示例#1
0
 def on_initialize(self):
     #load参数
     self.myinstr = "XSHE_000513"
     self.bartype = "Bar_5min" #订阅5分钟k线
     self.buyunit = 100 # 1手
     self.subscribe(self.myinstr,self.bartype)         
     self.best_day = chrono.Date(20160712)
     self.a0 = self.add_alarm(chrono.str_to_time(str(self.best_day)+" 01:35:00.000000"))
    def on_data_update(self, data):
        for instr in self.list['name']:
            if str(data.instrument) == instr:
                if data.type == 'Bar_1day':
                    self.report['report'][instr]['end_time'].append(
                        chrono.time_to_str(get_current_time()))
                    cal = chrono.Calendar("ChinaStocks")
                    self.df['history'][instr] = np.append(
                        self.df['history'][instr], data.close)
                    self.df['date'][instr] = np.append(self.df['date'][instr],
                                                       data.date)

                    print 'Today is:', data.date, 'Stock id: ', instr

                    self.report['report'][instr]['date'].append(
                        cal.add(data.date, 1))
                    self.report['report'][instr]['stock_id'].append(str(instr))
                    self.report['report'][instr]['history'].append(data.close)

                    print "日期记录:", self.report['report'][instr][
                        'date'], '\n', "交易价记录:", self.report['report'][instr][
                            'price'], '\n', "每日收盘价记录:", self.report['report'][instr][
                                'history'], '\n', 'value:', self.report['report'][
                                    instr]['value'], 'size:', self.report['report'][
                                        instr]['size'], 'order id: ', self.report[
                                            'report'][instr][
                                                'states'], '\n', "订单时间:", self.report[
                                                    'report'][instr][
                                                        'order_time'], '\n', 'data返回终止时间:', self.report[
                                                            'report'][instr][
                                                                'end_time'], '\n'
                    self.df['t0'][instr] = self.add_alarm(
                        chrono.str_to_time(
                            str(cal.add(data.date, 1)) + "01:55:00.000000"))
                    self.df['t1'][instr] = self.add_alarm(
                        chrono.str_to_time(
                            str(cal.add(data.date, 1)) + "06:55:00.000000"))
示例#3
0
    def on_initialize(self):
        #load参数
        self.myinstr = "XSHE_000513"
        self.bartype = "Bar_5min" #订阅5分钟k线
        self.buyunit = 100 # 1手
        self.subscribe(self.myinstr,self.bartype)         
        self.a0 = self.add_alarm(chrono.str_to_time("2016-07-12 01:35:00.000000"))
        
        if data.date in Trade_date:

            self.t0 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:25:00.000000"))

            self.t1 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:30:00.000000"))
            self.t2 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:36:00.000000"))
            self.t3 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:42:00.000000"))
            self.t4 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:48:00.000000"))
            self.t5 =  self.add_alarm(chrono.str_to_time(str(data.date)+"01:54:00.000000"))
示例#4
0
    def on_data_update(self, data):
        if data.type == "Bar_1day":
            #用日度交易数据来收集数据并确定SEP
            #增加最新数据,去掉最旧数据
            self.history = np.append(self.history, data.close)
            self.date = np.append(self.date, data.date)

            if (len(self.history) - 10 > 0):
                for i in range(max(4,
                                   len(self.history) - 10),
                               len(self.history) - 5):
                    if (self.history[i] > max(self.history[i - 4:i]) and
                            self.history[i] > max(self.history[i + 1:i + 5])
                            and (self.date[i + 5] not in self.Trade_date)):
                        ## 判断SEP条件
                        self.Trade_date.append(self.date[i + 5])

            if data.date in self.Trade_date:
                cal = chrono.Calendar("ChinaStocks")

                print "由SEP确定的交易日为:", cal.add(data.date, 1)

