示例#1
0
    def test_of_fa_location_in_different_units(self):
        """Testing location of value in different units """
        ta = TimeAxis(0.0, 1000, 0.1)
        
        ta.atype='complete'
        wa = ta.get_FrequencyAxis()
        
        with energy_units("1/cm"):

            val = 10000.0
            nsni = numpy.int(numpy.floor((val-wa.start)/wa.step))

            i1 = wa.locate(10000.0)
            self.assertEqual(nsni, i1[0])
            
        #with h5py.File("test_file_ValueAxes",driver="core", 
        #                   backing_store=False) as f:    
        with tempfile.TemporaryFile() as f:
        
            wa.save(f, test=True)
            
            tb = FrequencyAxis()
            tb = tb.load(f, test=True)
            
            
        
        numpy.testing.assert_array_equal(wa.data,tb.data)
示例#2
0
    def test_of_fa_location_in_different_units(self):
        """Testing location of value in different units """
        ta = TimeAxis(0.0, 1000, 0.1)

        ta.atype = 'complete'
        wa = ta.get_FrequencyAxis()

        with energy_units("1/cm"):

            val = 10000.0
            nsni = numpy.int(numpy.floor((val - wa.start) / wa.step))

            i1 = wa.locate(10000.0)
            self.assertEqual(nsni, i1[0])

        #with h5py.File("test_file_ValueAxes",driver="core",
        #                   backing_store=False) as f:
        with tempfile.TemporaryFile() as f:

            wa.save(f, test=True)

            tb = FrequencyAxis()
            tb = tb.load(f, test=True)

        numpy.testing.assert_array_equal(wa.data, tb.data)
示例#3
0
    def test_of_frequency_axis_creation(self):
        """Testing FrequencyAxis creation """

        wa = FrequencyAxis(0.0, 1000, 0.1)

        self.assertEqual(wa.min, wa.data[0])
        self.assertEqual(wa.max, wa.data[len(wa.data) - 1])
示例#4
0
    def setUp(self, verbose=False):

        abss = AbsSpectrumBase()
        with energy_units("1/cm"):
            f = FrequencyAxis(10000.0, 2000, 1.0)
            a = self._spectral_shape(f, [1.0, 11000.0, 100.0])
            abss.axis = f
            abss.data = a
        self.abss = abss
        self.axis = abss.axis

        time = TimeAxis(0.0, 1000, 1.0)
        with energy_units("1/cm"):
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            params = dict(ftype="OverdampedBrownian",
                          reorg=20,
                          cortime=100,
                          T=300)
            mol1.set_dipole(0, 1, [0.0, 1.0, 0.0])
            cf = CorrelationFunction(time, params)
            mol1.set_transition_environment((0, 1), cf)

            abs_calc = AbsSpectrumCalculator(time, system=mol1)
            abs_calc.bootstrap(rwa=12000)

        abs1 = abs_calc.calculate()

        self.abs1 = abs1
示例#5
0
    def setUp(self, verbose=False):

        abss = AbsSpectrumBase()
        with energy_units("1/cm"):
            f = FrequencyAxis(10000.0, 2000, 1.0)
            a = self._spectral_shape(f, [1.0, 11000.0, 100.0])
            abss.axis = f
            abss.data = a
        self.abss = abss
        self.axis = abss.axis
示例#6
0
def upper_half_frequency_axis(self):

    for row in self.hashes:
        start = float(row['start'])
        Ns = int(row['number_of_steps'])
        dw = float(row['step'])

    print("FrequencyAxis", start, Ns, dw, "atype=upper-half")
    world.wa = FrequencyAxis(start, Ns, dw, atype="upper-half")

    tc = TestCase()
    tc.assertEqual(world.wa.atype, "upper-half")
示例#7
0
def complete_frequency_axis(self):

    for row in self.hashes:
        start = float(row['start'])
        Ns = int(row['number_of_steps'])
        dw = float(row['step'])

    print("FrequencyAxis", start, Ns, dw, "atype='complete'")
    world.wa = FrequencyAxis(start, Ns, dw)

    tc = TestCase()
    tc.assertEqual(world.wa.atype, "complete")
示例#8
0
    def setUp(self, verbose=False):

        lindichs = LinDichSpectrumBase()
        with energy_units("1/cm"):
            f = FrequencyAxis(10000.0, 2000, 1.0)
            a = self._spectral_shape(f, [1.0, 11000.0, 100.0])
            lindichs.axis = f
            lindichs.data = a
        self.lindichs = lindichs
        self.axis = lindichs.axis

