def pred_probs(f_pred_prob, prepare_data, data, iterator, model_options, verbose=False): """ If you want to use a trained model, this is useful to compute the probabilities of new examples. """ n_samples = len(data[0]) probs = numpy.zeros((n_samples, 2)).astype('float32') n_done = 0 for _, valid_index in iterator: x, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options['n_iter'], model_options['n_input']) pred_probs = f_pred_prob(x) probs[valid_index, :] = pred_probs n_done += len(valid_index) if verbose: print '%d/%d samples classified' % (n_done, n_samples) return probs
def R_score(f_pred, prepare_data, data, iterator, model_options, verbose=False): """ Just compute the error f_pred: Theano fct computing the prediction prepare_data: usual prepare_data for that dataset. """ valid_err = 0 denom = 0 data_mean = numpy.array(data[1]).mean() for _, valid_index in iterator: # TODO: This is not very efficient I should check x, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options['n_iter'], model_options['n_input']) preds = f_pred(x) targets = numpy.array(data[1])[valid_index] valid_err += tensor.sum((targets - preds.T)**2) denom += ((numpy.array(data[1]) - data_mean)**2).sum() #valid_err = 1. - numpy.float32(valid_err) / len(data[0]) valid_err = 1. - (valid_err / denom) return valid_err.eval()
def pred_probs(f_pred_prob, prepare_data, data, iterator, model_options, verbose=False): """ If you want to use a trained model, this is useful to compute the probabilities of new examples. """ n_samples = len(data[0]) probs = numpy.zeros((n_samples, 2)).astype("float32") n_done = 0 for _, valid_index in iterator: x, y = prepare_data( [data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options["n_iter"], model_options["n_input"], up=True, ) pred_probs = f_pred_prob(x) probs[valid_index, :] = pred_probs n_done += len(valid_index) if verbose: print "%d/%d samples classified" % (n_done, n_samples) return probs
def pred_error(f_pred, prepare_data, data, iterator, model_options, verbose=False): """ Just compute the error f_pred: Theano fct computing the prediction prepare_data: usual prepare_data for that dataset. """ valid_err = 0 for _, valid_index in iterator: # TODO: This is not very efficient I should check x, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options['n_iter'], model_options['n_input'], up=True) preds_prob = f_pred(x) preds = preds_prob.argmax(axis=1) targets = numpy.array(data[1])[valid_index] valid_err += tensor.sum(tensor.neq(targets, preds)) #valid_err = 1. - numpy.float32(valid_err) / len(data[0]) valid_err = float(valid_err.eval()) return valid_err / float(len(data[0]))
def pred_error(f_pred, prepare_data, data, iterator, model_options, verbose=False): """ Just compute the error f_pred: Theano fct computing the prediction prepare_data: usual prepare_data for that dataset. """ valid_err = 0 for _, valid_index in iterator: # TODO: This is not very efficient I should check x, y = prepare_data([data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options['n_iter'],model_options['n_input']) preds = f_pred(x) targets = numpy.array(data[1])[valid_index] valid_err += tensor.sum((targets-preds.T)**2) #valid_err = 1. - numpy.float32(valid_err) / len(data[0]) valid_err = valid_err / len(data[0]) return valid_err.eval()
def pred_error(f_pred, prepare_data, data, iterator, model_options, verbose=False): """ Just compute the error f_pred: Theano fct computing the prediction prepare_data: usual prepare_data for that dataset. """ valid_err = 0 for _, valid_index in iterator: # TODO: This is not very efficient I should check x, y = prepare_data( [data[0][t] for t in valid_index], numpy.array(data[1])[valid_index], model_options["n_iter"], model_options["n_input"], up=True, ) preds_prob = f_pred(x) preds = preds_prob.argmax(axis=1) targets = numpy.array(data[1])[valid_index] valid_err += tensor.sum(tensor.neq(targets, preds)) # valid_err = 1. - numpy.float32(valid_err) / len(data[0]) valid_err = float(valid_err.eval()) return valid_err / float(len(data[0]))