                # 集合竞价 9:25
                self.t0 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:25:00.000000"))
                self.t1 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:30:00.000000"))
                self.t2 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:36:00.000000"))
                self.t3 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:42:00.000000"))
                self.t4 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:48:00.000000"))
                self.t5 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:54:00.000000"))
    def on_data_update(self, data):
        for instr in self.list['name']:  ##遍历股票池中的股票
            if str(data.instrument) == instr:  ##对于某只特定的股票:

                self.date[instr] = []  ## 字典中对应于该只股票的空列表,存档每只股票的交易日,因为不同股票可能不一样
                self.Trade_date[instr] = [
                ]  ##字典中对应于该只股票的空列表,搜集SEP后的第五个交易日期,每一个列表中的交易日,我们将在下一个交易日交易
                self.history[instr] = []  ## 字典中对应于该只股票的空列表, 存档每日收盘价

                ## 这几个变量都得用字典形式存储,防止数据跑窜了地方

                self.order0[instr] = 0  ##6个订单编号
                self.order1[instr] = 0
                self.order2[instr] = 0
                self.order3[instr] = 0
                self.order4[instr] = 0
                self.order5[instr] = 0
                self.bar0[instr] = 0  ##6个收集bartype收盘价的全局变量
                self.bar1[instr] = 0
                self.bar2[instr] = 0
                self.bar3[instr] = 0
                self.bar4[instr] = 0
                self.bar5[instr] = 0
                self.date0[instr] = self.default_date

                if data.type == "Bar_1day":
                    #用日度交易数据来收集数据并确定SEP
                    #增加最新数据
                    self.history[instr] = np.append(self.history[instr],
                                                    data.close)
                    self.date[instr] = np.append(self.date[instr], data.date)

                    if (len(self.history[instr]) - 10 > 0):
                        for i in range(max(4,
                                           len(self.history[instr]) - 10),
                                       len(self.history[instr]) - 5):
                            if (self.history[instr][i] > max(
                                    self.history[instr][i - 4:i])
                                    and self.history[instr][i] > max(
                                        self.history[instr][i + 1:i + 5])
                                    and (self.date[instr][i + 5]
                                         not in self.Trade_date[instr])):
                                ## 判断SEP条件
                                self.Trade_date[instr].append(
                                    self.date[instr][i + 5])

                    if data.date in self.Trade_date[instr]:
                        ## 如果某天是 该只股票的某个SEP日期的后五日:
                        cal = chrono.Calendar("ChinaStocks")
                        self.date0[instr] = data.date
                        print "由SEP确定的交易日为:", cal.add(
                            data.date, 1)  ## SEP 之后第五个交易日被记录,其下一天为交易日期

                        ## 设定不同的闹钟进行买入交易
                        self.t0[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:25:00.000000"))
                        self.t1[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:31:00.000000"))
                        self.t2[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:37:00.000000"))
                        self.t3[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:43:00.000000"))
                        self.t4[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:49:00.000000"))
                        self.t5[instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(data.date, 1)) +
                                "01:55:00.000000"))

                    cal = chrono.Calendar("ChinaStocks")

                    if cal.add(data.date, -1) in self.Trade_date[instr]:
                        ## 如果某一天的前一天是  instr该只股票SEP之后第五个交易日被记录(已被记录在self.Trade_date[instr]),那么他这一天将是买入的日期
                        ## 在这里打印是为了对应 data.type=="Bar_1day",只需要每天打一次就行
                        print "五次下单分时价格为:", self.bar1[instr], self.bar2[
                            instr], self.bar3[instr], self.bar4[
                                instr], self.bar5[instr]

                if data.type == "Bar_1min":
                    cal = chrono.Calendar("ChinaStocks")

                    if chrono.time_to_date(data.time) == cal.add(
                            self.date0[instr], 1):
                        ## 对应某一只股票,改天1Min bar线对应的日期为交易日的话:

