示例#1
0
def test_dynamics(agg_list, energies):
    # Adding the energies to the molecules. Neeed to be done before agg
    with qr.energy_units("1/cm"):
        for i, mol in enumerate(agg_list):
            mol.set_energy(1, energies[i])

    # Creation of the aggregate for dynamics. multiplicity can be 1
    agg = qr.Aggregate(molecules=agg_list)
    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build(mult=1)
    agg.diagonalize()

    # Creating a propagation axis length t13_ax plus padding with intervals 1
    t2_prop_axis = qr.TimeAxis(0.0, 1000, 1)

    # Generates the propagator to describe motion in the aggregate
    prop_Redfield = agg.get_ReducedDensityMatrixPropagator(
        t2_prop_axis,
        relaxation_theory="stR",
        time_dependent=False,
        secular_relaxation=True
        )

    # Obtaining the density matrix
    shp = agg.get_Hamiltonian().dim
    rho_i1 = qr.ReducedDensityMatrix(dim=shp, name="Initial DM")
    # Setting initial conditions
    rho_i1.data[shp-1,shp-1] = 1.0
    # Propagating the system along the t13_ax_ax time axis
    rho_t1 = prop_Redfield.propagate(rho_i1, name="Redfield evo from agg")
    rho_t1.plot(coherences=False, axis=[0,t2_prop_axis.length,0,1.0], show=True)
示例#2
0
def calcTwoD(loopNum):
    ''' Caculates a 2d spectrum for both perpendicular and parael lasers
    using aceto bands and accurate lineshapes'''

    container = []
    agg = qr.Aggregate(molecules=forAggregate)

    with qr.energy_units('1/cm'):
        for i in range(len(forAggregate)):
            agg.monomers[i].set_energy(1, random.gauss(energy, staticDis))

    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build(mult=2)
    agg.diagonalize()

    tcalc_para = qr.TwoDResponseCalculator(t1axis=t13, t2axis=t2s, t3axis=t13, system=agg)
    tcalc_para.bootstrap(rwa, pad=padding, verbose=True, lab=labPara, printEigen=False, printResp='paraResp')#, printResp='paraResp'
    twods_para = tcalc_para.calculate()
    paraContainer = twods_para.get_TwoDSpectrumContainer()
    container.append(paraContainer)

    tcalc_perp = qr.TwoDResponseCalculator(t1axis=t13, t2axis=t2s, t3axis=t13, system=agg)
    tcalc_perp.bootstrap(rwa, pad=padding, verbose=True, lab=labPerp, printEigen=False)#, printResp='perpResp'
    twods_perp = tcalc_perp.calculate()
    perpContainer = twods_perp.get_TwoDSpectrumContainer()
    container.append(perpContainer)

    return container
示例#3
0
def calcTwoDMock(loopNum):
    ''' Calculates a2d spectrum container for all time points on t2 axis
    for both perpendicular and parallel lasers. Uses quantarhei only and
    speeds up runtime by using simple lineshapes'''

    container = []

    agg = qr.Aggregate(forAggregateMock)

    with qr.energy_units('1/cm'):
        for i in range(len(forAggregateMock)):
            agg.monomers[i].set_energy(1, random.gauss(energy, staticDis))

    agg.set_coupling_by_dipole_dipole()
    agg.build(mult=2)
    agg.diagonalize()

    rT = agg.get_RelaxationTensor(t2s, relaxation_theory='stR')
    eUt = qr.EvolutionSuperOperator(t2s, rT[1], rT[0]) # rT[1] = Hamiltonian
    eUt.set_dense_dt(t2Step)
    eUt.calculate(show_progress=False)

    mscPara = qr.MockTwoDResponseCalculator(t13, t2s, t13)
    mscPara.bootstrap(rwa=rwa, shape="Gaussian")
    contPara = mscPara.calculate_all_system(agg, eUt, labParaMock, show_progress=True)
    cont2DPara = contPara.get_TwoDSpectrumContainer(stype=qr.signal_TOTL)
    container.append(cont2DPara)

    mscPerp = qr.MockTwoDResponseCalculator(t13, t2s, t13)
    mscPerp.bootstrap(rwa=rwa, shape="Gaussian")
    contPerp = mscPerp.calculate_all_system(agg, eUt, labPerpMock, show_progress=True)
    cont2DPerp = contPerp.get_TwoDSpectrumContainer(stype=qr.signal_TOTL)
    container.append(cont2DPerp)

    return container
示例#4
0
    def _temp_build_agg(self, agg_list = None , mult = 1, diagonalize = True):

        if not agg_list:
            agg_list = self.mol_list
        agg = qr.Aggregate(molecules=agg_list)
        agg.set_coupling_by_dipole_dipole(epsr=1.21)
        agg.build(mult=mult)
        if diagonalize:
           agg.diagonalize()

        return agg
示例#5
0
    def build_agg(self, agg_list = None, mult = 1, diagonalize = True):
        
        if not agg_list:
            agg_list = self.mol_list

        agg = qr.Aggregate(molecules=agg_list)
        agg.set_coupling_by_dipole_dipole(epsr=1.21)
        agg.build(mult=mult)
        if diagonalize:
           agg.diagonalize()

        self.agg = agg
        self.num_mol = agg.nmono
        self.rwa = agg.get_RWA_suggestion()
示例#6
0
def main():

    with qr.energy_units("1/cm"):
        mol1 = qr.Molecule([0.0, 12000.0])
        mol2 = qr.Molecule([0.0, 12100.0])
        mol3 = qr.Molecule([0.0, 12100.0])

        agg = qr.Aggregate([mol1, mol2, mol3])

        m1 = qr.Mode(100)
        mol1.add_Mode(m1)

        m2 = qr.Mode(100)
        mol2.add_Mode(m2)

        m3 = qr.Mode(100)
        mol3.add_Mode(m3)

    agg.build(mult=1)

    print(agg.Ntot)
示例#7
0
def calcTwoD(n_loopsum):  #
    ''' Caculates a 2d spectrum for both perpendicular and parael lasers
    using aceto bands and accurate lineshapes'''

    container = []

    #energies0 = [energy - (100 * num_mol / 2) + i * 100 for i in range(num_mol)]
    #energies0 = [energy] * num_mol
    # Giving random energies to the moleucles according to a gauss dist
    with qr.energy_units("1/cm"):
        for i, mol in enumerate(for_agg):
            mol.set_energy(1, random.gauss(energy, static_dis))
            #mol.set_energy(1, energies0[i])

    agg = qr.Aggregate(molecules=for_agg)
    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build(mult=2)
    print(np.diagonal(agg.HH[1:num_mol + 1, 1:num_mol + 1]))
    agg.diagonalize()
    rwa = agg.get_RWA_suggestion()

    print(np.diagonal(agg.HH[1:num_mol + 1, 1:num_mol + 1]))

