示例#1
0
def print_industry_coer(fund_ts, ostream):
    """
    @summary prints standard deviation of returns for a fund
    @param fund_ts: pandas fund time series
    @param years: list of years to print out
    @param ostream: stream to print to
    """
    industries = [['$DJUSBM', 'Materials'], ['$DJUSNC', 'Goods'],
                  ['$DJUSCY', 'Services'], ['$DJUSFN', 'Financials'],
                  ['$DJUSHC', 'Health'], ['$DJUSIN', 'Industrial'],
                  ['$DJUSEN', 'Oil & Gas'], ['$DJUSTC', 'Technology'],
                  ['$DJUSTL', 'TeleComm'], ['$DJUSUT', 'Utilities']]
    for i in range(0, len(industries)):
        if (i % 2 == 0):
            ostream.write("\n")
        #load data
        norObj = de.DataAccess('mysql')
        ldtTimestamps = du.getNYSEdays(fund_ts.index[0], fund_ts.index[-1],
                                       dt.timedelta(hours=16))
        ldfData = norObj.get_data(ldtTimestamps, [industries[i][0]], ['close'])
        #get corelation
        ldfData[0] = ldfData[0].fillna(method='pad')
        ldfData[0] = ldfData[0].fillna(method='bfill')
        a = np.corrcoef(np.ravel(tsu.daily(ldfData[0][industries[i][0]])),
                        np.ravel(tsu.daily(fund_ts.values)))
        b = np.ravel(tsu.daily(ldfData[0][industries[i][0]]))
        f = np.ravel(tsu.daily(fund_ts))
        fBeta, unused = np.polyfit(b, f, 1)
        ostream.write("%10s(%s):%+6.2f,   %+6.2f   " %
                      (industries[i][1], industries[i][0], a[0, 1], fBeta))
示例#2
0
def print_other_coer(fund_ts, ostream):
    """
    @summary prints standard deviation of returns for a fund
    @param fund_ts: pandas fund time series
    @param years: list of years to print out
    @param ostream: stream to print to
    """
    industries = [['$SPX', '    S&P Index'], ['$DJI', '    Dow Jones'],
                  ['$DJUSEN', 'Oil & Gas'], ['$DJGSP', '     Metals']]
    for i in range(0, len(industries)):
        if (i % 2 == 0):
            ostream.write("\n")
        #load data
        norObj = de.DataAccess('mysql')
        ldtTimestamps = du.getNYSEdays(fund_ts.index[0], fund_ts.index[-1],
                                       dt.timedelta(hours=16))
        ldfData = norObj.get_data(ldtTimestamps, [industries[i][0]], ['close'])
        #get corelation
        ldfData[0] = ldfData[0].fillna(method='pad')
        ldfData[0] = ldfData[0].fillna(method='bfill')
        a = np.corrcoef(np.ravel(tsu.daily(ldfData[0][industries[i][0]])),
                        np.ravel(tsu.daily(fund_ts.values)))
        b = np.ravel(tsu.daily(ldfData[0][industries[i][0]]))
        f = np.ravel(tsu.daily(fund_ts))
        fBeta, unused = np.polyfit(b, f, 1)
        ostream.write("%10s(%s):%+6.2f,   %+6.2f   " %
                      (industries[i][1], industries[i][0], a[0, 1], fBeta))
示例#3
0
文件: featutil.py 项目: wolfws/QSTK
def speedTest(lfcFeature, ldArgs):
    '''
    @Author: Tingyu Zhu
    @summary: Function to test the runtime for a list of features, and output them by speed
    @param lfcFeature: a list of features that will be sorted by runtime
    @param dArgs: Arguments to pass into feature function
    @return: A list of sorted tuples of format (time, function name/param string)
    '''
    '''pulling out 2 years data to run test'''
    daData = de.DataAccess('mysql')
    dtStart = dt.datetime(2010, 1, 1)
    dtEnd = dt.datetime(2011, 12, 31)
    dtTimeofday = dt.timedelta(hours=16)
    lsSym = ['AAPL', 'GOOG', 'XOM', 'AMZN', 'BA', 'GILD', '$SPX']