                        if chrono.str_to_time(
                                str(cal.add(self.date0[instr], 1)) +
                                "01:31:00.000000") == data.time:
                            self.bar1[instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.date0[instr], 1)) +
                                "01:37:00.000000") == data.time:
                            self.bar2[instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.date0[instr], 1)) +
                                "01:43:00.000000") == data.time:
                            self.bar3[instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.date0[instr], 1)) +
                                "01:49:00.000000") == data.time:
                            self.bar4[instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.date0[instr], 1)) +
                                "01:55:00.000000") == data.time:
                            self.bar5[instr] = data.close
示例#6
0
    def on_data_update(self, data):
        for instr in self.list['name']:

            if str(data.instrument) == instr:

                if data.type == "Bar_1day":

                    self.df['history'][instr] = np.append(
                        self.df['history'][instr], data.close)
                    self.df['date'][instr] = np.append(self.df['date'][instr],
                                                       data.date)

                    if (len(self.df['history'][instr]) - 10 > 0):
                        for i in range(
                                max(4,
                                    len(self.df['history'][instr]) - 10),
                                len(self.df['history'][instr]) - 5):
                            if (self.df['history'][instr][i] > max(
                                    self.df['history'][instr][i - 4:i])
                                    and self.df['history'][instr][i] > max(
                                        self.df['history'][instr][i + 1:i + 5])
                                    and (self.df['date'][instr][i + 5]
                                         not in self.df['Trade_date'][instr])):
                                ## 判断SEP条件
                                self.df['Trade_date'][instr].append(
                                    self.df['date'][instr][i + 5])

                    if data.date in self.df['Trade_date'][
                            instr]:  ##########################################################################################
                        ## 如果某天是 该只股票的某个SEP日期的后五日:                                                                                                 #
                        cal = chrono.Calendar("ChinaStocks")  #
                        self.df['date0'][instr] = data.date  #
                        print instr, "由SEP确定的交易日为:", cal.add(
                            self.df['date0'][instr], 1
                        )  ## SEP 之后第五个交易日被记录,其下一天为交易日期                    #
                        #
                        self.df['t0'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:25:00.000000"))  #
                        self.df['t1'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:31:00.000000"))  #
                        self.df['t2'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:37:00.000000"))  #
                        self.df['t3'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:43:00.000000"))  #
                        self.df['t4'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:49:00.000000"))  #
                        self.df['t5'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:55:00.000000"))  #
                        #
                    cal = chrono.Calendar("ChinaStocks")  #
                    #
                    if cal.add(data.date, -1) in self.df['Trade_date'][
                            instr]:  #############################################################################
                        ## 如果某一天的前一天是  instr该只股票SEP之后第五个交易日被记录(已被记录在self.Trade_date[instr]),那么他这一天将是买入的日期
                        ## 在这里打印是为了对应 data.type=="Bar_1day",只需要每天打一次就行
                        print instr, "五次下单分时价格为:", self.df['bar1'][
                            instr], self.df['bar2'][instr], self.df['bar3'][
                                instr], self.df['bar4'][instr], self.df[
                                    'bar5'][instr]

                if data.type == "Bar_1min":

                    cal = chrono.Calendar("ChinaStocks")

                    if chrono.time_to_date(data.time) == cal.add(
                            self.df['date0'][instr], 1):
                        ## 对应某一只股票,该天1Min bar线对应的日期为交易日的话:

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:31:00.000000") == data.time:
                            self.df['bar1'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:37:00.000000") == data.time:
                            self.df['bar2'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:43:00.000000") == data.time:
                            self.df['bar3'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:49:00.000000") == data.time:
                            self.df['bar4'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:55:00.000000") == data.time:
                            self.df['bar5'][instr] = data.close
    def on_data_update(self, data):
        if data.type == "Bar_1day":
            #用日度交易数据来收集数据并确定SEP
            #增加最新数据
            self.history = np.append(self.history, data.close)
            self.date = np.append(self.date, data.date)

            if (len(self.history) - 10 > 0):
                for i in range(max(4,
                                   len(self.history) - 10),
                               len(self.history) - 5):
                    if (self.history[i] > max(self.history[i - 4:i]) and
                            self.history[i] > max(self.history[i + 1:i + 5])
                            and (self.date[i + 5] not in self.Trade_date)):
                        ## 判断SEP条件
                        self.Trade_date.append(self.date[i + 5])

            if data.date in self.Trade_date:
                cal = chrono.Calendar("ChinaStocks")
                self.date0 = data.date
                print "由SEP确定的交易日为:", cal.add(data.date,
                                              1)  ## SEP 之后第五个交易日被记录,其下一天为交易日期