def train_lstm( dim_proj=32, # word embeding dimension and LSTM number of hidden units. patience=10, # Number of epoch to wait before early stop if no progress max_epochs=150, # The maximum number of epoch to run dispFreq=10, # Display to stdout the training progress every N updates decay_c=0., # Weight decay for the classifier applied to the U weights. lrate=0.1, # Learning rate for sgd (not used for adadelta and rmsprop) n_input=4, # Vocabulary size optimizer=mom_sgd, # sgd,mom_sgs, adadelta and rmsprop available, sgd very hard to use, not recommanded (probably need momentum and decaying learning rate). encoder='lstm', # TODO: can be removed must be lstm. saveto='lstm_model.npz', # The best model will be saved there validFreq=170, # Compute the validation error after this number of update. saveFreq=1110, # Save the parameters after every saveFreq updates maxlen=100, # Sequence longer then this get ignored batch_size=16, # The batch size during training. valid_batch_size=64, # The batch size used for validation/test set. dataset='imdb', # Parameter for extra option noise_std=0., use_dropout=False, # if False slightly faster, but worst test error # This frequently need a bigger model. reload_model="", # Path to a saved model we want to start from. sum_pool=False, mom_start=0.5, mom_end=0.99, mom_epoch_interval=100, learning_rate_decay=0.9995): # Model options model_options = locals().copy() print "model options", model_options print 'Loading data' ydim = 1 n_iter = 10 train, valid, test = read_data(max_len=n_iter) #YDIM?? #number of labels (output) model_options['ydim'] = ydim model_options['n_iter'] = n_iter theano.config.optimizer = 'None' print 'Building model' # This create the initial parameters as numpy ndarrays. # Dict name (string) -> numpy ndarray params = init_params(model_options) if reload_model: load_params('lstm_model.npz', params) # This create Theano Shared Variable from the parameters. # Dict name (string) -> Theano Tensor Shared Variable # params and tparams have different copy of the weights. tparams = init_tparams(params) # use_noise is for dropout (use_noise, x, y, f_pred_prob, cost) = build_model(tparams, model_options) if decay_c > 0.: decay_c = theano.shared(numpy.float32(decay_c), name='decay_c') weight_decay = 0. weight_decay += (tparams['U']**2).sum() weight_decay *= decay_c cost += weight_decay f_cost = theano.function([x, y], cost, name='f_cost') grads = tensor.grad(cost, wrt=tparams.values()) f_grad = theano.function([x, y], grads, name='f_grad') lr = tensor.scalar(name='lr') f_grad_shared, f_update = optimizer(lr, tparams, grads, x, y, cost) print 'Optimization' kf_valid = get_minibatches_idx(len(valid[0]), valid_batch_size, shuffle=True) kf_test = get_minibatches_idx(len(test[0]), valid_batch_size, shuffle=True) print "%d train examples" % len(train[0]) print "%d valid examples" % len(valid[0]) print "%d test examples" % len(test[0]) history_errs = [] best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0]) / batch_size if saveFreq == -1: saveFreq = len(train[0]) / batch_size uidx = 0 # the number of update done estop = False # early stop start_time = time.clock() mom = 0 try: for eidx in xrange(max_epochs): n_samples = 0 # Get new shuffled index for the training set. kf = get_minibatches_idx(len(train[0]), batch_size, shuffle=True) for _, train_index in kf: uidx += 1 use_noise.set_value(1.) # Select the random examples for this minibatch y = [train[1][t] for t in train_index] x = [train[0][t] for t in train_index] # Get the data in numpy.ndarray formet. # It return something of the shape (minibatch maxlen, n samples) x, y = prepare_data(x, y, model_options['n_iter'], model_options['n_input']) if x is None: print 'Minibatch with zero sample under length ', maxlen continue n_samples += x.shape[1] if eidx < model_options['mom_epoch_interval']: mom = model_options['mom_start']*\ (1.0 - eidx/model_options['mom_epoch_interval'])\ + mom_end*(eidx/model_options['mom_epoch_interval']) else: mom = mom_end cost = f_grad_shared(x, y) f_update(lrate, mom) #decay lrate = learning_rate_decay * lrate if numpy.isnan(cost) or numpy.isinf(cost): print 'NaN detected' return 