    # Initialising the twod response calculator for the paralell laser
    resp_calc_temp = qr.TwoDResponseCalculator(t1axis=t13_ax,
                                               t2axis=t2_ax,
                                               t3axis=t13_ax,
                                               system=agg)

    # Bootstrap is the place to add 0-padding to the response signal
    # printEigen=True prints eigenvalues, printResp='string' prints response
    # Response is calculated Converted into spectrum Stored in a container
    for lab in labs:
        resp_calc = copy.deepcopy(resp_calc_temp)
        resp_calc.bootstrap(rwa, pad=padding, lab=lab)
        resp_cont = resp_calc.calculate()
        spec_cont = resp_cont.get_TwoDSpectrumContainer()
        container.append(spec_cont)

    return container
示例#8
0
def getEigen():

    print('nM', nM)
    agg = qr.Aggregate(molecules=forAggregate)
    for j in range(nM):
        with qr.energy_units('1/cm'):
            agg.monomers[j].set_energy(1, random.gauss(energies[j], staticDis))
    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build()  #mult=2

    N = len(forAggregate)

    H = agg.get_Hamiltonian()
    print(H)
    SS = H.diagonalize()
    print(H)
    trans1 = SS[1:N + 1, 1:N + 1]
    H.undiagonalize()
    hamil = agg.HH[1:N + 1, 1:N + 1]

    with open('transData.txt', 'a') as f:

        f.write('Hamiltonian\n')
        #np.savetxt(f, agg.HH[1:N+1,1:N+1])
        np.savetxt(f, hamil)

        f.write('Transformation Matrix\n')
        np.savetxt(f, trans1)

    agg.diagonalize()
    diag = agg.HH[1:N + 1, 1:N + 1]

    with open('transData.txt', 'a') as f:

        f.write('Diagonalized\n')
        np.savetxt(f, agg.HH[1:N + 1, 1:N + 1])

        f.write('Dipoles\n')
        np.savetxt(f, agg.D2)
示例#9
0
def calcTwoD(n_loopsum):  #
    ''' Caculates a 2d spectrum for both perpendicular and parael lasers
    using aceto bands and accurate lineshapes'''

    #energies0 = [energy - (100 * nM / 2) + i * 100 for i in range(nM)]
    #energies0 = [energy] * nM
    # Giving random energies to the moleucles according to a gauss dist
    with qr.energy_units("1/cm"):
        for i, mol in enumerate(for_agg):
            mol.set_energy(1, random.gauss(energy, static_dis))
            #mol.set_energy(1, energies0[i])

    agg = qr.Aggregate(molecules=for_agg)
    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build(mult=1)

    HH = agg.get_Hamiltonian()
    pig_ens = np.diagonal(HH.data[1:nM+1,1:nM+1])\
     / (2.0*const.pi*const.c*1.0e-13)
    en_order = np.argsort(pig_ens)
    SS = HH.diagonalize()
    eig_vecs = np.transpose(SS[1:nM + 1, 1:nM + 1])
    state_ens = np.diagonal(HH.data[1:nM+1,1:nM+1])\
     / (2.0*const.pi*const.c*1.0e-13)
    agg.diagonalize()
    dips = agg.D2[0][1:nM + 1]
    dip_order = np.flip(np.argsort(dips))

    state_data = {
        'pig_ens': pig_ens,
        'en_order': en_order,
        'eig_vecs': eig_vecs,
        'state_ens': state_ens,
        'dips': dips,
        'dip_order': dip_order
    }

    return state_data
示例#10
0
print("*                                                         *")
print("***********************************************************")
###############################################################################
#
#   Model system definition
#
###############################################################################

#   Three molecules
with qr.energy_units("1/cm"):
    m1 = qr.Molecule([0.0, 10100.0])
    m2 = qr.Molecule([0.0, 10300.0])
    m3 = qr.Molecule([0.0, 10000.0])

#   Aggregate is built from the molecules
agg = qr.Aggregate([m1, m2, m3])

#   Couplings between them are set
with qr.energy_units("1/cm"):
    agg.set_resonance_coupling(0, 1, 80.0)
    agg.set_resonance_coupling(0, 2, 100.0)

#   Interaction with the bath is set through bath correlation functions
timea = qr.TimeAxis(0.0, 500, 1.0)
cpar1 = dict(ftype="OverdampedBrownian-HighTemperature",
             reorg=50,
             cortime=50,
             T=300)
cpar2 = dict(ftype="OverdampedBrownian-HighTemperature",
             reorg=50,
             cortime=50,
示例#11
0
*      J =""", J, "1/cm\n*", """
*******************************************************************************
""")
    ###########################################################################
    #
    #   Model system definition
    #
    ###########################################################################

    #   Two molecules
    with qr.energy_units("1/cm"):
        m1 = qr.Molecule([0.0, E1])
        m2 = qr.Molecule([0.0, E2])

    #   Aggregate is built from the molecules
    agg = qr.Aggregate([m1, m2])

    #   Couplings between them are set
    with qr.energy_units("1/cm"):
        agg.set_resonance_coupling(0, 1, J)

    #   Interaction with the bath is set through bath correlation functions
    timea = qr.TimeAxis(0.0, N, dt)
    cpar1 = dict(ftype="OverdampedBrownian-HighTemperature",
                 reorg=lamb,
                 cortime=tc,
                 T=Temperature)
    #cpar2 = dict(ftype="OverdampedBrownian-HighTemperature", reorg=50,
    #            cortime=50, T=300)

    with qr.energy_units("1/cm"):
示例#12
0
# -*- coding: utf-8 -*-

#<remove>
_show_plots_ = False
#</remove>

import quantarhei as qr

en = [0.0, 1.0]
m1 = qr.Molecule(name="Mol1", elenergies=en)
m2 = qr.Molecule(name="Mol2", elenergies=en)

ag = qr.Aggregate(name="Homodimer")
ag.add_Molecule(m1)
ag.add_Molecule(m2)

ag.set_resonance_coupling(0, 1, 0.1)

ag.build(mult=1)

H = ag.get_Hamiltonian()

#with qr.energy_units("1/cm"):
#    print(H)