    #print lsSym
    '''set up variables for applyFeatures'''
    lsKeys = ['open', 'high', 'low', 'close', 'volume', 'actual_close']
    ldtTimestamps = du.getNYSEdays(dtStart, dtEnd, dtTimeofday)
    ldfData = daData.get_data(ldtTimestamps, lsSym, lsKeys)
    dData = dict(zip(lsKeys, ldfData))
    '''loop through features'''
    ltResults = []
    for i in range(len(lfcFeature)):
        dtFuncStart = dt.datetime.now()
        ldfFeatures = applyFeatures(dData, [lfcFeature[i]], [ldArgs[i]],
                                    sMarketRel='$SPX')
        ltResults.append((dt.datetime.now() - dtFuncStart,
                          lfcFeature[i].__name__ + ' : ' + str(ldArgs[i])))
    ltResults.sort()
    '''print out result'''
    for tResult in ltResults:
        print tResult[1], ':', tResult[0]

    return ltResults
示例#4
0
文件: csv2fund.py 项目: xlhtc007/QSTK
def share_table2fund(share_table):
    """
    @summary converts data frame of shares into fund values
    @param share_table: data frame containing shares on days transactions occured
    @return fund : time series containing fund value over time
    @return leverage : time series containing fund value over time
    """
    # Get the data from the data store
    dataobj = de.DataAccess('mysql')
    startday = share_table.index[0]
    endday = share_table.index[-1]

    symbols = list(share_table.columns)
    symbols.remove('_CASH')

    # print symbols

    # Get desired timestamps
    timeofday = dt.timedelta(hours=16)
    timestamps = du.getNYSEdays(startday - dt.timedelta(days=5),
                                endday + dt.timedelta(days=1), timeofday)
    historic = dataobj.get_data(timestamps, symbols, ["close"])[0]
    historic["_CASH"] = 1
    closest = historic[historic.index <= share_table.index[0]].ix[:]
    ts_leverage = pandas.Series(0, index=[closest.index[-1]])

    # start shares/fund out as 100% cash
    first_val = closest.ix[-1] * share_table.ix[0]
    fund_ts = pandas.Series([first_val.sum(axis=1)], index=[closest.index[-1]])
    prev_row = share_table.ix[0]
    for row_index, row in share_table.iterrows():
        # print row_index
        trade_price = historic.ix[row_index:].ix[0:1]
        trade_date = trade_price.index[0]

        # print trade_date

        # get stock prices on all the days up until this trade
        to_calculate = historic[(historic.index <= trade_date)
                                & (historic.index > fund_ts.index[-1])]
        # multiply prices by our current shares
        values_by_stock = to_calculate * prev_row

        # for date, sym in values_by_stock.iteritems():
        #     print date,sym
        # print values_by_stock
        prev_row = row
        #update leverage
        ts_leverage = _calculate_leverage(values_by_stock, ts_leverage)

