def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3): """ r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates the result indices are in the source-destination order TODO """ my, ny = get_mn_y(nmax) nelem = len(my) #source to origin so_sph = cart2sph(-source_cart) kd_so = k_e * so_sph[0] θ_so = so_sph[1] φ_so = so_sph[2] # Decomposition of the source N_0,1, N_-1,1, and N_1,1 in the nanoparticle center p_0 = np.empty((nelem), dtype=np.complex_) q_0 = np.empty((nelem), dtype=np.complex_) p_minus = np.empty((nelem), dtype=np.complex_) q_minus = np.empty((nelem), dtype=np.complex_) p_plus = np.empty((nelem), dtype=np.complex_) q_plus = np.empty((nelem), dtype=np.complex_) for y in range(nelem): m = my[y] n = ny[y] p_0[y] = Ã(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat) q_0[y] = B̃(m,n, 0,1,kd_so,θ_so,φ_so,False,J=J_scat) p_minus[y] = Ã(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat) q_minus[y] = B̃(m,n,-1,1,kd_so,θ_so,φ_so,False,J=J_scat) p_plus[y] = Ã(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat) q_plus[y] = B̃(m,n, 1,1,kd_so,θ_so,φ_so,False,J=J_scat) a_0 = RV[ny] * p_0 b_0 = RH[ny] * q_0 a_plus = RV[ny] * p_plus b_plus = RH[ny] * q_plus a_minus = RV[ny] * p_minus b_minus = RH[ny] * q_minus orig2dest_sph = cart2sph(dest_cart) orig2dest_sph[0] = k_e*orig2dest_sph[0] M_dest_y, N_dest_y = vswf_yr1(orig2dest_sph,nmax,J=J_scat) # N.B. these are in the local cartesian coordinates (r̂,θ̂,φ̂) N_dest_0 = np.sum(a_0[:,ň] * N_dest_y, axis=-2) M_dest_0 = np.sum(b_0[:,ň] * M_dest_y, axis=-2) N_dest_plus = np.sum(a_plus[:,ň] * N_dest_y, axis=-2) M_dest_plus = np.sum(b_plus[:,ň] * M_dest_y, axis=-2) N_dest_minus = np.sum(a_minus[:,ň]* N_dest_y, axis=-2) M_dest_minus = np.sum(b_minus[:,ň]* M_dest_y, axis=-2) prefac = math.sqrt(1/(4*3*π))#/ε_0 G_sourcez_dest = prefac * (N_dest_0+M_dest_0) G_sourcex_dest = prefac * (N_dest_minus+M_dest_minus-N_dest_plus-M_dest_plus)/math.sqrt(2) G_sourcey_dest = prefac * (N_dest_minus+M_dest_minus+N_dest_plus+M_dest_plus)/(1j*math.sqrt(2)) G_source_dest = np.array([G_sourcex_dest, G_sourcey_dest, G_sourcez_dest]) # To global cartesian coordinates: G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1) return G_source_dest
def build_interaction_matrix(self,verbose = False): btime = _time_b(verbose) N = self.N my, ny = get_mn_y(self.lMax) nelem = len(my) leftmatrix = np.zeros((N,2,nelem,N,2,nelem), dtype=complex) sbtime = _time_b(verbose, step = 'Calculating interparticle translation coefficients') """ for i in range(N): for j in range(N): for yi in range(nelem): for yj in range(nelem): if(i != j): d_i2j = cart2sph(self.positions[j]-self.positions[i]) a = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) b = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) leftmatrix[j,0,yj,i,0,yi] = a leftmatrix[j,1,yj,i,1,yi] = a leftmatrix[j,0,yj,i,1,yi] = b leftmatrix[j,1,yj,i,0,yi] = b """ kdji = cart2sph(self.positions[:,nx,:] - self.positions[nx,:,:]) kdji[:,:,0] *= self.k_0 # get_AB array structure: [j,yj,i,yi] a, b = self.tc.get_AB(my[nx,:,nx,nx],ny[nx,:,nx,nx],my[nx,nx,nx,:],ny[nx,nx,nx,:], (kdji[:,:,0])[:,nx,:,nx], (kdji[:,:,1])[:,nx,:,nx], (kdji[:,:,2])[:,nx,:,nx], False,self.J_scat) mask = np.broadcast_to(np.eye(N,dtype=bool)[:,nx,:,nx],(N,nelem,N,nelem)) a[mask] = 0 # no self-translations b[mask] = 0 leftmatrix[:,0,:,:,0,:] = a leftmatrix[:,1,:,:,1,:] = a leftmatrix[:,0,:,:,1,:] = b leftmatrix[:,1,:,:,0,:] = b _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients') # at this point, leftmatrix is the translation matrix n2id = np.identity(2*nelem) n2id.shape = (2,nelem,2,nelem) for j in range(N): leftmatrix[j] = - np.tensordot(self.TMatrices[j],leftmatrix[j],axes=([-2,-1],[0,1])) # at this point, jth row of leftmatrix is that of -MT leftmatrix[j,:,:,j,:,:] += n2id # now we are done, 1-MT leftmatrix.shape=(N*2*nelem,N*2*nelem) self.interaction_matrix = leftmatrix _time_e(btime, verbose)
