示例#1
0
def run(config, testing, tickers, filename):
    # Backtest information

    title = ["Kalman Filter Pairs Trade on %s/%s" % (tickers[0], tickers[1])]
    initial_equity = 100000.0
    start_date = datetime.datetime(2017, 1, 1)
    end_date = datetime.datetime(2018, 8, 19)

    # Use the KalmanPairsTrading Strategy
    events_queue = queue.Queue()
    strategy = KalmanPairsTradingStrategy(tickers, events_queue)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              position_sizer=position_sizer)
    results = backtest.start_trading(testing=testing)
    return results
示例#2
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(100000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2009, 8, 3)
    end_date = datetime.datetime(2019, 8, 1)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date)
    # Use the KalmanPairsTrading Strategy
    strategy = KalmanPairsTradingStrategy(tickers, events_queue)
    strategy = Strategies(strategy)

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Kalman Filter Pairs Trade on TLT/IEI"]
    statistics = TearsheetStatistics(config, portfolio_handler, title)

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              price_handler=price_handler,
                              portfolio_handler=portfolio_handler,
                              execution_handler=execution_handler,
                              position_sizer=position_sizer,
                              risk_manager=risk_manager,
                              statistics=statistics)

    results = backtest.start_trading(testing=testing)
    statistics.save(filename)
    return results
示例#3
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    title = ["Intraday AREX Machine Learning Prediction Strategy"]
    events_queue = queue.Queue()
    csv_dir = "/path/to/your/csv/data/"
    initial_equity = 500000.0

    # Use DTN IQFeed Intraday Bar Price Handler
    start_date = datetime.datetime(2013, 1, 1)
    end_date = datetime.datetime(2014, 3, 11)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir,
                                                     events_queue,
                                                     tickers,
                                                     start_date=start_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = '/path/to/your/ml_model_lda.pkl'
    strategy = IntradayMachineLearningPredictionStrategy(tickers,
                                                         events_queue,
                                                         model_pickle_file,
                                                         lags=5)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              portfolio_handler=portfolio_handler,
                              position_sizer=position_sizer,
                              price_handler=price_handler,
                              statistics=statistics)
    results = backtest.start_trading(testing=testing)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = "/path/to/your/csv/data/"
    initial_equity = PriceParser.parse(500000.00)

    # Use DTN IQFeed Intraday Bar Price Handler
    start_date = datetime.datetime(2013, 1, 1)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir,
                                                     events_queue,
                                                     tickers,
                                                     start_date=start_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = '/path/to/your/ml_model_lda.pkl'
    strategy = IntradayMachineLearningPredictionStrategy(tickers,
                                                         events_queue,
                                                         model_pickle_file,
                                                         lags=5)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=["Intraday AREX Machine Learning Prediction Strategy"],
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2013, 7, 1)
    end_date = datetime.datetime(2019, 6, 1)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date, end_date=end_date)

    # Use the Cointegration Bollinger Bands trading strategy
    weights = np.array([1.0, -1.213])
    lookback = 15
    entry_z = 1.5
    exit_z = 0.5
    base_quantity = 10000
    strategy = CointegrationBollingerBandsStrategy(tickers[1:], events_queue, lookback, weights, entry_z, exit_z, base_quantity)
    strategy = Strategies(strategy)

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue, price_handler, position_sizer, risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue, price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Aluminum Smelting Strategy - ARNC/UNG"]
    statistics = TearsheetStatistics(config, portfolio_handler, title, benchmark=tickers[0])
    
    # Set up the backtest
    backtest = TradingSession(config, strategy, 
        tickers[1:], initial_equity, start_date, end_date,
        events_queue, price_handler=price_handler,
        portfolio_handler=portfolio_handler, 
        execution_handler=execution_handler, 
        position_sizer=position_sizer, 
        risk_manager=risk_manager, 
        statistics=statistics, benchmark=tickers[0])

    results = backtest.start_trading(testing=testing)
    statistics.save(filename)
    return results
示例#6
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_invst = 1000000.00
    initial_equity = PriceParser.parse(initial_invst)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir,
        events_queue,
        tickers,
    )

    # Use the KalmanPairsTrading Strategy
    strategy = KalmanPairsTradingStrategy(tickers, events_queue, initial_invst)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the default Statistics
    statistics = TearsheetStatistics(config, portfolio_handler, title="")

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    hist = results['cum_returns']
    print('==:++==')
    print(hist.to_csv('6pair.csv', header=['date,total asset']))
    statistics.save('output')
    return results
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2012, 10, 15)
    end_date = datetime.datetime(2016, 2, 2)
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir, events_queue, tickers,
        start_date=start_date, end_date=end_date
    )