        # calculate total value and append to our fund history
        fund_ts = fund_ts.append([values_by_stock.sum(axis=1)])
    return [fund_ts, ts_leverage]
示例#5
0
def generate_report(funds_list, graph_names, out_file, i_start_cash=10000):
    """
    @summary generates a report given a list of fund time series
    """
    html_file = open("report.html", "w")
    print_header(html_file, out_file)
    html_file.write("<IMG SRC = \'./funds.png\' width = 400/>\n")
    html_file.write("<BR/>\n\n")
    i = 0
    pyplot.clf()
    #load spx for time frame
    symbol = ["$SPX"]
    start_date = 0
    end_date = 0
    for fund in funds_list:
        if (type(fund) != type(list())):
            if (start_date == 0 or start_date > fund.index[0]):
                start_date = fund.index[0]
            if (end_date == 0 or end_date < fund.index[-1]):
                end_date = fund.index[-1]
            mult = i_start_cash / fund.values[0]
            pyplot.plot(fund.index, fund.values * mult, label = \
                                 path.basename(graph_names[i]))
        else:
            if (start_date == 0 or start_date > fund[0].index[0]):
                start_date = fund[0].index[0]
            if (end_date == 0 or end_date < fund[0].index[-1]):
                end_date = fund[0].index[-1]
            mult = i_start_cash / fund[0].values[0]
            pyplot.plot(fund[0].index, fund[0].values * mult, label = \
                                      path.basename(graph_names[i]))
        i += 1
    timeofday = dt.timedelta(hours=16)
    timestamps = du.getNYSEdays(start_date, end_date, timeofday)
    dataobj = de.DataAccess('mysql')
    benchmark_close = dataobj.get_data(timestamps, symbol, ["close"], \
                                            verbose = False)[0]
    mult = i_start_cash / benchmark_close.values[0]
    i = 0
    for fund in funds_list:
        if (type(fund) != type(list())):
            print_stats(fund, ["$SPX"], graph_names[i])
        else:
            print_stats(fund[0], ["$SPX"], graph_names[i])
        i += 1
    pyplot.plot(benchmark_close.index, \
                 benchmark_close.values*mult, label = "SSPX")
    pyplot.ylabel('Fund Value')
    pyplot.xlabel('Date')
    pyplot.legend()
    savefig('funds.png', format='png')
    print_footer(html_file)
示例#6
0
文件: featutil.py 项目: wolfws/QSTK
def testFeature(fcFeature, dArgs):
    '''
    @summary: Quick function to run a feature on some data and plot it to see if it works.
    @param fcFeature: Feature function to test
    @param dArgs: Arguments to pass into feature function 
    @return: Void
    '''
    ''' Get Train data for 2009-2010 '''
    dtStart = dt.datetime(2011, 7, 1)
    dtEnd = dt.datetime(2011, 12, 31)
    ''' Pull in current training data and test data '''
    norObj = de.DataAccess('mysql')
    ''' Get 2 extra months for moving averages and future returns '''
    ldtTimestamps = du.getNYSEdays(dtStart, dtEnd, dt.timedelta(hours=16))

    lsSym = ['GOOG']
    lsSym.append('WMT')
    lsSym.append('$SPX')
    lsSym.append('$VIX')
    lsSym.sort()

    lsKeys = ['open', 'high', 'low', 'close', 'volume', 'actual_close']
    ldfData = norObj.get_data(ldtTimestamps, lsSym, lsKeys)
    dData = dict(zip(lsKeys, ldfData))
    dfPrice = dData['close']

    #print dfPrice.values
    ''' Generate a list of DataFrames, one for each feature, with the same index/column structure as price data '''
    dtStart = dt.datetime.now()
    ldfFeatures = applyFeatures(dData, [fcFeature], [dArgs], sMarketRel='$SPX')
    print 'Runtime:', dt.datetime.now() - dtStart
    ''' Use last 3 months of index, to avoid lookback nans '''

    dfPrint = ldfFeatures[0]['GOOG']
    print 'GOOG values:', dfPrint.values
    print 'GOOG Sum:', dfPrint.ix[dfPrint.notnull()].sum()

    for sSym in lsSym:
        plt.subplot(211)
        plt.plot(ldfFeatures[0].index[-60:], dfPrice[sSym].values[-60:])
        plt.plot(
            ldfFeatures[0].index[-60:], dfPrice['$SPX'].values[-60:] *
            dfPrice[sSym].values[-60] / dfPrice['$SPX'].values[-60])
        plt.legend((sSym, '$SPX'))
        plt.title(sSym)
        plt.subplot(212)
        plt.plot(ldfFeatures[0].index[-60:], ldfFeatures[0][sSym].values[-60:])
        plt.title('%s-%s' % (fcFeature.__name__, str(dArgs)))
        plt.show()
示例#7
0
文件: csv2fund.py 项目: wolfws/QSTK
def calculate_efficiency(dt_start_date, dt_end_date, s_stock):
    """
    @summary calculates the exit-entry/high-low trade efficiency of a stock from historical data
    @param start_date: entry point for the trade
    @param end_date: exit point for the trade
    @param stock: stock to compute efficiency for
    @return: float representing efficiency
    """
    # Get the data from the data store
    dataobj = de.DataAccess('mysql')