def __init__(self, positions, TMatrices, k_0, lMax = None, verbose=False, J_scat=3): Scattering.__init__(self, positions, TMatrices, k_0, lMax, verbose, J_scat) #TODO some checks on TMatrices symmetry self.TE_yz = np.arange(self.nelem) self.TM_yz = self.TE_yz self.my, self.ny = get_mn_y(self.lMax) self.TE_NMz = (self.my + self.ny) % 2 self.TM_NMz = 1 - self.TE_NMz self.tc = trans_calculator(self.lMax) # TODO možnost zadávat T-matice rovnou ve zhuštěné podobě TMatrices_TE = TMatrices[...,self.TE_NMz[:,nx],self.TE_yz[:,nx],self.TE_NMz[nx,:],self.TE_yz[nx,:]] TMatrices_TM = TMatrices[...,self.TM_NMz[:,nx],self.TM_yz[:,nx],self.TM_NMz[nx,:],self.TM_yz[nx,:]] self.TMatrices_TE = np.broadcast_to(TMatrices_TE, (self.N, self.nelem, self.nelem)) self.TMatrices_TM = np.broadcast_to(TMatrices_TM, (self.N, self.nelem, self.nelem)) self.prepared_TE = False self.prepared_TM = False self.interaction_matrix_TE = None self.interaction_matrix_TM= None
def build_interaction_matrix(self,TE_or_TM = None, verbose = False): #None means both btime = _time_b(verbose) N = self.N my, ny = get_mn_y(self.lMax) nelem = len(my) idm = np.identity(nelem) if (TE_or_TM == 0): EoMl = (0,) elif (TE_or_TM == 1): EoMl = (1,) elif (TE_or_TM is None): EoMl = (0,1) sbtime = _time_b(verbose, step = 'Calculating interparticle translation coefficients') kdji = cart2sph(self.positions[:,nx,:] - self.positions[nx,:,:], allow2d=True) kdji[:,:,0] *= self.k_0 # get_AB array structure: [j,yj,i,yi] # FIXME I could save some memory by calculating only half of these coefficients a, b = self.tc.get_AB(my[nx,:,nx,nx],ny[nx,:,nx,nx],my[nx,nx,nx,:],ny[nx,nx,nx,:], (kdji[:,:,0])[:,nx,:,nx], (kdji[:,:,1])[:,nx,:,nx], (kdji[:,:,2])[:,nx,:,nx], False,self.J_scat) mask = np.broadcast_to(np.eye(N,dtype=bool)[:,nx,:,nx],(N,nelem,N,nelem)) a[mask] = 0 # no self-translations b[mask] = 0 if np.isnan(np.min(a)) or np.isnan(np.min(b)): warnings.warn("Some of the translation coefficients is a NaN. Expect invalid results.") _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients') for EoM in EoMl: leftmatrix = np.zeros((N,nelem,N,nelem), dtype=complex) y = np.arange(nelem) yi = y[nx,nx,nx,:] yj = y[nx,:,nx,nx] mask = np.broadcast_to((((yi - yj) % 2) == 0),(N,nelem,N,nelem)) leftmatrix[mask] = a[mask] mask = np.broadcast_to((((yi - yj) % 2) != 0),(N,nelem,N,nelem)) leftmatrix[mask] = b[mask] """ # we use to calculate the AB coefficients here for i in range(N): for j in range(i): for yi in range(nelem): for yj in range(nelem): d_i2j = cart2sph(self.positions[j]-self.positions[i]) if ((yi - yj) % 2) == 0: tr = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) else: tr = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*self.k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=self.J_scat) leftmatrix[j,yj,i,yi] = tr leftmatrix[i,yi,j,yj] = tr if (0 == (my[yj]+my[yi]) % 2) else -tr _time_e(sbtime, verbose, step = 'Calculating interparticle translation coefficients, T%s part' % ('M' if EoM else 'E')) """ for j in range(N): leftmatrix[j] = - np.tensordot(self.TMatrices_TM[j] if EoM else self.TMatrices_TE[j],leftmatrix[j], axes = ([-1],[0])) leftmatrix[j,:,j,:] += idm leftmatrix.shape = (self.N*self.nelem, self.N*self.nelem) if np.isnan(np.min(leftmatrix)): warnings.warn("Interaction matrix contains some NaNs. Expect invalid results.") if EoM == 0: self.interaction_matrix_TE = leftmatrix if EoM == 1: self.interaction_matrix_TM = leftmatrix a = None b = None _time_e(btime, verbose)