#
# Here we test generation of states with 3 level molecules
#

en = [0.0, 10100.0]  #, 20200.0]
with qr.energy_units("1/cm"):
示例#13
0
_show_plots_ = False
import numpy

import quantarhei as qr

qr.Manager().gen_conf.legacy_relaxation = True

print("Preparing a model system:")

with qr.energy_units("1/cm"):
    mol1 = qr.Molecule([0.0, 12010])
    mol2 = qr.Molecule([0.0, 12000])
    mol3 = qr.Molecule([0.0, 12100])
    mol4 = qr.Molecule([0.0, 12110])

agg = qr.Aggregate([mol1, mol2, mol3, mol4])
agg.set_resonance_coupling(2, 3, qr.convert(100.0, "1/cm", "int"))
agg.set_resonance_coupling(1, 3, qr.convert(100.0, "1/cm", "int"))
agg.set_resonance_coupling(1, 2, qr.convert(0.0, "1/cm", "int"))

qr.save_parcel(agg, "agg.qrp")
agg2 = qr.load_parcel("agg.qrp")
agg2.build()

H = agg2.get_Hamiltonian()

print("...done")

print("Setting up Lindblad form relaxation:")
Ndim = 5
with qr.eigenbasis_of(H):
示例#14
0
#######################################################################
# Getting aggregate data
#######################################################################

file_name = 'data/eigen_data.txt'
f = open(file_name, "w+")
f.close()

for i in range(n_per_loop):

    for_agg_copy = for_agg
    with qr.energy_units("1/cm"):
        for i, mol in enumerate(for_agg_copy):
            mol.set_energy(1, random.gauss(energy, static_dis))

    agg = qr.Aggregate(molecules=for_agg_copy)
    agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build()

    save_eigen_data(agg=agg, file=file_name)

pig_en, state_en, eig_vecs, state_dips, dip_order, en_order = extracting_eigen_data(
    file_name)

#######################################################################
# Analysis
#######################################################################

print('dipoles')
print(state_dips[0])
print('order')
示例#15
0
                    matsubara=20)

with qr.energy_units("1/cm"):
    cfce1 = qr.CorrelationFunction(ta, cfce_params1)
    cfce2 = qr.CorrelationFunction(ta, cfce_params2)
    m1 = qr.Molecule("M1", [0.0, 12100])
    m1.set_dipole(0, 1, [0.0, 3.0, 0.0])
    m1.set_transition_environment((0, 1), cfce1)
    m1.position = [0.0, 0.0, 0.0]
    m2 = qr.Molecule("M1", [0.0, 12000])
    m2.set_dipole(0, 1, [0.0, 1.0, 1.0])
    m2.position = [5.0, 0.0, 0.0]
    m2.set_transition_environment((0, 1), cfce2)

# create an aggregate
AG = qr.Aggregate("TestAggregate")
#AG.set_egcf_matrix(cm)

# fill the cluster with monomers
AG.add_Molecule(m1)
AG.add_Molecule(m2)

# setting coupling by dipole-dipole formula
AG.set_coupling_by_dipole_dipole()

AG.build()

HH = AG.get_Hamiltonian()
(RR, ham) = AG.get_RelaxationTensor(ta, relaxation_theory="standard_Redfield")

a2 = qr.AbsSpect(ta, AG, relaxation_tensor=RR)
示例#16
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        stype=qr.signal_REPH,
        make_movie=False,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]

    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO=" + str(dE) + "_omega=" + str(omega) + "_HR=" + str(
            HR) + "_J=" + str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            mol1 = qr.Molecule([0.0, E0])
            mol2 = qr.Molecule([0.0, E0 + dE])

            print("Monomer 1 energy:", E0)
            print("Monomer 2 energy:", E0 + dE)

        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0])
                print("Monomer 2 (B) energy:", E0 + dE + disE[1])
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2)
                print("Monomer 2 (B) energy:", E0 + dE)
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2])
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1)
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ)
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2)

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.no_g_vib)
            mod1.set_nmax(1, INP.no_e_vib)
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.no_g_vib)
            mod2.set_nmax(1, INP.no_e_vib)
            mod2.set_HR(1, HR)

    agg3 = agg.deepcopy()

    agg.build(mult=1)
    agg_el.build(mult=1)

    HH = agg.get_Hamiltonian()
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    if use_trimer:

        print("Relaxation rates: ", rate, rate_sp)

        with qr.eigenbasis_of(He):
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2<-3", He.data[2, 2], He.data[3, 3])
            rates.append(rate)
            print("Transfer time B -> SP:", 1.0 / rate)
            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1<-2", He.data[1, 1], He.data[2, 2])
            rates.append(rate_sp)
            print("Transfer time P+ -> P-:", 1.0 / rate_sp)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)
        else:
            with qr.eigenbasis_of(He):
                if He.data[2, 2] < He.data[1, 1]:
                    Exception("Electronic states not orderred!")
                operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            rates.append(rate)

        # include detailed balace
        if detailed_balance:
            with qr.eigenbasis_of(He):
                T = INP.temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Liouville form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        print(" p:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

    if make_movie:
        with qr.energy_units("1/cm"):
            cont_p.make_movie("mov.mp4")

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    with qr.energy_units(units):

        if show_plots:

            #
            # Spots to look at in detail
            #
            with qr.energy_units("1/cm"):
                with qr.eigenbasis_of(He):
                    Ep_l = He.data[1, 1]
                    Ep_u = He.data[2, 2]

            Ep = numpy.zeros((4, 2))
            Ep[0, 0] = Ep_l
            Ep[0, 1] = Ep_l
            Ep[1, 0] = Ep_l
            Ep[1, 1] = Ep_u
            Ep[2, 0] = Ep_u
            Ep[2, 1] = Ep_l
            Ep[3, 0] = Ep_u
            Ep[3, 1] = Ep_u

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_p_re.axis.data[show_Npoint1], units)

            fftf_1 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_re.savefig(fftf_1)
            print("... saved into: ", fftf_1)
            fftf_2 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_nr.savefig(fftf_2)
            print("... saved into: ", fftf_2)
            fftf_3 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(omega) + data_ext)
            sp1_p_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp1_p_to.savefig(fftf_3)
            print("... saved into: ", fftf_3)

            #
            # Point evolutions at the expected peak positions
            #

            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_p_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

            print("\nPlotting and saving spectrum at frequency:",
                  fcont_m_re.axis.data[show_Npoint2], units)
            fftf_4 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=REPH" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_re.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_re.savefig(fftf_4)
            print("... saved into: ", fftf_4)
            fftf_5 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=NONR" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_nr.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Non-rephasing\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_nr.savefig(fftf_5)
            print("... saved into: ", fftf_5)
            fftf_6 = os.path.join(
                dname, "twod_fft" + data_descr + "_stype=tot" + "_omega=" +
                str(-omega) + data_ext)
            sp2_m_to.plot(Npos_contours=10,
                          spart=qr.part_ABS,
                          label="Total\n $\omega=" + str(-omega) +
                          "$ cm$^{-1}$",
                          text_loc=[0.05, 0.1],
                          show_states=[Ep_l, Ep_u, Ep_u + numpy.abs(omega)],
                          show_diagonal="-k")
            sp2_m_to.savefig(fftf_6)
            print("... saved into: ", fftf_6)