    # Get desired timestamps
    timeofday=dt.timedelta(hours=16)
    timestamps = du.getNYSEdays(dt_start_date,dt_end_date+dt.timedelta(days=1),timeofday)
    historic = dataobj.get_data( timestamps, [s_stock] ,["close"] )[0]
    # print "######"
    # print historic
    hi=numpy.max(historic.values)
    low=numpy.min(historic.values)
    entry=historic.values[0]
    exit_price=historic.values[-1]
    return (((exit_price-entry)/(hi-low))[0])
示例#8
0
文件: Data_CSV.py 项目: xlhtc007/QSTK
def get_data(ls_symbols, ls_keys):
    '''
    @summary: Gets a data chunk for backtesting
    @param dt_start: Start time
    @param dt_end: End time
    @param ls_symbols: symbols to use
    @note: More data will be pulled from before and after the limits to ensure
           valid data on the start/enddates which requires lookback/forward
    @return: data dictionry
    '''
    print "Getting Data from MySQL"
    # Modify dates to ensure enough data for all features
    dt_start = dt.datetime(2005,1,1)
    dt_end = dt.datetime(2012, 8, 31)
    ldt_timestamps = du.getNYSEdays( dt_start, dt_end, dt.timedelta(hours=16) )
    
    c_da = de.DataAccess('mysql')

    ldf_data = c_da.get_data(ldt_timestamps, ls_symbols, ls_keys)

    d_data = dict(zip(ls_keys, ldf_data))

    return d_data
示例#9
0
def print_html(fund_ts,
               benchmark,
               name,
               lf_dividend_rets=0.0,
               original="",
               s_fund_name="Fund",
               s_original_name="Original",
               d_trading_params="",
               d_hedge_params="",
               s_comments="",
               directory=False,
               leverage=False,
               commissions=0,
               slippage=0,
               borrowcost=0,
               ostream=sys.stdout,
               i_start_cash=1000000):
    """
    @summary prints stats of a provided fund and benchmark
    @param fund_ts: fund value in pandas timeseries
    @param benchmark: benchmark symbol to compare fund to
    @param name: name to associate with the fund in the report
    @param directory: parameter to specify printing to a directory
    @param leverage: time series to plot with report
    @param commissions: value to print with report
    @param slippage: value to print with report
    @param ostream: stream to print stats to, defaults to stdout
    """

    #Set locale for currency conversions
    locale.setlocale(locale.LC_ALL, '')

    #make names length independent for alignment
    s_formatted_original_name = "%15s" % s_original_name
    s_formatted_fund_name = "%15s" % s_fund_name

    fund_ts = fund_ts.fillna(method='pad')
    if directory != False:
        if not path.exists(directory):
            makedirs(directory)

        sfile = path.join(directory, "report-%s.html" % name)
        splot = "plot-%s.png" % name
        splot_dir = path.join(directory, splot)
        ostream = open(sfile, "wb")
        print "writing to ", sfile

        if type(original) == type("str"):
            if type(leverage) != type(False):
                print_plot(fund_ts,
                           benchmark,
                           name,
                           splot_dir,
                           lf_dividend_rets,
                           leverage=leverage,
                           i_start_cash=i_start_cash)
            else:
                print_plot(fund_ts,
                           benchmark,
                           name,
                           splot_dir,
                           lf_dividend_rets,
                           i_start_cash=i_start_cash)
        else:
            if type(leverage) != type(False):
                print_plot([fund_ts, original],
                           benchmark,
                           name,
                           splot_dir,
                           s_original_name,
                           lf_dividend_rets,
                           leverage=leverage,
                           i_start_cash=i_start_cash)
            else:
                print_plot([fund_ts, original],
                           benchmark,
                           name,
                           splot_dir,
                           s_original_name,
                           lf_dividend_rets,
                           i_start_cash=i_start_cash)

    print_header(ostream, name)
    start_date = fund_ts.index[0].strftime("%m/%d/%Y")
    end_date = fund_ts.index[-1].strftime("%m/%d/%Y")
    ostream.write("Performance Summary for "\
     + str(path.basename(name)) + " Backtest\n")
    ostream.write("For the dates " + str(start_date) + " to "\
                                       + str(end_date) + "")

    #paramater section
    if d_trading_params != "":
        ostream.write("\n\nTrading Paramaters\n\n")
        for var in d_trading_params:
            print_line(var, d_trading_params[var], ostream=ostream)
    if d_hedge_params != "":
        ostream.write("\nHedging Paramaters\n\n")
        if type(d_hedge_params['Weight of Hedge']) == type(float):
            d_hedge_params['Weight of Hedge'] = str(
                int(d_hedge_params['Weight of Hedge'] * 100)) + '%'
        for var in d_hedge_params:
            print_line(var, d_hedge_params[var], ostream=ostream)