def hexlattice_get_AB(lMax, k_hexside, maxlayer, circular=True, return_points = True, J_scat=3): params = { 'lMax' : lMax, 'k_hexside' : k_hexside, 'maxlayer' : maxlayer, 'circular' : circular, 'savepointinfo' : return_points, # should I delete this key? 'J_scat' : J_scat } tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True) tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True) my, ny = get_mn_y(lMax) nelem = len(my) a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation! tc = trans_calculator(lMax) y = np.arange(nelem) points = tpdict['points'][tpdict['nmi']] d_i2j = cart2sph(points) a_self_nm, b_self_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat) points = tpdict['points'][tpdict['mi'][0]] d_i2j = cart2sph(points) a_self_m0, b_self_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat) points = tphcdict['points'][tphcdict['nmi']] d_i2j = cart2sph(points) a_d2u_nm, b_d2u_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat) points = tphcdict['points'][tphcdict['mi'][0]] d_i2j = cart2sph(points) a_d2u_m0, b_d2u_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat) ''' tosave = { 'a_self_nm' : a_self_nm, 'a_self_m0' : a_self_m0, 'b_self_nm' : b_self_nm, 'b_self_m0' : b_self_m0, 'a_d2u_nm' : a_d2u_nm, 'a_d2u_m0' : a_d2u_m0, 'b_d2u_nm' : b_d2u_nm, 'b_d2u_m0' : b_d2u_m0, 'precalc_params' : params } if savepointinfo: tosave['tp_points'] = tpdict['points'], tosave['tp_si'] = tpdict['si'], tosave['tp_mi'] = tpdict['mi'], tosave['tp_nmi'] = tpdict['nmi'] tosave['tphc_points'] = tphcdict['points'], tosave['tphc_ti'] = tphcdict['ti'], tosave['tphc_mi'] = tphcdict['mi'], tosave['tphc_nmi'] = tphcdict['nmi'] np.savez(file, **tosave) ''' self_tr = tpdict['points'] d2u_tr = tphcdict['points'] if len(self_tr.shape)>2: self_tr = np.reshape(self_tr, self_tr.shape[1::]) if len(d2u_tr.shape)>2: d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::]) u2d_tr = -d2u_tr a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex) b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex) a_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex) b_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex) a_self[tpdict['nmi']]=a_self_nm a_self[tpdict['mi'][0]]=a_self_m0 b_self[tpdict['nmi']]=b_self_nm b_self[tpdict['mi'][0]]=b_self_m0 mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2] a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) for i in range(1,6): a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx])) b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx])) a_d2u[tphcdict['nmi']]=a_d2u_nm a_d2u[tphcdict['mi'][0]]=a_d2u_m0 b_d2u[tphcdict['nmi']]=b_d2u_nm b_d2u[tphcdict['mi'][0]]=b_d2u_m0 mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2] a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) for i in (1,-1): a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx])) b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx])) a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx]) b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx]) d = { 'a_self' : a_self, 'b_self' : b_self, 'a_d2u' : a_d2u, 'b_d2u' : b_d2u, 'a_u2d' : a_u2d, 'b_u2d' : b_u2d, } for k in params.keys(): d[k] = params[k] if return_points: d['d2u_tr'] = tphcdict['points'] d['u2d_tr'] = -tphcdict['points'] d['self_tr'] = tpdict['points'] return d