                # 集合竞价 9:25
                self.t0 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:25:00.000000"))
                self.t1 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:31:00.000000"))
                self.t2 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:37:00.000000"))
                self.t3 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:43:00.000000"))
                self.t4 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:49:00.000000"))
                self.t5 = self.add_alarm(
                    chrono.str_to_time(
                        str(cal.add(data.date, 1)) + "01:55:00.000000"))

            cal = chrono.Calendar("ChinaStocks")
            if cal.add(data.date, -1) in self.Trade_date:
                print "五次下单分时价格为:", self.bar1, self.bar2, self.bar3, self.bar4, self.bar5

        if data.type == "Bar_1min":
            cal = chrono.Calendar("ChinaStocks")

            if chrono.time_to_date(data.time) == cal.add(self.date0, 1):
                if chrono.str_to_time(
                        str(cal.add(self.date0, 1)) +
                        "01:31:00.000000") == data.time:
                    self.bar1 = data.close

                if chrono.str_to_time(
                        str(cal.add(self.date0, 1)) +
                        "01:37:00.000000") == data.time:
                    self.bar2 = data.close

                if chrono.str_to_time(
                        str(cal.add(self.date0, 1)) +
                        "01:43:00.000000") == data.time:
                    self.bar3 = data.close

                if chrono.str_to_time(
                        str(cal.add(self.date0, 1)) +
                        "01:49:00.000000") == data.time:
                    self.bar4 = data.close

                if chrono.str_to_time(
                        str(cal.add(self.date0, 1)) +
                        "01:55:00.000000") == data.time:
                    self.bar5 = data.close
    def on_data_update(self, data):
        for instr in self.list['name']:           ##遍历股票池中的股票
            if str(data.instrument) == instr:     ##对于某只特定的股票:
                    if data.type == "Bar_1day":
                    #用日度交易数据来收集数据并确定SEP
                    #增加最新数据
                    self.df['history'][instr]= np.append(self.df['history'][instr], data.close)
                    self.df['date'][instr]= np.append(self.df['date'][instr], data.date)
                    
                    if (len(self.df['history'][instr])-10>0):
                        for i in range(max(4,len(self.df['history'][instr])-10),len(self.df['history'][instr])-5):
                            if(self.df['history'][instr][i] > max(self.df['history'][instr][i-4:i]) and self.df['history'][instr][i] > max(self.df['history'][instr][i+1:i+5]) and (self.df['history'][instr][i+5] not in self.df['Trade_date'][instr])):
                                ## 判断SEP条件
                                self.df['Trade_date'][instr].append(self.df['date'][instr][i+5])
                                
                    if data.date in self.df['Trade_date'][instr]: 
                    ## 如果某天是 该只股票的某个SEP日期的后五日:
                        cal = chrono.Calendar("ChinaStocks")
                        self.df['date0'][instr] = data.date
                        print "由SEP确定的交易日为:",cal.add(data.date, 1)  ## SEP 之后第五个交易日被记录,其下一天为交易日期

                        ## 设定不同的闹钟进行买入交易
                        self.df['t0'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:25:00.000000"))
                        self.df['t1'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:31:00.000000"))
                        self.df['t2'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:37:00.000000"))
                        self.df['t3'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:43:00.000000"))
                        self.df['t4'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:49:00.000000"))
                        self.df['t5'][instr] =  self.add_alarm(chrono.str_to_time(str(cal.add(data.date, 1))+"01:55:00.000000"))
                    
                    cal = chrono.Calendar("ChinaStocks")