    #comment section
    if s_comments != "":
        ostream.write("\nComments\n\n%s" % s_comments)

    if directory != False:
        ostream.write("\n\n<img src=" + splot + " width=600 />\n\n")

    mult = i_start_cash / fund_ts.values[0]

    timeofday = dt.timedelta(hours=16)
    timestamps = du.getNYSEdays(fund_ts.index[0], fund_ts.index[-1], timeofday)
    dataobj = de.DataAccess('mysql')
    years = du.getYears(fund_ts)
    benchmark_close = dataobj.get_data(timestamps, benchmark, ["close"])
    benchmark_close = benchmark_close[0]
    for bench_sym in benchmark:
        benchmark_close[bench_sym] = benchmark_close[bench_sym].fillna(
            method='pad')

    if type(lf_dividend_rets) != type(0.0):
        for i, sym in enumerate(benchmark):
            benchmark_close[sym] = _dividend_rets_funds(
                benchmark_close[sym], lf_dividend_rets[i])

    ostream.write("Resulting Values in $ with an initial investment of " +
                  locale.currency(int(round(i_start_cash)), grouping=True) +
                  "\n")

    print_line(s_formatted_fund_name + " Resulting Value",
               (locale.currency(int(round(fund_ts.values[-1] * mult)),
                                grouping=True)),
               i_spacing=3,
               ostream=ostream)

    if type(original) != type("str"):
        mult3 = i_start_cash / original.values[0]
        print_line(s_formatted_original_name + " Resulting Value",
                   (locale.currency(int(round(original.values[-1] * mult3)),
                                    grouping=True)),
                   i_spacing=3,
                   ostream=ostream)

    for bench_sym in benchmark:
        mult2 = i_start_cash / benchmark_close[bench_sym].values[0]
        print_line(bench_sym + " Resulting Value",
                   locale.currency(int(
                       round(benchmark_close[bench_sym].values[-1] * mult2)),
                                   grouping=True),
                   i_spacing=3,
                   ostream=ostream)

    ostream.write("\n")

    if len(years) > 1:
        print_line(s_formatted_fund_name + " Sharpe Ratio",
                   "%10.3f" % fu.get_sharpe_ratio(fund_ts.values)[0],
                   i_spacing=4,
                   ostream=ostream)
        if type(original) != type("str"):
            print_line(s_formatted_original_name + " Sharpe Ratio",
                       "%10.3f" % fu.get_sharpe_ratio(original.values)[0],
                       i_spacing=4,
                       ostream=ostream)

        for bench_sym in benchmark:
            print_line(
                bench_sym + " Sharpe Ratio",
                "%10.3f" %
                fu.get_sharpe_ratio(benchmark_close[bench_sym].values)[0],
                i_spacing=4,
                ostream=ostream)
        ostream.write("\n")

    ostream.write("Transaction Costs\n")
    print_line("Total Commissions"," %15s, %10.2f%%" % (locale.currency(int(round(commissions)), grouping=True), \
                                                  float((round(commissions)*100)/(fund_ts.values[-1]*mult))), i_spacing=4, ostream=ostream)

    print_line("Total Slippage"," %15s, %10.2f%%" % (locale.currency(int(round(slippage)), grouping=True), \
                                                     float((round(slippage)*100)/(fund_ts.values[-1]*mult))), i_spacing=4, ostream=ostream)

    print_line("Total Short Borrowing Cost"," %15s, %10.2f%%" % (locale.currency(int(round(borrowcost)), grouping=True), \
                                                     float((round(borrowcost)*100)/(fund_ts.values[-1]*mult))), i_spacing=4, ostream=ostream)

    print_line("Total Costs"," %15s, %10.2f%%" % (locale.currency(int(round(borrowcost+slippage+commissions)), grouping=True), \
                                  float((round(borrowcost+slippage+commissions)*100)/(fund_ts.values[-1]*mult))), i_spacing=4, ostream=ostream)

    ostream.write("\n")

    print_line(s_formatted_fund_name + " Std Dev of Returns",
               get_std_dev(fund_ts),
               i_spacing=8,
               ostream=ostream)

    if type(original) != type("str"):
        print_line(s_formatted_original_name + " Std Dev of Returns",
                   get_std_dev(original),
                   i_spacing=8,
                   ostream=ostream)