def hexlattice_precalc_AB_loadunwrap(file, tpdict = None, tphcdict = None, return_points = False): npz = np.load(file) precalc_params = npz['precalc_params'][()] my, ny = get_mn_y(precalc_params['lMax']) nelem = len(my) # this I should have made more universal... if precalc_params['savepointinfo']: if not tpdict: tpdict = { 'points' : npz['tp_points'], 'si' : npz['tp_si'], 'mi' : npz['tp_mi'], 'nmi' : npz['tp_nmi'], } if not tphcdict: tphcdict = { 'points' : npz['tphc_points'], 'ti' : npz['tphc_ti'], 'mi' : npz['tphc_mi'], 'nmi' : npz['tphc_nmi'] } else: if not tpdict: tpdict = generate_trianglepoints(maxlayer = precalc_params['maxlayer'], v3d=True, circular=precalc_params['circular'], sixthindices=True, mirrorindices=True) if not tphcdict: tphcdict = generate_trianglepoints_hexcomplement(maxlayer=precalc_params['maxlayer'], v3d=True, circular=precalc_params['circular'], thirdindices=True, mirrorindices=True) # For some obscure reason, I keep getting trailing single-dimension in the beginning for these arrays for a in (tpdict['points'], tphcdict['points'], tpdict['si'], tpdict['mi'], tphcdict['ti'], tphcdict['mi']): if len(a.shape) > 2: a.shape = a.shape[1::] self_tr = tpdict['points'] d2u_tr = tphcdict['points'] if len(self_tr.shape)>2: self_tr = np.reshape(self_tr, self_tr.shape[1::]) if len(d2u_tr.shape)>2: d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::]) u2d_tr = -d2u_tr a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex) b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex) a_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex) b_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex) a_self[tpdict['nmi']]=npz['a_self_nm'] a_self[tpdict['mi'][0]]=npz['a_self_m0'] b_self[tpdict['nmi']]=npz['b_self_nm'] b_self[tpdict['mi'][0]]=npz['b_self_m0'] mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2] a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) for i in range(1,6): a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx])) b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx])) a_d2u[tphcdict['nmi']]=npz['a_d2u_nm'] a_d2u[tphcdict['mi'][0]]=npz['a_d2u_m0'] b_d2u[tphcdict['nmi']]=npz['b_d2u_nm'] b_d2u[tphcdict['mi'][0]]=npz['b_d2u_m0'] mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2] a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx])) for i in (1,-1): a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx])) b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx])) a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx]) b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx]) d = { 'a_self' : a_self, 'b_self' : b_self, 'a_d2u' : a_d2u, 'b_d2u' : b_d2u, 'a_u2d' : a_u2d, 'b_u2d' : b_u2d, } for k in precalc_params.keys(): d[k] = precalc_params[k] if return_points: d['d2u_tr'] = tphcdict['points'] d['u2d_tr'] = -tphcdict['points'] d['self_tr'] = tpdict['points'] return d