                    if cal.add(data.date,-1) in self.df['Trade_date'][instr]: 
                        ## 如果某一天的前一天是  instr该只股票SEP之后第五个交易日被记录(已被记录在self.Trade_date[instr]),那么他这一天将是买入的日期
                        ## 在这里打印是为了对应 data.type=="Bar_1day",只需要每天打一次就行
                        print "五次下单分时价格为:",self.df['bar1'][instr],self.df['bar2'][instr],self.df['bar3'][instr],self.df['bar4'][instr],self.df['bar5'][instr]

                if data.type == "Bar_1min":

                    cal = chrono.Calendar("ChinaStocks")
                    
                    if chrono.time_to_date(data.time) == cal.add(self.df['date0'][instr], 1):
                        ## 对应某一只股票,改天1Min bar线对应的日期为交易日的话:
                    
                        if chrono.str_to_time(str(cal.add(self.df['date0'][instr], 1))+"01:31:00.000000") == data.time:
                            self.df['bar1'][instr] = data.close
                            
                        if chrono.str_to_time(str(cal.add(self.df['date0'][instr], 1))+"01:37:00.000000") == data.time:
                            self.df['bar2'][instr] = data.close
                                           
                        if chrono.str_to_time(str(cal.add(self.df['date0'][instr], 1))+"01:43:00.000000") == data.time:
                            self.df['bar3'][instr] = data.close
                                          
                        if chrono.str_to_time(str(cal.add(self.df['date0'][instr], 1))+"01:49:00.000000") == data.time:
                            self.df['bar4'][instr] = data.close
                                              
                        if chrono.str_to_time(str(cal.add(self.df['date0'][instr], 1))+"01:55:00.000000") == data.time:
                            self.df['bar5'][instr] = data.close
                             
            
    def on_alarm(self,id):
        for instr in self.list['name']: ##遍历股票池中的股票
           
            if id == self.df['t0'][instr] :
                self.df['order0'][instr] = self.place_stock_order(instr, 5 , trade.MarketPrice())
                
                self.df['total_volumn'][instr] = 0 
                self.df['total_size'][instr] = 0

                ##   每到一个新的指定交易日,清零之前的累加(用来求新的交易均价)
                
            if id == self.df['t1'][instr]:
                self.df['order1'][instr] = self.place_stock_order(instr, 1 , trade.MarketPrice())
                
            if id == self.df['t2'][instr]:
                self.df['order2'][instr] = self.place_stock_order(instr, 1 , trade.MarketPrice())
                            
            if id == self.df['t3'][instr]:
                self.df['order3'][instr] = self.place_stock_order(instr, 1 , trade.MarketPrice())
                
            if id == self.df['t4'][instr]:
                self.df['order4'][instr] = self.place_stock_order(instr, 1, trade.MarketPrice())
                
            if id == self.df['t5'][instr]:
                self.df['order5'][instr] = self.place_stock_order(instr, 1, trade.MarketPrice())
                   


    def on_order_update(self, order):
        for instr in self.list['name']: ##遍历股票池中的股票
            
            if order.id == self.df['order0'][instr] and order.state == OrderState.FINAL:
                ## 集合竞价得到的平均购入价格
                self.df['average_price_once'][instr] = order.filled_value / order.filled_size
                
       
            if order.id != self.df['order0'][instr] and order.state == OrderState.FINAL:
                ## 累积加和分次下单的总价和下单总量
                self.df['total_volumn'][instr] += order.filled_value
                self.df['total_size'][instr] += order.filled_size
                
            if order.id == self.df['order5'][instr] and order.state ==OrderState.FINAL:
                ## 最后一单交易完成之后,核算平均成交价格
                self.df['average_price'][instr] = self.df['total_volumn'][instr] / self.df['total_size'][instr]
                print "Stock_id:",instr,"分次下单总交易量:",self.df['total_volumn'][instr],"分次下单总股数:",self.df['total_size'][instr] ,"分次下单均价:",self.df['average_price'][instr],"集合竞价均价:",self.df['average_price_once'][instr]
示例#9
0
    def on_data_update(self, data):
        for instr in self.list['name']:

            if str(data.instrument) == instr:

                if data.type == "Bar_1day":