            #
            # Point evolutions at the expected peak positions
            #
            for ii in range(4):
                points = fcont_p_re.get_point_evolution(
                    Ep[ii, 0], Ep[ii, 1], fcont_m_re.axis)
                points.apply_to_data(numpy.abs)
                if ii >= 3:
                    points.plot(show=True)
                else:
                    points.plot(show=False)

    save_containers = False

    if save_containers:
        fname = os.path.join(dname, "cont_p" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_p.save(fname)
        fname = os.path.join(dname, "cont_m" + data_descr + obj_ext)
        print("Saving container into: " + fname)
        cont_m.save(fname)

    import resource
    memo = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
    print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
示例#17
0
def run(omega,
        HR,
        dE,
        JJ,
        rate,
        E0,
        vib_loc="up",
        use_vib=True,
        detailed_balance=False,
        temperature=77.0,
        stype=qr.signal_REPH,
        save_eUt=False,
        t2_save_pathways=[],
        dname=None,
        trimer=None,
        disE=None):
    """Runs a complete set of simulations for a single set of parameters


    If disE is not None it tries to run averaging over Gaussian energetic
    disorder.

    """
    if dname is None:
        dname = "sim_" + vib_loc

    use_trimer = trimer["useit"]
    rate_sp = trimer["rate"]

    #
    #  PARAMETERS FROM INPUT FILE
    #
    dip1 = INP.dip1  # [1.5, 0.0, 0.0]
    dip2 = INP.dip2  # [-1.0, -1.0, 0.0]
    width = INP.feature_width  # 100.0
    width2 = INP.feature_width2

    normalize_maps_to_maximu = False
    trim_maps = False

    units = "1/cm"
    with qr.energy_units(units):

        data_descr = "_dO="+str(dE)+"_omega="+str(omega)+ \
                     "_HR="+str(HR)+"_J="+str(JJ)

        if use_vib:
            sys_char = "_vib"
        else:
            sys_char = "_ele"
        data_ext = sys_char + ".png"
        obj_ext = sys_char + ".qrp"

    # parameters of the SP
    if use_trimer:
        E2 = trimer["E2"]
        epsa = (E0 + E2) / 2.0
        DE = trimer["DE"]
        J2 = 0.5 * numpy.sqrt(((E0 - E2)**2) - (DE**2))
        ESP2 = epsa + DE / 2.0
        ESP1 = epsa - DE / 2.0

    #
    #   Model system is a dimer of molecules
    #
    with qr.energy_units("1/cm"):

        if not use_trimer:

            if disE is not None:
                mol1 = qr.Molecule([0.0, E0 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 energy:", E0 + disE[0], "1/cm")
                print("Monomer 2 energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, E0])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 energy:", E0, "1/cm")
                print("Monomer 2 energy:", E0 + dE, "1/cm")
        else:

            if disE is not None:
                mol1 = qr.Molecule([0.0, ESP2 + disE[0]])
                mol2 = qr.Molecule([0.0, E0 + dE + disE[1]])
                print("Monomer 1 (SP_high) energy:", ESP2 + disE[0], "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE + disE[1], "1/cm")
            else:
                mol1 = qr.Molecule([0.0, ESP2])
                mol2 = qr.Molecule([0.0, E0 + dE])
                print("Monomer 1 (SP_high) energy:", ESP2, "1/cm")
                print("Monomer 2 (B) energy:", E0 + dE, "1/cm")
            if disE is not None:
                mol3 = qr.Molecule([0.0, ESP1 + disE[2]])
                print("Monomer 3 (SP_low) energy:", ESP1 + disE[2], "1/cm")
            else:
                mol3 = qr.Molecule([0.0, ESP1])
                print("Monomer 3 (SP_low) energy:", ESP1, "1/cm")
            mol3.set_transition_width((0, 1), width2)
            mol3.set_dipole(0, 1, trimer["dipsp"])

        mol1.set_transition_width((0, 1), width2)
        mol1.set_dipole(0, 1, dip1)

        mol2.set_transition_width((0, 1), width)
        mol2.set_dipole(0, 1, dip2)

    if use_trimer:
        agg = qr.Aggregate([mol1, mol2, mol3])
    else:
        agg = qr.Aggregate([mol1, mol2])

    if use_trimer:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)
            print("B - SP_high coupling:", JJ, "1/cm")
            agg.set_resonance_coupling(0, 2, J2)
            print("SP coupling:", J2, "1/cm")

    else:

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, JJ)

    #
    # Electronic only aggregate
    #
    agg_el = agg.deepcopy()

    #
    # if nuclear vibrations are to be added, do it here
    #
    if use_vib:

        with qr.energy_units("1/cm"):
            mod1 = qr.Mode(omega)
            mod2 = qr.Mode(omega)

        if vib_loc == "down":
            set_vib = [True, False]
        elif vib_loc == "up":
            set_vib = [False, True]
        elif vib_loc == "both":
            set_vib = [True, True]
        else:
            raise Exception("Unknown location of the vibrations")

        if set_vib[0]:
            print("Vibrations set for SP_high molecule")
            mol1.add_Mode(mod1)
            mod1.set_nmax(0, INP.vibmode["no_g_vib"])
            mod1.set_nmax(1, INP.vibmode["no_e_vib"])
            mod1.set_HR(1, HR)

        if set_vib[1]:
            print("Vibrations set for B molecule")
            mol2.add_Mode(mod2)
            mod2.set_nmax(0, INP.vibmode["no_g_vib"])
            mod2.set_nmax(1, INP.vibmode["no_e_vib"])
            mod2.set_HR(1, HR)

    #
    # Before we build the aggregate, we make its copy to have an unbuilt version
    #
    agg3 = agg.deepcopy()
    aggA = agg.deepcopy()

    #
    # here we build the complete aggregate and its electronic only version
    #
    agg.build(mult=1)
    agg_el.build(mult=1)
    aggA.build(mult=1)

    # total Hamiltonian
    HH = agg.get_Hamiltonian()
    # electronic Hamiltonian
    He = agg_el.get_Hamiltonian()

    #
    # Laboratory setup
    #
    lab = qr.LabSetup()
    lab.set_polarizations(pulse_polarizations=[X, X, X],
                          detection_polarization=X)

    #
    # Time axis for the calculation of excited state evolution
    #
    t2_N_steps = INP.t2_N_steps
    t2_time_step = INP.t2_time_step
    time2 = qr.TimeAxis(0.0, t2_N_steps, t2_time_step)