    # Use the Sentdex Sentiment trading strategy
    sentiment_handler = SentdexSentimentHandler(
        config.CSV_DATA_DIR, "sentdex_sample.csv",
        events_queue, tickers=tickers,
        start_date=start_date, end_date=end_date
    )

    base_quantity = 2000
    sent_buy = 6
    sent_sell = -1
    strategy = SentdexSentimentStrategy(
        tickers, events_queue,
        sent_buy, sent_sell, base_quantity
    )
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(
        initial_equity, events_queue, price_handler,
        position_sizer, risk_manager
    )

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(
        events_queue, price_handler, compliance
    )

    # Use the Tearsheet Statistics
    title = ["Sentiment Sentdex Strategy"]
    statistics = TearsheetStatistics(
        config, portfolio_handler, title,
        benchmark="SPY"
    )

    # Set up the backtest
    backtest = Backtest(
        price_handler, strategy,
        portfolio_handler, execution_handler,
        position_sizer, risk_manager,
        statistics, initial_equity,
        sentiment_handler=sentiment_handler
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
示例#8
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    pickle_path = "/path/to/your/model/hmm_model_spy.pkl"
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2005, 1, 1)
    end_date = datetime.datetime(2014, 12, 31)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date,
                                                 calc_adj_returns=True)

    # Use the Moving Average Crossover trading strategy
    base_quantity = 10000
    strategy = MovingAverageCrossStrategy(tickers,
                                          events_queue,
                                          base_quantity,
                                          short_window=10,
                                          long_window=30)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use regime detection HMM risk manager
    hmm_model = pickle.load(open(pickle_path, "rb"))
    risk_manager = RegimeHMMRiskManager(hmm_model)
    # Use an example Risk Manager
    #risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Trend Following Regime Detection with HMM"]
    statistics = TearsheetStatistics(config,
                                     portfolio_handler,
                                     title,
                                     benchmark="SPY")

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
示例#9
0
def run(config, testing, tickers, csv_filepath, pklfile, start_date, end_date,
        lags, title, folder_name, model, return_win, percent_factor, salida):
    # Set up variables needed for backtest
    #    title = [
    #        "Intraday AREX Machine Learning Prediction Strategy"
    #    ]
    events_queue = queue.Queue()
    csv_dir = csv_filepath
    initial_equity = 30000.0

    # Use DTN IQFeed Intraday Bar Price Handler
    #    start_date = datetime.datetime(2016, 1, 1)
    #    end_date = datetime.datetime(2014, 3, 11)

    #    start_date = datetime.datetime(2013, 1, 1)
    #    end_date = datetime.datetime(2014, 3, 11)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir, events_queue,
                                                     tickers, start_date,
                                                     end_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = pklfile
    strategy = IntradayMachineLearningPredictionStrategy(
        tickers, events_queue, model_pickle_file, lags, model, return_win,
        percent_factor, salida)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest

    compliance = LiveCompliance(config, tickers)

    execution_handler = IBSimulatedExecutionHandler(
        events_queue=events_queue,
        price_handler=price_handler,
        compliance=compliance)

    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              portfolio_handler=portfolio_handler,
                              compliance=compliance,
                              position_sizer=position_sizer,
                              execution_handler=execution_handler,
                              price_handler=price_handler,
                              statistics=statistics)
    results = backtest.start_trading(testing=testing, folder_name=folder_name)
    return results
示例#10
0
def run(config, testing, tickers, filename):
    #build_HMM_model()
    build_HMM_model2()
    title = ["Trend Following Regime Detection without HMM"]
    #pickle_path = "hmm_model_spy.pkl"
    pickle_path = "hmm_model_spy2.pkl"
    #pickle_path = "hmm_model_fx.pkl"
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = 100000.00
    start_date = datetime.datetime(2011, 1, 1)
    end_date = datetime.datetime(2018, 3, 31)
    # Use the Moving Average Crossover trading strategy
    base_quantity = 10000
    strategy = MovingAverageCrossStrategy(tickers,
                                          events_queue,
                                          base_quantity,
                                          short_window=10,
                                          long_window=30)
    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date,
                                                 calc_adj_returns=True)
    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()
    # Use an example Risk Manager
    #risk_manager = ExampleRiskManager()
    # Use regime detection HMM risk manager
    hmm_model = pickle.load(open(pickle_path, "rb"))
    risk_manager = RegimeHMMRiskManager(hmm_model)
    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)
    # Use the Tearsheet Statistics class
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        #title,benchmark = "EEM"
        title,
        benchmark="VWO")