1., 1., 1. if numpy.mod(uidx, dispFreq) == 0: print 'Epoch ', eidx, 'Update ', uidx, 'Cost ', cost if numpy.mod(uidx, saveFreq) == 0: print 'Saving...', if best_p is not None: params = best_p else: params = unzip(tparams) numpy.savez(saveto, history_errs=history_errs, **params) pkl.dump(model_options, open('%s.pkl' % saveto, 'wb'), -1) print 'Done' if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.) #train_err = pred_error(f_pred_prob, prepare_data, train, kf, model_options) valid_err = pred_error(f_pred_prob, prepare_data, valid, kf_valid, model_options) test_err = pred_error(f_pred_prob, prepare_data, test, kf_test, model_options) r_score = R_score(f_pred_prob, prepare_data, test, kf_test, model_options) history_errs.append([valid_err, test_err]) if (uidx == 0 or valid_err <= numpy.array(history_errs)[:, 0].min()): best_p = unzip(tparams) bad_counter = 0 print('Valid ', valid_err, 'Test ', test_err, 'R_score ', r_score) if (len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience, 0].min()): bad_counter += 1 if bad_counter > patience: print 'Early Stop!' estop = True break print 'Seen %d samples' % n_samples if estop: break except KeyboardInterrupt: print "Training interupted" end_time = time.clock() if best_p is not None: zipp(best_p, tparams) else: best_p = unzip(tparams) use_noise.set_value(0.) train_err = pred_error(f_pred_prob, prepare_data, train, kf, model_options) valid_err = pred_error(f_pred_prob, prepare_data, valid, kf_valid, model_options) test_err = pred_error(f_pred_prob, prepare_data, test, kf_test, model_options) r_score = R_score(f_pred_prob, prepare_data, test, kf_test, model_options) print 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err, 'R2 score ', r_score numpy.savez(saveto, train_err=train_err, valid_err=valid_err, test_err=test_err, history_errs=history_errs, **best_p) print 'The code run for %d epochs, with %f sec/epochs' % ( (eidx + 1), (end_time - start_time) / (1. * (eidx + 1))) print >> sys.stderr, ('Training took %.1fs' % (end_time - start_time)) return train_err, valid_err, test_err
def train_lstm( dim_proj=32, # word embeding dimension and LSTM number of hidden units. patience=10, # Number of epoch to wait before early stop if no progress max_epochs=150, # The maximum number of epoch to run dispFreq=10, # Display to stdout the training progress every N updates decay_c=0.0, # Weight decay for the classifier applied to the U weights. lrate=0.1, # Learning rate for sgd (not used for adadelta and rmsprop) n_input=4, # Vocabulary size optimizer=mom_sgd, # sgd,mom_sgs, adadelta and rmsprop available, sgd very hard to use, not recommanded (probably need momentum and decaying learning rate). encoder="lstm", # TODO: can be removed must be lstm. saveto="lstm_model.npz", # The best model will be saved there validFreq=170, # Compute the validation error after this number of update. saveFreq=1110, # Save the parameters after every saveFreq updates maxlen=100, # Sequence longer then this get ignored batch_size=16, # The batch size during training. valid_batch_size=64, # The batch size used for validation/test set. dataset="imdb", # Parameter for extra option noise_std=0.0, use_dropout=False, # if False slightly faster, but worst test error # This frequently need a bigger model. reload_model="", # Path to a saved model we want to start from. sum_pool=False, mom_start=0.5, mom_end=0.99, mom_epoch_interval=300, learning_rate_decay=0.99995, ): # Model options model_options = locals().copy() print "model options", model_options print "Loading data" ydim = 2 n_iter = 10 train, valid, test, mean, std = read_data(max_len=n_iter, up=True) # YDIM?? # number of labels (output) model_options["ydim"] = ydim model_options["n_iter"] = n_iter theano.config.optimizer = "None" print "Building model" # This create the initial parameters as numpy ndarrays. # Dict name (string) -> numpy ndarray params = init_params(model_options) if reload_model: load_params("lstm_model.npz", params) # This create Theano Shared Variable from the parameters. # Dict name (string) -> Theano Tensor Shared Variable # params and