def hexlattice_precalc_AB_save_purepy(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3): params = { 'lMax' : lMax, 'k_hexside' : k_hexside, 'maxlayer' : maxlayer, 'circular' : circular, 'savepointinfo' : savepointinfo, 'J_scat' : J_scat } tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True) tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True) my, ny = get_mn_y(lMax) nelem = len(my) a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation! points = tpdict['points'][tpdict['nmi']] for j in range(points.shape[0]): d_i2j = cart2sph(points[j]) for yi in range(nelem): for yj in range(nelem): a_self_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) b_self_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) points = tpdict['points'][tpdict['mi'][0]] for j in range(points.shape[0]): d_i2j = cart2sph(points[j]) for yi in range(nelem): for yj in range(nelem): a_self_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) b_self_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) points = tphcdict['points'][tphcdict['nmi']] for j in range(points.shape[0]): d_i2j = cart2sph(points[j]) for yi in range(nelem): for yj in range(nelem): a_d2u_nm[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) b_d2u_nm[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) points = tphcdict['points'][tphcdict['mi'][0]] for j in range(points.shape[0]): d_i2j = cart2sph(points[j]) for yi in range(nelem): for yj in range(nelem): a_d2u_m0[j, yj, yi] = Ã(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) b_d2u_m0[j, yj, yi] = B̃(my[yj],ny[yj],my[yi],ny[yi],kdlj=d_i2j[0]*k_0,θlj=d_i2j[1],φlj=d_i2j[2],r_ge_d=False,J=J_scat) tosave = { 'a_self_nm' : a_self_nm, 'a_self_m0' : a_self_m0, 'b_self_nm' : b_self_nm, 'b_self_m0' : b_self_m0, 'a_d2u_nm' : a_d2u_nm, 'a_d2u_m0' : a_d2u_m0, 'b_d2u_nm' : b_d2u_nm, 'b_d2u_m0' : b_d2u_m0, 'precalc_params' : params } if savepointinfo: tosave['tp_points'] = tpdict['points'], tosave['tp_si'] = tpdict['si'], tosave['tp_mi'] = tpdict['mi'], tosave['tp_nmi'] = tpdict['nmi'] tosave['tphc_points'] = tphcdict['points'], tosave['tphc_ti'] = tphcdict['ti'], tosave['tphc_mi'] = tphcdict['mi'], tosave['tphc_nmi'] = tphcdict['nmi'] np.savez(file, **tosave)
def hexlattice_precalc_AB_save2(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3): params = { 'lMax' : lMax, 'k_hexside' : k_hexside, 'maxlayer' : maxlayer, 'circular' : circular, 'savepointinfo' : savepointinfo, 'J_scat' : J_scat } tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True) tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True) my, ny = get_mn_y(lMax) nelem = len(my) a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex) a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex) a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex) k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation! tc = trans_calculator(lMax) y = np.arange(nelem) points = tpdict['points'][tpdict['nmi']] d_i2j = cart2sph(points) a_self_nm, b_self_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat) points = tpdict['points'][tpdict['mi'][0]] d_i2j = cart2sph(points) a_self_m0, b_self_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat) points = tphcdict['points'][tphcdict['nmi']] d_i2j = cart2sph(points) a_d2u_nm, b_d2u_nm = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat) points = tphcdict['points'][tphcdict['mi'][0]] d_i2j = cart2sph(points) a_d2u_m0, b_d2u_m0 = tc.get_AB(my[nx,:,nx],ny[nx,:,nx],my[nx,nx,:],ny[nx,nx,:],k_0*d_i2j[:,nx,nx,0],d_i2j[:,nx,nx,1],d_i2j[:,nx,nx,2],False,J_scat) tosave = { 'a_self_nm' : a_self_nm, 'a_self_m0' : a_self_m0, 'b_self_nm' : b_self_nm, 'b_self_m0' : b_self_m0, 'a_d2u_nm' : a_d2u_nm, 'a_d2u_m0' : a_d2u_m0, 'b_d2u_nm' : b_d2u_nm, 'b_d2u_m0' : b_d2u_m0, 'precalc_params' : params } if savepointinfo: tosave['tp_points'] = tpdict['points'], tosave['tp_si'] = tpdict['si'], tosave['tp_mi'] = tpdict['mi'], tosave['tp_nmi'] = tpdict['nmi'] tosave['tphc_points'] = tphcdict['points'], tosave['tphc_ti'] = tphcdict['ti'], tosave['tphc_mi'] = tphcdict['mi'], tosave['tphc_nmi'] = tphcdict['nmi'] np.savez(file, **tosave)