    for bench_sym in benchmark:
        print_line(bench_sym + " Std Dev of Returns",
                   get_std_dev(benchmark_close[bench_sym]),
                   i_spacing=8,
                   ostream=ostream)

    ostream.write("\n")

    for bench_sym in benchmark:
        print_benchmark_coer(fund_ts, benchmark_close[bench_sym],
                             str(bench_sym), ostream)
    ostream.write("\n")

    ostream.write("\nYearly Performance Metrics")
    print_years(years, ostream)

    s_line = ""
    for f_token in get_annual_return(fund_ts, years):
        s_line += " %+8.2f%%" % f_token
    print_line(s_formatted_fund_name + " Annualized Return",
               s_line,
               i_spacing=4,
               ostream=ostream)
    lf_vals = [get_annual_return(fund_ts, years)]
    ls_labels = [name]

    if type(original) != type("str"):
        s_line = ""
        for f_token in get_annual_return(original, years):
            s_line += " %+8.2f%%" % f_token
        print_line(s_formatted_original_name + " Annualized Return",
                   s_line,
                   i_spacing=4,
                   ostream=ostream)
        lf_vals.append(get_annual_return(original, years))
        ls_labels.append(s_original_name)

    for bench_sym in benchmark:
        s_line = ""
        for f_token in get_annual_return(benchmark_close[bench_sym], years):
            s_line += " %+8.2f%%" % f_token
        print_line(bench_sym + " Annualized Return",
                   s_line,
                   i_spacing=4,
                   ostream=ostream)
        lf_vals.append(get_annual_return(benchmark_close[bench_sym], years))
        ls_labels.append(bench_sym)

    print lf_vals
    print ls_labels
    ls_year_labels = []
    for i in range(0, len(years)):
        ls_year_labels.append(str(years[i]))
    print_bar_chart(lf_vals, ls_labels, ls_year_labels,
                    directory + "/annual_rets.png")

    print_years(years, ostream)

    print_line(s_formatted_fund_name + " Winning Days",
               get_winning_days(fund_ts, years),
               i_spacing=4,
               ostream=ostream)

    if type(original) != type("str"):
        print_line(s_formatted_original_name + " Winning Days",
                   get_winning_days(original, years),
                   i_spacing=4,
                   ostream=ostream)

    for bench_sym in benchmark:
        print_line(bench_sym + " Winning Days",
                   get_winning_days(benchmark_close[bench_sym], years),
                   i_spacing=4,
                   ostream=ostream)

    print_years(years, ostream)

    print_line(s_formatted_fund_name + " Max Draw Down",
               get_max_draw_down(fund_ts, years),
               i_spacing=4,
               ostream=ostream)

    if type(original) != type("str"):
        print_line(s_formatted_original_name + " Max Draw Down",
                   get_max_draw_down(original, years),
                   i_spacing=4,
                   ostream=ostream)

    for bench_sym in benchmark:
        print_line(bench_sym + " Max Draw Down",
                   get_max_draw_down(benchmark_close[bench_sym], years),
                   i_spacing=4,
                   ostream=ostream)

    print_years(years, ostream)

    print_line(s_formatted_fund_name + " Daily Sharpe Ratio",
               get_daily_sharpe(fund_ts, years),
               i_spacing=4,
               ostream=ostream)

    if type(original) != type("str"):
        print_line(s_formatted_original_name + " Daily Sharpe Ratio",
                   get_daily_sharpe(original, years),
                   i_spacing=4,
                   ostream=ostream)

    for bench_sym in benchmark:
        print_line(bench_sym + " Daily Sharpe Ratio",
                   get_daily_sharpe(benchmark_close[bench_sym], years),
                   i_spacing=4,
                   ostream=ostream)

    print_years(years, ostream)

    print_line(s_formatted_fund_name + " Daily Sortino Ratio",
               get_daily_sortino(fund_ts, years),
               i_spacing=4,
               ostream=ostream)

    if type(original) != type("str"):
        print_line(s_formatted_original_name + " Daily Sortino Ratio",
                   get_daily_sortino(original, years),
                   i_spacing=4,
                   ostream=ostream)

    for bench_sym in benchmark:
        print_line(bench_sym + " Daily Sortino Ratio",
                   get_daily_sortino(benchmark_close[bench_sym], years),
                   i_spacing=4,
                   ostream=ostream)