tparams have different copy of the weights. tparams = init_tparams(params) # use_noise is for dropout (use_noise, x, y, f_pred_prob, cost) = build_model(tparams, model_options) if decay_c > 0.0: decay_c = theano.shared(numpy.float32(decay_c), name="decay_c") weight_decay = 0.0 weight_decay += (tparams["U"] ** 2).sum() weight_decay *= decay_c cost += weight_decay f_cost = theano.function([x, y], cost, name="f_cost") grads = tensor.grad(cost, wrt=tparams.values()) f_grad = theano.function([x, y], grads, name="f_grad") lr = tensor.scalar(name="lr") f_grad_shared, f_update = optimizer(lr, tparams, grads, x, y, cost) print "Optimization" kf_valid = get_minibatches_idx(len(valid[0]), valid_batch_size, shuffle=True) kf_test = get_minibatches_idx(len(test[0]), valid_batch_size, shuffle=True) print "%d train examples" % len(train[0]) print "%d valid examples" % len(valid[0]) print "%d test examples" % len(test[0]) history_errs = [] best_p = None bad_count = 0 if validFreq == -1: validFreq = len(train[0]) / batch_size if saveFreq == -1: saveFreq = len(train[0]) / batch_size uidx = 0 # the number of update done estop = False # early stop start_time = time.clock() mom = 0 try: for eidx in xrange(max_epochs): n_samples = 0 # Get new shuffled index for the training set. kf = get_minibatches_idx(len(train[0]), batch_size, shuffle=True) for _, train_index in kf: uidx += 1 use_noise.set_value(1.0) # Select the random examples for this minibatch y = [train[1][t] for t in train_index] x = [train[0][t] for t in train_index] # Get the data in numpy.ndarray formet. # It return something of the shape (minibatch maxlen, n samples) x, y = prepare_data(x, y, model_options["n_iter"], model_options["n_input"], up=True) if x is None: print "Minibatch with zero sample under length ", maxlen continue n_samples += x.shape[1] if eidx < model_options["mom_epoch_interval"]: mom = model_options["mom_start"] * (1.0 - eidx / model_options["mom_epoch_interval"]) + mom_end * ( eidx / model_options["mom_epoch_interval"] ) else: mom = mom_end cost = f_grad_shared(x, y) f_update(lrate, mom) # decay lrate = learning_rate_decay * lrate if numpy.isnan(cost) or numpy.isinf(cost): print "NaN detected" return 1.0, 1.0, 1.0 if numpy.mod(uidx, dispFreq) == 0: print "Epoch ", eidx, "Update ", uidx, "Cost ", cost if numpy.mod(uidx, saveFreq) == 0: print "Saving...", if best_p is not None: params = best_p else: params = unzip(tparams) numpy.savez(saveto, history_errs=history_errs, **params) pkl.dump(model_options, open("%s.pkl" % saveto, "wb"), -1) print "Done" if numpy.mod(uidx, validFreq) == 0: use_noise.set_value(0.0) # train_err = pred_error(f_pred_prob, prepare_data, train, kf, model_options) valid_err = pred_error(f_pred_prob, prepare_data, valid, kf_valid, model_options) test_err = pred_error(f_pred_prob, prepare_data, test, kf_test, model_options) history_errs.append([valid_err, test_err]) if uidx == 0 or valid_err <= numpy.array(history_errs)[:, 0].min(): best_p = unzip(tparams) bad_counter = 0 print ("Valid ", valid_err, "Test ", test_err) if len(history_errs) > patience and valid_err >= numpy.array(history_errs)[:-patience, 0].min(): bad_counter += 1 if bad_counter > patience: print "Early Stop!" estop = True break print "Seen %d samples" % n_samples if estop: break except KeyboardInterrupt: print "Training interupted" end_time = time.clock() if best_p is not None: zipp(best_p, tparams) else: best_p = unzip(tparams) use_noise.set_value(0.0) train_err = pred_error(f_pred_prob, prepare_data, train, kf, model_options) valid_err = pred_error(f_pred_prob, prepare_data, valid, kf_valid, model_options) test_err = pred_error(f_pred_prob, prepare_data, test, kf_test, model_options) print "Train ", train_err, "Valid ", valid_err, "Test ", test_err numpy.savez( saveto, train_err=train_err, valid_err=valid_err, test_err=test_err, history_errs=history_errs, **best_p ) print "The code run for %d epochs, with %f sec/epochs" % ((eidx + 1), (end_time - start_time) / (1.0 * (eidx + 1))) print >> sys.stderr, ("Training took %.1fs" % (end_time - start_time)) return train_err, valid_err, test_err