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1, return_pq= False, return_xy = False, watch_time = False): """ Solves the plane wave linear scattering problem for a rectangular array of particles for one frequency and constant exciting spherical waves throughout the array. Parameters ---------- omega : positive number The frequency of the field. epsilon_b : complex number Permittivity of the background medium (which has to be isotropic). xN, yN : positive integers Particle numbers in the x and y dimensions xd, yd : positive numbers Periodicities in the x and y direction TMatrices : (xN, yN,2,nelem,2,nelem) or compatible or (2,nelem,2,nelem) The T-matrices in the "Taylor convention" describing the scattering on a single nanoparticle. If all the particles are identical and equally oriented, only one T-matrix can be given. nelems = (lMax + 2) * lMax, where lMax is the highest multipole order to which the scattering is calculated. Electric wave index is 0, magnetic wave index is 1. pq_0_c : (nelem)-shaped complex array or compatible The initial excitation coefficients for the ("complex") multipole waves, in Taylor's convention. return_pq : bool NOT IMPLEMENTED Return also the multipole decomposition coefficients of the field incoming to each particle (inc. the field scattered from other particles. return_xy : bool Return also the cartesian x, y positions of the particles. watch_time : bool Inform about the progress on stderr Returns ------- ab : (nelem, xN, yN, 2, nelem)-shaped complex array The a (electric wave), b (magnetic wave) coefficients of the outgoing field for each particle. If none of return_pq or return_xy is set, the array is not enclosed in a tuple. pq : (nelem, xN, yN, 2, nelem)-shaped complex array NOT IMPLEMENTED The p (electric wave), q (magnetic wave) coefficients of the total exciting field for each particle (including the field scattered from other particles) x, y : (xN, yN)-shaped real array The x,y positions of the nanoparticles. """ if (watch_time): timec = time.time() print('%.4f: running scatter_plane_wave_rectarray' % timec, file = sys.stderr) sys.stderr.flush() nelem = TMatrices.shape[-1] if ((nelem != TMatrices.shape[-3]) or (2 != TMatrices.shape[-2]) or (2 != TMatrices.shape[-4])): raise ValueError('The T-matrices must be of shape (N, 2, nelem, 2, nelem) but are of shape %s' % (str(TMatrices.shape),)) lMax = nelem2lMax(nelem) if not lMax: raise ValueError('The "nelem" dimension of T-matrix has invalid value (%d).' % nelem) if (watch_time): print('xN = %d, yN = %d, lMax = %d' % (xN, yN, lMax), file = sys.stderr) sys.stderr.flush() # TODO perhaps more checks. k_out = omega * math.sqrt(epsilon_b) / c # wave number my, ny = get_mn_y(lMax) N = yN * xN J_scat=3 J_ext=1 # Do something with this ugly indexing crap xind, yind = np.meshgrid(np.arange(xN),np.arange(yN), indexing='ij') xind = xind.flatten() yind = yind.flatten() xyind = np.stack((xind, yind, np.zeros((xind.shape),dtype=int)),axis=-1) cart_lattice=xyind * np.array([xd, yd, 0]) x=cart_lattice[:,0] y=cart_lattice[:,1] xyind = xyind[:,0:2] # Lattice speedup if (watch_time): timec = time.time() print('%.4f: calculating the %d translation matrix elements' % (timec, 8*nelem*nelem*xN*yN), file = sys.stderr) sys.stderr.flush() Agrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_) Bgrid = np.zeros((nelem, 