    #
    # Containers for 2D maps with positive and negative frequencies
    #
    cont_p = qr.TwoDResponseContainer(t2axis=time2)
    cont_m = qr.TwoDResponseContainer(t2axis=time2)
    cont_tot = qr.TwoDResponseContainer(t2axis=time2)

    #
    # spectra will be indexed by the times in the time axis `time2`
    #
    cont_p.use_indexing_type(time2)
    cont_m.use_indexing_type(time2)
    cont_tot.use_indexing_type(time2)

    #
    # We define two-time axes, which will be FFTed and will define
    # the omega_1 and omega_3 axes of the 2D spectrum
    #
    t1_N_steps = INP.t1_N_steps
    t1_time_step = INP.t1_time_step
    t3_N_steps = INP.t3_N_steps
    t3_time_step = INP.t3_time_step
    t1axis = qr.TimeAxis(0.0, t1_N_steps, t1_time_step)
    t3axis = qr.TimeAxis(0.0, t3_N_steps, t3_time_step)

    #
    # This calculator calculated 2D spectra from the effective width
    #
    msc = qr.MockTwoDResponseCalculator(t1axis, time2, t3axis)
    with qr.energy_units("1/cm"):
        msc.bootstrap(rwa=E0, shape="Gaussian")

    #
    # System-bath interaction including vibrational states
    #
    operators = []
    rates = []

    print("Relaxation rates: ", rate, rate_sp, "1/fs")

    with qr.eigenbasis_of(He):

        if use_trimer:
            if He.data[3, 3] < He.data[2, 2]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(2, 3, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("2 <- 3 : energies = ", He.data[2, 2], He.data[3, 3],
                      "1/cm")
            rates.append(rate)
            print("Transfer time 2 <- 3:", 1.0 / rate, "fs")

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate_sp, "fs")

        else:

            if He.data[2, 2] < He.data[1, 1]:
                Exception("Electronic states not orderred!")
            operators.append(qr.qm.ProjectionOperator(1, 2, dim=He.dim))
            with qr.energy_units("1/cm"):
                print("1 <- 2 : energies = ", He.data[1, 1], He.data[2, 2],
                      "1/cm")
            rates.append(rate_sp)
            print("Transfer time 1 <- 2", 1.0 / rate, "fs")

    # include detailed balace
    if detailed_balance:
        if use_trimer:
            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[3, 3] - He.data[2, 2]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(3, 2, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate * thermal_fac)
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
                rates.append(rate_sp * thermal_fac)

        else:

            with qr.eigenbasis_of(He):
                T = temperature  #77.0
                Den = (He.data[2, 2] - He.data[1, 1]) / (kB_int * T)
                operators.append(qr.qm.ProjectionOperator(2, 1, dim=He.dim))
                thermal_fac = numpy.exp(-Den)
            rates.append(rate * thermal_fac)

    sbi = qr.qm.SystemBathInteraction(sys_operators=operators, rates=rates)
    sbi.set_system(agg)

    #
    # Lindblad form for relaxation
    #
    LF = qr.qm.ElectronicLindbladForm(HH, sbi, as_operators=True)

    #
    # Pure dephasing
    #
    p_deph = qr.qm.ElectronicPureDephasing(agg, dtype="Gaussian")

    # we simplify calculations by converting dephasing to
    # corresponding Lorentzian form
    p_deph.convert_to("Lorentzian")

    eUt = qr.qm.EvolutionSuperOperator(time2,
                                       HH,
                                       relt=LF,
                                       pdeph=p_deph,
                                       mode="all")
    eUt.set_dense_dt(INP.fine_splitting)

    print("---")

    #
    # We calculate evolution superoperator
    #
    eUt.calculate(show_progress=False)

    # save the evolution operator
    if save_eUt:
        eut_name = os.path.join(
            dname, "eUt" + "_omega2=" + str(omega) + data_descr + obj_ext)
        eUt.save(eut_name)

    #
    # Prepare aggregate with all states (including 2-EX band)
    #
    agg3.build(mult=2)
    agg3.diagonalize()

    agg_el.diagonalize()
    print("")
    print("Square of the transition dipoles")
    print(agg_el.D2)
    print("")
    print("---")

    #
    # calculation of absorption spectrum
    #
    time1 = qr.TimeAxis(0.0, 1000, 5.0)
    absc = qr.MockAbsSpectrumCalculator(time1, system=aggA)
    with qr.energy_units("1/cm"):
        absc.bootstrap(rwa=E0)

    spctrm = absc.calculate()
    spctrm.normalize2()

    with qr.energy_units("1/cm"):
        spctrm.plot(show=False, axis=[10500.0, 13500.0, 0.0, 1.1])
        spctrm.savefig(os.path.join(dname, "abs.png"))
        spctrm.save_data(os.path.join(dname, "abs.dat"))

    pways = dict()

    olow_cm = omega - INP.omega_uncertainty / 2.0
    ohigh_cm = omega + INP.omega_uncertainty / 2.0
    olow = qr.convert(olow_cm, "1/cm", "int")
    ohigh = qr.convert(ohigh_cm, "1/cm", "int")

    for t2 in time2.data:

        # this could save some memory of pathways become too big
        pways = dict()

        print("T2 =", t2, "fs (of T2_max =", time2.max, "fs)")

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [olow, ohigh]]])
        pws = pways[str(t2)]
        npa = len(pws)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_p.set_spectrum(twod)

        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12,
                                        selection=[["omega2", [-ohigh,
                                                               -olow]]])

        pws = pways[str(t2)]
        npa = len(pws)
        #print(" m:", npa)
        has_R = False
        has_NR = False
        for pw in pws:
            if pw.pathway_type == "NR":
                has_NR = True
            elif pw.pathway_type == "R":
                has_R = True

        #print(" R:", has_R, ", NR:", has_NR)

        if t2 in t2_save_pathways:
            pws_name = os.path.join(
                dname, "pws_t2=" + str(t2) + "_omega2=" + str(-omega) +
                data_descr + obj_ext)
            qr.save_parcel(pways[str(t2)], pws_name)

        cont_m.set_spectrum(twod)

        # calculation without pre-selecting pathways
        twod = msc.calculate_one_system(t2,
                                        agg3,
                                        eUt,
                                        lab,
                                        pways=pways,
                                        dtol=1.0e-12)

        cont_tot.set_spectrum(twod)