    ostream.write(
        "\n\n\nCorrelation and Beta with DJ Industries for the Fund ")

    print_industry_coer(fund_ts, ostream)

    ostream.write("\n\nCorrelation and Beta with Other Indices for the Fund ")

    print_other_coer(fund_ts, ostream)

    ostream.write("\n\n\nMonthly Returns for the Fund %\n")

    print_monthly_returns(fund_ts, years, ostream)
    print_footer(ostream)
示例#10
0
def print_plot(fund,
               benchmark,
               graph_name,
               filename,
               s_original_name="",
               lf_dividend_rets=0.0,
               leverage=False,
               i_start_cash=1000000):
    """
    @summary prints a plot of a provided fund and benchmark
    @param fund: fund value in pandas timeseries
    @param benchmark: benchmark symbol to compare fund to
    @param graph_name: name to associate with the fund in the report
    @param filename: file location to store plot1
    """
    pyplot.clf()
    if type(leverage) != type(False):
        gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
        pyplot.subplot(gs[0])
    start_date = 0
    end_date = 0
    if (type(fund) != type(list())):
        if (start_date == 0 or start_date > fund.index[0]):
            start_date = fund.index[0]
        if (end_date == 0 or end_date < fund.index[-1]):
            end_date = fund.index[-1]
        mult = i_start_cash / fund.values[0]
        pyplot.plot(fund.index, fund.values * mult, label = \
                                 path.basename(graph_name))
    else:
        i = 0
        for entity in fund:
            if (start_date == 0 or start_date > entity.index[0]):
                start_date = entity.index[0]
            if (end_date == 0 or end_date < entity.index[-1]):
                end_date = entity.index[-1]
            mult = i_start_cash / entity.values[0]
            if i == 1 and len(fund) != 1:
                pyplot.plot(entity.index, entity.values * mult, label = \
                                  s_original_name)
            else:
                pyplot.plot(entity.index, entity.values * mult, label = \
                                  path.basename(graph_name))
            i = i + 1
    timeofday = dt.timedelta(hours=16)
    timestamps = du.getNYSEdays(start_date, end_date, timeofday)
    dataobj = de.DataAccess('mysql')
    benchmark_close = dataobj.get_data(timestamps, benchmark, ["close"])
    benchmark_close = benchmark_close[0]
    benchmark_close = benchmark_close.fillna(method='pad')
    benchmark_close = benchmark_close.fillna(method='bfill')
    benchmark_close = benchmark_close.fillna(1.0)

    if type(lf_dividend_rets) != type(0.0):
        for i, sym in enumerate(benchmark):
            benchmark_close[sym] = _dividend_rets_funds(
                benchmark_close[sym], lf_dividend_rets[i])

    for sym in benchmark:
        mult = i_start_cash / benchmark_close[sym].values[0]
        pyplot.plot(benchmark_close[sym].index, \
                benchmark_close[sym].values*mult, label = sym)
    pyplot.gcf().autofmt_xdate()
    pyplot.gca().fmt_xdata = mdates.DateFormatter('%m-%d-%Y')
    pyplot.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %d %Y'))
    pyplot.xlabel('Date')
    pyplot.ylabel('Fund Value')
    pyplot.legend(loc="best")
    if type(leverage) != type(False):
        pyplot.subplot(gs[1])
        pyplot.plot(leverage.index, leverage.values, label="Leverage")
        pyplot.gcf().autofmt_xdate()
        pyplot.gca().fmt_xdata = mdates.DateFormatter('%m-%d-%Y')
        pyplot.gca().xaxis.set_major_formatter(
            mdates.DateFormatter('%b %d %Y'))
        labels = []
        max_label = max(leverage.values)
        min_label = min(leverage.values)
        rounder = -1 * (round(log10(max_label)) - 1)
        labels.append(round(min_label * 0.9, int(rounder)))
        labels.append(round((max_label + min_label) / 2, int(rounder)))
        labels.append(round(max_label * 1.1, int(rounder)))
        pyplot.yticks(labels)
        pyplot.legend(loc="best")
        pyplot.title(graph_name + " Leverage")
        pyplot.xlabel('Date')
        pyplot.legend()
    savefig(filename, format='png')