                    cal = chrono.Calendar("ChinaStocks")
                    self.df['history'][instr] = np.append(
                        self.df['history'][instr], data.close)
                    self.df['date'][instr] = np.append(self.df['date'][instr],
                                                       data.date)

                    if (len(self.df['history'][instr]) - 10 > 0):
                        for i in range(
                                max(4,
                                    len(self.df['history'][instr]) - 10),
                                len(self.df['history'][instr]) - 5):
                            if (self.df['history'][instr][i] > max(
                                    self.df['history'][instr][i - 4:i])
                                    and self.df['history'][instr][i] > max(
                                        self.df['history'][instr][i + 1:i + 5])
                                    and (self.df['date'][instr][i + 5]
                                         not in self.df['Trade_date'][instr])):
                                ## 判断SEP条件
                                self.df['Trade_date'][instr].append(
                                    self.df['date'][instr][i + 5])

                    if data.date in self.df['Trade_date'][instr]:

                        self.df['date0'][instr] = data.date
                        self.df['t0'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:25:00.000000"))
                        self.df['t1'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:31:00.000000"))
                        self.df['t2'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:37:00.000000"))
                        self.df['t3'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:43:00.000000"))
                        self.df['t4'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:49:00.000000"))
                        self.df['t5'][instr] = self.add_alarm(
                            chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:55:00.000000"))

                    if cal.add(data.date, -1) in self.df['Trade_date'][instr]:
                        ##记录交易日#####
                        self.report['report'][instr]['date'].append(data.date)
                        self.report['report'][instr]['stock_id'].append(instr)
                        ###$$$$$#######

                        print instr, "由SEP确定的交易日为:", data.date, "五次下单分时价格为:", self.df[
                            'bar1'][instr], self.df['bar2'][instr], self.df[
                                'bar3'][instr], self.df['bar4'][
                                    instr], self.df['bar5'][instr]
                        print self.report['order_record'][instr]

                        if abs((self.df['average_price'][instr] -
                                self.df['average_price_once'][instr]) /
                               self.df['average_price_once'][instr]) >= 0.02:
                            self.report['report'][instr][
                                'possible_error0'].append('Error')
                        #记录可能出现的错误:集合竞价与分次下单平均价格差别太大。
                        else:
                            self.report['report'][instr][
                                'possible_error0'].append('Correct')
                        if abs(
                            (self.df['bar1'][instr] - self.df['price1'][instr])
                                / self.df['bar1'][instr]) + abs(
                                    (self.df['bar2'][instr] -
                                     self.df['price2'][instr]) /
                                    self.df['bar2'][instr]) + abs(
                                        (self.df['bar3'][instr] -
                                         self.df['price3'][instr]) /
                                        self.df['bar3'][instr]) + abs(
                                            (self.df['bar4'][instr] -
                                             self.df['price4'][instr]) /
                                            self.df['bar4'][instr]) + abs(
                                                (self.df['bar5'][instr] -
                                                 self.df['price5'][instr]) /
                                                self.df['bar5'][instr]) >= 0.1:
                            #记录可能出现的错误:bar线数据与实际成交数据差别太大。
                            self.report['report'][instr][
                                'possible_error1'].append('Error')
                        else:
                            self.report['report'][instr][
                                'possible_error1'].append('Correct')

                if data.type == "Bar_1min":

                    cal = chrono.Calendar("ChinaStocks")

                    if chrono.time_to_date(data.time) == cal.add(
                            self.df['date0'][instr], 1):
                        ## 对应某一只股票,该天1Min bar线对应的日期为交易日的话:

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:31:00.000000") == data.time:
                            self.df['bar1'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:37:00.000000") == data.time:
                            self.df['bar2'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:43:00.000000") == data.time:
                            self.df['bar3'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:49:00.000000") == data.time:
                            self.df['bar4'][instr] = data.close

                        if chrono.str_to_time(
                                str(cal.add(self.df['date0'][instr], 1)) +
                                "01:55:00.000000") == data.time:
                            self.df['bar5'][instr] = data.close