    # saving total spectrum to a directory for further analysis
    try:
        saveit = INP.total_spectrum["save_it"]
    except:
        saveit = False

    if saveit:
        try:
            dform = INP.total_spectrum["data_format"]
        except:
            dform = "dat"
        try:
            stp = INP.total_spectrum["spectra_type"]
            if stp == "TOTL":
                stype = qr.signal_TOTL
            elif stp == "REPH":
                stype = qr.signal_REPH
            elif stp == "NONR":
                stype = qr.signal_NONR
            else:
                raise Exception("Wrong signal type")
        except:
            stype = qr.signal_REPH

        save_spectra(cont_tot, ext=dform, dir=dname, stype=stype)

    #
    # Save aggregate when a single calculation is done
    #
    if save_eUt:
        fname = os.path.join(dname, "aggregate.qrp")
        agg3.save(fname)

    #
    # Window function for subsequenty FFT
    #
    window = func.Tukey(time2, r=INP.tukey_window_r, sym=False)

    #
    # FFT with the window function
    #
    # Specify REPH, NONR or `total` to get different types of spectra
    #
    print("Calculating FFT of the 2D maps")
    #fcont = cont.fft(window=window, dtype=stype) #, dpart="real", offset=0.0)

    fcont_p_re = cont_p.fft(window=window, dtype=qr.signal_REPH)
    fcont_p_nr = cont_p.fft(window=window, dtype=qr.signal_NONR)
    fcont_p_to = cont_p.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_p_re.normalize2(dpart=qr.part_ABS)
        fcont_p_nr.normalize2(dpart=qr.part_ABS)
        fcont_p_to.normalize2(dpart=qr.part_ABS)

    fcont_m_re = cont_m.fft(window=window, dtype=qr.signal_REPH)
    fcont_m_nr = cont_m.fft(window=window, dtype=qr.signal_NONR)
    fcont_m_to = cont_m.fft(window=window, dtype=qr.signal_TOTL)

    if normalize_maps_to_maximu:
        fcont_m_re.normalize2(dpart=qr.part_ABS)
        fcont_m_nr.normalize2(dpart=qr.part_ABS)
        fcont_m_to.normalize2(dpart=qr.part_ABS)

    if trim_maps:
        twin = INP.trim_maps_to
        with qr.energy_units("1/cm"):
            fcont_p_re.trimall_to(window=twin)
            fcont_p_nr.trimall_to(window=twin)
            fcont_p_to.trimall_to(window=twin)

    show_omega = omega

    with qr.frequency_units("1/cm"):
        sp1_p_re, show_Npoint1 = fcont_p_re.get_nearest(show_omega)
        sp2_p_re, show_Npoint2 = fcont_p_re.get_nearest(-show_omega)
        sp1_p_nr, show_Npoint1 = fcont_p_nr.get_nearest(show_omega)
        sp2_p_nr, show_Npoint2 = fcont_p_nr.get_nearest(-show_omega)
        sp1_p_to, show_Npoint1 = fcont_p_to.get_nearest(show_omega)
        sp2_p_to, show_Npoint2 = fcont_p_to.get_nearest(-show_omega)
        sp1_m_re, show_Npoint1 = fcont_m_re.get_nearest(show_omega)
        sp2_m_re, show_Npoint2 = fcont_m_re.get_nearest(-show_omega)
        sp1_m_nr, show_Npoint1 = fcont_m_nr.get_nearest(show_omega)
        sp2_m_nr, show_Npoint2 = fcont_m_nr.get_nearest(-show_omega)
        sp1_m_to, show_Npoint1 = fcont_m_to.get_nearest(show_omega)
        sp2_m_to, show_Npoint2 = fcont_m_to.get_nearest(-show_omega)

    sstm = platform.system()
    #print(sstm)
    if sstm != "Windows":
        import resource
        memo = resource.getrusage(
            resource.RUSAGE_SELF).ru_maxrss / (1024 * 1024)
        print("Memory usage: ", memo, "in MB")

    return (sp1_p_re, sp1_p_nr, sp2_m_re, sp2_m_nr)
示例#18
0
#
# CT states are dark
#
PCT_M.set_dipole(1, 0, [0.0, 0.0, 0.0])
PCT_L.set_dipole(1, 0, [0.0, 0.0, 0.0])

molecules = [PM, PL, BM, BL, HL, HM, PCT_M, PCT_L]

# saving molecules without environment
qr.save_parcel(molecules, os.path.join(pre_out, "molecules.qrp"))

#
# Here we build the RC as an aggregate of molecules
#
mol3 = [PM, PL, BM]
agg = qr.Aggregate(molecules=mol3)

#
# Exciton interaction matrix
#

# values from Ref. 1
JP_77K_Jordanides = 575.0
JP_77K = JP_77K_Jordanides

#
# Fitted values of the model with CT states
# starting values of the manual search of best parameters are
# taken from Ref. 2
#
if jordanides:
示例#19
0
with qr.energy_units("1/cm"):
    cfce1 = qr.CorrelationFunction(ta,cfce_params1)
    cfce2 = qr.CorrelationFunction(ta,cfce_params2)
    m1 = qr.Molecule([0.0, 12100], name="M1")
    m1.set_dipole(0,1,[0.0,3.0,0.0])
    m1.set_transition_environment((0,1),cfce1)
    m1.position = [0.0,0.0,0.0]
    m2 = qr.Molecule([0.0, 12000], name="M2")
    m2.set_dipole(0,1,[0.0,1.0,1.0])
    m2.position = [5.0,0.0,0.0]
    m2.set_transition_environment((0,1),cfce2)    
    
    
# create an aggregate
AG = qr.Aggregate(name="TestAggregate")
#AG.set_egcf_matrix(cm)

# fill the cluster with monomers
AG.add_Molecule(m1)
AG.add_Molecule(m2)

# setting coupling by dipole-dipole formula
AG.set_coupling_by_dipole_dipole()

AG.build()

HH = AG.get_Hamiltonian()
(RR,ham) = AG.get_RelaxationTensor(ta,
                                   relaxation_theory="standard_Redfield")
示例#20
0
def calcTwoD(n_loopsum):  #
    ''' Caculates a 2d spectrum for both perpendicular and parael lasers
    using aceto bands and accurate lineshapes'''

    resp_container = []

    #energies0 = [energy - (100 * num_mol / 2) + i * 100 for i in range(num_mol)]
    #energies0 = [energy] * num_mol
    # Giving random energies to the moleucles according to a gauss dist
    with qr.energy_units("1/cm"):
        for i, mol in enumerate(for_agg):
            mol.set_energy(1, random.gauss(energy, static_dis))
            #mol.set_energy(1, energies0[i])

    agg = qr.Aggregate(molecules=for_agg)

    agg_rates = copy.deepcopy(agg)
    agg_rates.set_coupling_by_dipole_dipole(epsr=1.21)
    agg_rates.build(mult=2)

    if _forster_:
        KK = agg_rates.get_FoersterRateMatrix()
    else:
        KK = agg_rates.get_RedfieldRateMatrix()
        agg.set_coupling_by_dipole_dipole(epsr=1.21)
    agg.build(mult=2)
    rwa = agg.get_RWA_suggestion()