2*xN, 2*yN, nelem),dtype=np.complex_) for yl in range(nelem): # source for xij in range(2*xN): for yij in range(2*yN): for yj in range(nelem): #dest if((yij != yN) or (xij != xN)): d_l2j = cart2sph(np.array([(xij-xN)*xd, (yij-yN)*yd, 0])) Agrid[yj, xij, yij, yl] = Ã(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat) Bgrid[yj, xij, yij, yl] = B̃(my[yj],ny[yj],my[yl],ny[yl],kdlj=d_l2j[0]*k_out,θlj=d_l2j[1],φlj=d_l2j[2],r_ge_d=False,J=J_scat) # Translation coefficient matrix T if (watch_time): timecold = timec timec = time.time() print('%4f: translation matrix elements calculated (elapsed %.2f s), filling the matrix' % (timec, timec-timecold), file = sys.stderr) sys.stderr.flush() transmat = np.zeros((xN* yN, 2, nelem, xN* yN, 2, nelem),dtype=np.complex_) for l in range(N): xil, yil = xyind[l] for j in range(N): xij, yij = xyind[j] if (l!=j): transmat[j,0,:,l,0,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :] transmat[j,0,:,l,1,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :] transmat[j,1,:,l,0,:] = Bgrid[:, xij - xil + xN, yij - yil + yN, :] transmat[j,1,:,l,1,:] = Agrid[:, xij - xil + xN, yij - yil + yN, :] Agrid = None Bgrid = None if (watch_time): timecold = timec timec = time.time() print('%4f: translation matrix filled (elapsed %.2f s), building the interaction matrix' % (timec, timec-timecold), file=sys.stderr) sys.stderr.flush() # Now we solve a linear problem (1 - M T) A = M P_0 where M is the T-matrix :-) MT = np.empty((N,2,nelem,N,2,nelem),dtype=np.complex_) TMatrices = np.broadcast_to(TMatrices, (xN, yN, 2, nelem, 2, nelem)) for j in range(N): # I wonder how this can be done without this loop... xij, yij = xyind[j] MT[j] = np.tensordot(TMatrices[xij, yij],transmat[j],axes=([-2,-1],[0,1])) MT.shape = (N*2*nelem, N*2*nelem) leftmatrix = np.identity(N*2*nelem) - MT MT = None if (watch_time): timecold = timec timec = time.time() print('%.4f: interaction matrix complete (elapsed %.2f s)' % (timec, timec-timecold), file=sys.stderr) sys.stderr.flush() # А ну, чики-брики и в дамки! if watch_time: timecold = time.time() print('%.4f: factorizing the interaction matrix' % timecold, file=sys.stderr) sys.stderr.flush() lupiv = scipy.linalg.lu_factor(leftmatrix, overwrite_a=True) leftmatrix = None if watch_time: timec = time.time() print('%.4f: factorization complete (elapsed %.2f s)' % (timec, timec-timecold), file = sys.stderr) print('%.4f: solving the scattering problem for %d incoming multipoles' % (timec, nelem*2), file=sys.stderr) sys.stderr.flush() timecold = timec if(pq_0_c == 1): pq_0_c = np.full((2,nelem),1) ab = np.empty((2,nelem,N*2*nelem), dtype=complex) for N_or_M in range(2): for yy in range(nelem): pq_0 = np.zeros((2,nelem), dtype=np.complex_) pq_0[N_or_M,yy] = pq_0_c[N_or_M,yy] pq_0 = np.broadcast_to(pq_0, (N, 2, nelem)) MP_0 = np.empty((N,2,nelem),dtype=np.complex_) for j in range(N): # I wonder how this can be done without this loop... xij, yij = xyind[j] MP_0[j] = np.tensordot(TMatrices[xij, yij],pq_0[j],axes=([-2,-1],[-2,-1])) MP_0.shape = (N*2*nelem,) ab[N_or_M, yy] = scipy.linalg.lu_solve(lupiv, MP_0) ab.shape = (2,nelem, xN, yN, 2, nelem) if watch_time: timec = time.time() print('%.4f: done (elapsed %.2f s)' % (timec, timec-timecold),file = sys.stderr) sys.stderr.flush() if not (return_pq + return_xy): return ab returnlist = [ab] if (return_pq): warnings.warn("return_pq not implemented, ignoring") # returnlist.append(pq_arr) if (return_xy): returnlist.append(x) returnlist.append(y) return tuple(returnlist)