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              price_handler=price_handler,
                              position_sizer=position_sizer,
                              risk_manager=risk_manager,
                              statistics=statistics,
                              portfolio_handler=portfolio_handler)
    results = backtest.start_trading(testing=testing)
    return results
def run(config, testing, tickers, cliente, strat_set):

    events_queue = queue.Queue()
    initial_equity = 30000.0

    end_session_time = datetime(2018, 2, 23, 16, 1, 00)
    if end_session_time < datetime.now():
        print("########################################")
        print("  Yoe, Increase \"end_section time\" please")
        print("########################################")
        exit()

    start_date = None
    end_date = None

    #
    # Defining up to 3 contracts in case Mean Reversing Strategies were used in the future
    #

    contract_1 = Contract()
    contract_1.symbol = tickers[0]
    contract_1.secType = "STK"
    contract_1.currency = "USD"
    contract_1.exchange = "SMART"
    contract_1.primaryExchange = "ISLAND"

    contract_2 = Contract()
    if len(tickers) > 1:
        contract_2.symbol = tickers[1]
    contract_2.secType = "STK"
    contract_2.currency = "USD"
    contract_2.exchange = "SMART"
    contract_2.primaryExchange = "ISLAND"

    contract_3 = Contract()
    if len(tickers) > 2:
        contract_3.symbol = tickers[2]
    contract_3.secType = "STK"
    contract_3.currency = "USD"
    contract_3.exchange = "SMART"
    contract_3.primaryExchange = "ISLAND"

    contract = [contract_1, contract_2, contract_3]

    #
    # Defining the Conection to TWS ######################################################
    #
    current_directory = os.getcwd()
    app = conexion(tickers=tickers,
                   port=7497,
                   cliente=cliente,
                   currentDir=current_directory)  # devuelto en: currentTime
    #
    #   Checking open positions on the market ############################################
    #
    app.reqAccountUpdates(True, "DU931045")

    tiempo = datetime.now()
    continua = False
    while not continua:
        open_position = app.open_position
        if open_position[0] != None or datetime.now() > tiempo + timedelta(
                seconds=3):
            continua = True
        time.sleep(0.5)
    if open_position[0] == tickers[0]:
        print(" *******************************************************")
        print("")
        print(" There is an open possition for %s, please check in the " %
              tickers[0])
        print(" market whether it is convenient to proced automatically")
        print("")
        print(" *******************************************************")

    app.reqAccountUpdates(False, "DU931045")

    #
    # Requesting real time data from the Market ##########################################
    #
    reqId = [None for i in range(len(tickers))]
    for i in range(len(tickers)):
        reqId[i] = app.nuevoId()
        app.reqMarketDataType(1)
        app.reqMktData(reqId[i],
                       contract[i],
                       genericTickList='',
                       snapshot=False,
                       regulatorySnapshot=False,
                       mktDataOptions=[])
        print("request Id: ", reqId[i])

#
# Defining modules ###################################################################
#

    price_handler = IBAPI_yoe(events_queue,
                              init_tickers=tickers,
                              app=app,
                              reqId=reqId)

    #    start_date = datetime.datetime(2015, 1, 1)
    #    end_date = datetime.datetime(2016, 9, 30)
    #    price_handler = IQFeedIntradayCsvBarPriceHandler(
    #        csv_dir, events_queue, tickers, start_date=start_date
    #    )
    contract_dict = {
        contract_1.symbol: contract_1,
        contract_2.symbol: contract_2,
        contract_3.symbol: contract_3
    }

    LiveCompl = LiveCompliance(config, tickers)

    # Use the ML Intraday Prediction Strategy

    model_pickle_file = current_directory + "/" + tickers[0] + "_Full_time.pkl"
    strategy = IntradayMachineLearningPredictionStrategy(
        tickers, events_queue, model_pickle_file, strat_set, open_position)

    execution_handler = IB_execution_yoe(events_queue,
                                         price_handler,
                                         compliance=LiveCompl,
                                         app=app,
                                         contract_dict=contract_dict,
                                         currentDir=current_directory,
                                         Id=reqId,
                                         strategy=strategy)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    title = [tickers[0] + "Machine Learning_Long_lags3"]
    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest

    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              session_type="live",
                              end_session_time=end_session_time,
                              price_handler=price_handler,
                              portfolio_handler=portfolio_handler,
                              compliance=None,
                              position_sizer=position_sizer,
                              execution_handler=execution_handler,
                              risk_manager=None,
                              statistics=statistics,
                              sentiment_handler=None,
                              title=None,
                              benchmark=None)
    results = backtest.start_trading(testing=testing)

    return results
    for i in range(len(tickers)):
        app.cancelMktData(i)
        app.disconnect()
    app.f.close()