    HH = agg_rates.get_Hamiltonian()
    pig_ens = np.diagonal(HH.data[1:num_mol+1,1:num_mol+1])\
     / (2.0*const.pi*const.c*1.0e-13)
    en_order = np.argsort(pig_ens)
    SS = HH.diagonalize()
    eig_vecs = np.transpose(SS[1:num_mol + 1, 1:num_mol + 1])
    state_ens = np.diagonal(HH.data[1:num_mol+1,1:num_mol+1])\
     / (2.0*const.pi*const.c*1.0e-13)
    agg_rates.diagonalize()
    dips = agg_rates.D2[0][1:num_mol + 1]
    dip_order = np.flip(np.argsort(dips))

    # Initialising the twod response calculator for the paralell laser
    resp_calc_temp = qr.TwoDResponseCalculator(t1axis=t13_ax,
                                               t2axis=t2_ax,
                                               t3axis=t13_ax,
                                               system=agg,
                                               rate_matrix=KK)

    # keep_resp saves the reponse int he object. write_resp writes to numpy
    # Response is calculated Converted into spectrum Stored in a container
    for i, lab in enumerate(labs):
        resp_calc = copy.deepcopy(resp_calc_temp)
        resp_calc.bootstrap(
            rwa, lab=lab, verbose=False,
            keep_resp=True)  #write_resp = save_dir + las_pol[i] + '_resp',
        resp_cont = resp_calc.calculate()
        resp_container.append(resp_calc.responses)

    state_data = {
        'pig_ens': pig_ens,
        'en_order': en_order,
        'eig_vecs': eig_vecs,
        'state_ens': state_ens,
        'dips': dips,
        'dip_order': dip_order,
        'rwa': rwa
    }

    return resp_container, state_data
示例#21
0
with qr.energy_units("1/cm"):
    mol1 = qr.Molecule([0.0, E1])
    mol1.set_dipole(0, 1, [1.0, 0.0, 0.0])
    mol1.set_transition_width((0, 1), width)

    mod = qr.Mode(omega)
    mol1.add_Mode(mod)
    mod.set_nmax(0, 2)
    mod.set_nmax(1, 2)
    mod.set_HR(1, HR)

    mol2 = qr.Molecule([0.0, E2])
    mol2.set_dipole(0, 1, numpy.array([1.0, 1.0, 0.0]) / numpy.sqrt(2.0))
    mol2.set_transition_width((0, 1), width)

    agg = qr.Aggregate(molecules=[mol1, mol2])
    agg.set_resonance_coupling(0, 1, JJ)

agg.build(mult=2)
agg.diagonalize()

H = agg.get_Hamiltonian()

#with qr.energy_units("1/cm"):
#    print(H)

lab = qr.LabSetup()
lab.set_polarizations(pulse_polarizations=[X, X, X], detection_polarization=X)

#print(qr.convert(agg.Wd,"int","1/cm"))
示例#22
0
energies2 = [energy - (100 * num_mol / 2) + i * 100 for i in range(num_mol)]
test_dynamics(agg_list=forAggregate, energies=energies1)
test_dynamics(agg_list=forAggregate, energies=energies2)

#######################################################################
# Calculation of the twoD PARA
#######################################################################

# Arrays for the direction on the laser plane
a_0 = np.array([1.0, 0.0, 0.0], dtype=np.float64)
a_90 = np.array([0.0, 1.0, 0.0], dtype=np.float64)

# Checks if mock is selected and creates agregate and laser conditions
if _mock_:
    # Creation of aggregate from mockAggList (multiplicity must be 2)
    aggMock = qr.Aggregate(molecules=forAggregateMock)
    aggMock.set_coupling_by_dipole_dipole(epsr=1.21)
    aggMock.build(mult=2)
    aggMock.diagonalize()
    rwa = aggMock.get_RWA_suggestion()

    # quantarhei lab setup for mock calculator
    labParaMock = qr.LabSetup()
    labPerpMock = qr.LabSetup()
    labParaMock.set_polarizations(pulse_polarizations=[a_0,a_0,a_0],
                                  detection_polarization=a_0)
    labPerpMock.set_polarizations(pulse_polarizations=[a_0,a_0,a_90],
                                  detection_polarization=a_90)
else:
    # Aggregate for twodcalculator (multiplicity must be 2)
    agg = qr.Aggregate(molecules=forAggregate)
示例#23
0
#
# MODEL: Simple dimer of molecules
#
###############################################################################

with qr.energy_units("1/cm"):
    # two two-level molecules
    m1 = qr.Molecule([0.0, 12000.0])
    m2 = qr.Molecule([0.0, 12300.0])

    # transitions will have Gaussian lineshape with a width specified here
    m1.set_transition_width((0, 1), 150.0)
    m2.set_transition_width((0, 1), 150.0)

# we create an aggregate from the two molecules
agg = qr.Aggregate(molecules=[m1, m2])

# we set transition dipole moment orientations for the two molecules
m1.set_dipole(0, 1, [1.0, 0.8, 0.8])
m2.set_dipole(0, 1, [0.8, 0.8, 0.0])

# resonance coupling is set by hand
with qr.energy_units("1/cm"):
    agg.set_resonance_coupling(0, 1, 100.0)

# we copy the aggregate before it is built. For the calculation of 2D
# spectrum, we need to build the aggregate so that it contains two-exciton
# states. But those are irrelevant for single exciton excited state dynamics
# so we make two identical aggregates, one with single-excitons only, and
# one with two-excitons.
agg_2D = copy.copy(agg)
示例#24
0
    mod = qr.Mode(frequency=omega)

    mol.add_Mode(mod)

    mod.set_nmax(0, Ng)
    mod.set_nmax(1, Ne)

    mod.set_HR(1, hr_factor)

    mol.set_transition_width((0, 1), width)

#
# Create an aggregate
#
agg = qr.Aggregate(molecules=[mol])

agg.build()

#
# Time axes and the calculator
#
t1axis = qr.TimeAxis(0.0, 1000, 10.0)
t3axis = qr.TimeAxis(0.0, 1000, 10.0)
t2axis = qr.TimeAxis(0.0, Nt2, dt2)

# FIXME: TwoDResponseCalculator
msc = qr.MockTwoDResponseCalculator(t1axis, t2axis, t3axis)
msc.bootstrap(rwa=qr.convert(E1, "1/cm", "int"), shape="Gaussian")

