_)
    for yl in range(nelem): # source
        for xij in range(2*xN):
            for yij in range(2*yN):
                for yj in range(nelem): #dest
                  if((yij != yN) or (xij != xN)):
                    d_l2j = cart2sph(np.array([(xij-xN)*xd, (yij-yN)*yd, 0]))
                    Agrid[yj, xij, yij, yl] = Ã(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)
                    Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat)

    # Translation coefficient matrix T
    if (watch_time):
        timecold = timec
        timec = time.time()
        print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix' 
                % (timec, timec-timecold), file = sys.stderr)
        sys.stderr.flush()
    transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_)
    for l in range(N):
        xil, yil = xyind[l]
        for j in range(N):
            xij, yij = xyind[j]
            if (l!=j):
                        transmat[j,0,:,l,0,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
                        transmat[j,0,:,l,1,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
                        transmat[j,1,:,l,0,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :]
                        transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :]
    Agrid = None
    Bgrid = None
    if (watch_time):
        timecold = timec
        timec = time.time()
        print('%4f: translation matrix filled (elapsed %.2f s), building the interaction matrix' 
                % (timec, timec-timecold), file=sys.stderr)
        sys.stderr.flush()

    # Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-)
    MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_)
    
    TMatrices = np.broadcast_to(TMatrices, (xN, yN, 2, nelem, 2, nelem))
    for j in range(N): # I wonder how this can be done without this loop...
        xij, yij = xyind[j]
        MT[j] = np.tensordot(TMatrices[xij, yij],transmat[j],axes=([-2,-1],[0,1]))
    MT.shape = (N*2*nelem, N*2*nelem)
    leftmatrix = np.identity(N*2*nelem) - MT
    MT = None
    if (watch_time):
        timecold = timec
        timec = time.time()
        print('%.4f: interaction matrix complete (elapsed %.2f s)' % (timec, timec-timecold),
                file=sys.stderr)
        sys.stderr.flush()

    # А ну, чики-брики и в дамки!
    if watch_time:
        timecold = time.time()
        print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr)
        sys.stderr.flush()
    lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True)
    leftmatrix = None
    if watch_time:
        timec = time.time()
        print('%.4f: factorization complete (elapsed %.2f s)' % (timec, timec-timecold),
                file = sys.stderr)
        print('%.4f: solving the scattering problem for %d incoming multipoles' % (timec, nelem*2),
                file=sys.stderr)
        sys.stderr.flush()
        timecold = timec
    
    if(pq_0_c == 1):
        pq_0_c = np.full((2,nelem),1)
    ab = np.empty((2,nelem,N*2*nelem), dtype=complex)
    for N_or_M in range(2):
      for yy in range(nelem):
        pq_0 = np.zeros((2,nelem), dtype=np.complex_)
        pq_0[N_or_M,yy] = pq_0_c[N_or_M,yy]
        pq_0 = np.broadcast_to(pq_0, (N, 2, nelem))
        MP_0 = np.empty((N,2,nelem),dtype=np.complex_)
        for j in range(N): # I wonder how this can be done without this loop...
            xij, yij = xyind[j]
            MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1]))
        MP_0.shape = (N*2*nelem,)

        ab[N_or_M, yy] = scipy.linalg.lu_solve(lupiv, MP_0)
    ab.shape = (2,nelem, xN, yN, 2, nelem)
    if watch_time:
        timec = time.time()
        print('%.4f: done (elapsed %.2f s)' % (timec, timec-timecold),file = sys.stderr)
        sys.stderr.flush()
    if not (return_pq + return_xy):
        return ab
    returnlist = [ab]
    if (return_pq):
        warnings.warn("return_pq not implemented, ignoring")
        # returnlist.append(pq_arr)
    if (return_xy):
        returnlist.append(x)
        returnlist.append(y)
    return tuple(returnlist)