#
示例#25
0
#
with qr.energy_units("1/cm"):
    # molecule 1
    # molecular states
    m1 = qr.Molecule([0.0, 10000.0])
    # transition dipole moment
    m1.set_dipole(0, 1, [1.0, 0.0, 0.0])

    # molecule 2
    m2 = qr.Molecule([0.0, 11000.0])
    m2.set_dipole(0, 1, [1.0, 0.0, 0.0])

#
# Create aggregate of the two molecules
#
agg = qr.Aggregate(molecules=[m1, m2])

#
# Define time span of the calculation
#
time = qr.TimeAxis(0.0, 10000, 1.0)

#
# Define bath correlation function
#
cpar = dict(ftype="OverdampedBrownian", cortime=30, reorg=200, T=300)
with qr.energy_units("1/cm"):
    cf = qr.CorrelationFunction(time, cpar)

#
# Set the correlation function to the transitions on the molecules
示例#26
0
##
## Set system-bath interaction
##
#mol1.set_transition_environment((0,1),cf)
#mol2.set_transition_environment((0,1),cf)
#mol3.set_transition_environment((0,1),cf)

for ii in range(Nmol):
    mols[ii].set_transition_environment((0,1), cf)

#
# Creating aggregate
#      
#agg = Aggregate(name="Dimer", molecules=[mol1, mol2, mol3])
agg = qr.Aggregate(molecules=mols)
#agg.set_coupling_by_dipole_dipole()
with qr.energy_units("1/cm"):
    #agg.set_resonance_coupling(0,1,-100.0)
    #agg.set_resonance_coupling(1,2,-100.0)
    if Nmol > 1:
        for ii in range(Nmol-1):
            agg.set_resonance_coupling(ii,ii+1,-100.0)
        agg.set_resonance_coupling(0,Nmol-1,-100.0)

        print(agg.get_resonance_coupling(0,1))
agg.build(mult=2)

print(agg.get_Hamiltonian())

with qr.energy_units("1/cm"):
示例#27
0
# Bath correlation functions
timea = qr.TimeAxis(0.0, 1000, 1.0)
cfpar = dict(ftype="OverdampedBrownian",
             reorg=30,
             cortime=100,
             T=300,
             matsubara=100)
with qr.energy_units("1/cm"):
    cf = qr.CorrelationFunction(timea, cfpar)

# set bath correlation functions to the molecules
for i_m in range(N_molecules):
    mols[i_m].set_transition_environment((0, 1), cf)

# aggregate of molecules
agg = qr.Aggregate(mols)

agg.set_coupling_by_dipole_dipole()

# Building the aggregate
qr.log_report("Building aggregate")
agg.build()
qr.log_report("...done")

qr.log_detail("Resonance coupling matrix: ")
qr.log_detail(qr.convert(agg.resonance_coupling, "int", "1/cm"),
              use_indent=False)

# Dimension of the problem
HH = agg.get_Hamiltonian()
Nr = HH.dim
    def test_LindbladWithVibrations_dynamics_comp(self):
        """Compares Lindblad dynamics of a system with vibrations calculated from propagator and superoperator
        
        
        
        """
        # Aggregate
        import quantarhei as qr

        time = qr.TimeAxis(0.0, 1000, 1.0)

        # create a model
        with qr.energy_units("1/cm"):

            me1 = qr.Molecule([0.0, 12100.0])
            me2 = qr.Molecule([0.0, 12000.0])
            me3 = qr.Molecule([0.0, 12900.0])

            agg_el = qr.Aggregate([me1, me2, me3])

            agg_el.set_resonance_coupling(0, 1,
                                          qr.convert(150, "1/cm", to="int"))
            agg_el.set_resonance_coupling(1, 2, qr.convert(50,
                                                           "1/cm",
                                                           to="int"))

            m1 = qr.Molecule([0.0, 12100.0])
            m2 = qr.Molecule([0.0, 12000.0])
            m3 = qr.Molecule([0.0, 12900.0])

            mod1 = qr.Mode(frequency=qr.convert(100, "1/cm", "int"))
            m1.add_Mode(mod1)
            mod1.set_HR(1, 0.01)

            agg = qr.Aggregate([m1, m2, m3])

            agg.set_resonance_coupling(0, 1, qr.convert(150, "1/cm", to="int"))
            agg.set_resonance_coupling(1, 2, qr.convert(50, "1/cm", to="int"))

        agg_el.build()
        agg.build()

        hame = agg_el.get_Hamiltonian()
        ham = agg.get_Hamiltonian()

        # calculate relaxation tensor

        with qr.eigenbasis_of(hame):

            #
            # Operator describing relaxation
            #

            K = qr.qm.ProjectionOperator(1, 2, dim=hame.dim)

            #
            # System bath interaction with prescribed rate
            #
            from quantarhei.qm import SystemBathInteraction

            sbi = SystemBathInteraction(sys_operators=[K],
                                        rates=(1.0 / 100.0, ))
            sbi.set_system(agg)  #agg.set_SystemBathInteraction(sbi)

        with qr.eigenbasis_of(ham):

            #
            # Corresponding Lindblad form
            #
            from quantarhei.qm import ElectronicLindbladForm

            LF = ElectronicLindbladForm(ham, sbi, as_operators=True)

            #
            # Evolution of reduced density matrix
            #
            prop = qr.ReducedDensityMatrixPropagator(time, ham, LF)

            #
            # Evolution by superoperator
            #

            eSO = qr.qm.EvolutionSuperOperator(time, ham, LF)
            eSO.set_dense_dt(5)
            eSO.calculate()

            # compare the two propagations
            pairs = [(5, 4), (5, 5), (6, 5), (7, 5)]
            for p in pairs:

                rho_i1 = qr.ReducedDensityMatrix(dim=ham.dim)
                rho_i1.data[p[0], p[1]] = 1.0

                rho_t1 = prop.propagate(rho_i1)

                exp_rho_t2 = eSO.data[:, :, :, p[0], p[1]]

                #import matplotlib.pyplot as plt

                #plt.plot(rho_t1.TimeAxis.data, numpy.real(rho_t1.data[:,p[0],p[1]]), "-r")
                #plt.plot(rho_t1.TimeAxis.data, numpy.real(exp_rho_t2[:,p[0],p[1]]), "--g")
                #plt.show()

                #for kk in range(rho_t1.TimeAxis.length):
                #    print(kk, numpy.real(rho_t1.data[kk,p[0],p[1]]),numpy.real(exp_rho_t2[kk,p[0],p[1]]))

                #numpy.testing.assert_allclose(RRT.data, rtd)
                numpy.testing.assert_allclose(numpy.real(rho_t1.data[:, :, :]),
                                              numpy.real(exp_rho_t2[:, :, :]),
                                              rtol=5.0e-2,
                                              atol=1.0e-3)