        #make a single-molecule system
        time = TimeAxis(0.0, 1000, 1.0)
        self.ta = time
        with energy_units("1/cm"):
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            mol2 = Molecule(elenergies=[0.0, 12000.0])

            params = dict(ftype="OverdampedBrownian",
                          reorg=20,
                          cortime=100,
                          T=300)
            mol1.set_dipole(0, 1, [0.0, 1.0, 0.0])
            mol2.set_dipole(0, 1, [0.0, 1.0, 0.0])

            cf = CorrelationFunction(time, params)
            mol1.set_transition_environment((0, 1), cf)
            mol2.set_transition_environment((0, 1), cf)

            mol1.position = [0, 0, 0]
            mol2.position = [10, 10, 10]

            agg = Aggregate(name="tester_dim", molecules=[mol1, mol2])
            agg.build()

            lindich_calc = LinDichSpectrumCalculator(time, system=agg, \
                                vector_perp_to_membrane=numpy.array((0,1,0)))
            lindich_calc.bootstrap(rwa=12000)

        lindich1 = lindich_calc.calculate()

        self.lindich1 = lindich1
示例#9
0
    def test_dfunction_saveable(self):
        """Testing if DFunction is saveable """

        wa = FrequencyAxis(0.0, 1000, 0.1)

        fw = numpy.exp(-wa.data)

        fce = DFunction(wa, fw)

        #fce.plot()

        with h5py.File("test_file_1", driver="core", backing_store=False) as f:

            fce.save(f, test=True)

            fce2 = DFunction()
            fce2.load(f, test=True)

        #fce2.plot()

        numpy.testing.assert_array_equal(fce.data, fce2.data)
示例#10
0
    def test_dfunction_saveable_2(self):
        """Testing if DFunction can save spline initiated object correctly
        
        """
        
        wa = FrequencyAxis(0.0, 100, 1.0)
        
        fw = numpy.exp(-wa.data/30.0)
        
        fce = DFunction(wa,fw)
        
        val_mez_linear = fce.at(20.5)
        val_mez_spline = fce.at(20.5, approx="spline")
        
#        print("init", fce._splines_initialized)
#        print(val_mez_linear)
#        print(val_mez_spline)

        #with h5py.File("test_file_1",driver="core", 
        #                   backing_store=False) as f:
        with tempfile.TemporaryFile() as f:
        
            fce.save(f, test=True)
        
            fce2 = DFunction()
            fce2 = fce2.load(f, test=True)

        self.assertEqual(fce._splines_initialized, True)
        self.assertEqual(fce2._splines_initialized, True)
            
        new_mez_linear = fce2.at(20.5)
        new_mez_spline = fce2.at(20.5, approx="spline")
#        print(new_mez_linear)
#        print(new_mez_spline)

        self.assertEqual(val_mez_spline, new_mez_linear)
        self.assertEqual(val_mez_spline, new_mez_spline)
        self.assertEqual(fce._splines_initialized, fce2._splines_initialized)
        numpy.testing.assert_array_equal(fce.data, fce2.data)
示例#11
0
文件: lams.py 项目: saayeh/quantarhei
def main():

    ###############################################################################
    #
    #  Parsing command line arguments
    #
    ###############################################################################
    parser = argparse.ArgumentParser(
        description='Loads and manupilates spectra.')
    #
    #
    #
    parser.add_argument("files",
                        metavar='file',
                        type=str,
                        nargs='+',
                        help='files to be processed')
    parser.add_argument("-o",
                        "--outfile",
                        metavar="outfile",
                        help="output file",
                        default="tot.dat")
    #parser.add_argument('--sum', dest='accumulate', action='store_const',
    #                    const=sum, default=max,
    #                    help='sum the integers (default: find the max)')
    parser.add_argument("-op",
                        "--operation",
                        default="sum",
                        choices=["sum", "norm", "max", "convert"],
                        help="operation to be performed on the spectra")
    parser.add_argument("-t",
                        "--type",
                        default="abs",
                        help="type of spectra",
                        choices=["abs", "2d"])
    parser.add_argument("-n",
                        "--nosplash",
                        action="store_true",
                        help="no script info (a 'spash screen')")

    #
    #
    #
    parser.add_argument("-e",
                        "--exe",
                        help="prints out the location of python" +
                        " executable",
                        action="store_true")

    #
    #
    #
    args = parser.parse_args()

    ###############################################################################
    #
    #
    #  Results of command line parsing
    #
    #
    ###############################################################################
    files = args.files
    oper = args.operation
    stype = args.type
    show_exe = args.exe
    splash = not args.nosplash

    ###############################################################################
    #
    #
    #  "Splash screen"
    #
    #
    ###############################################################################
    term = Terminal()
    t_height = term.height
    t_width = term.width

    class StarLine:
        def __init__(self, term):
            self.term = term

        def full(self):
            print('*' * self.term.width)

        def empty(self):
            print('*' + (' ' * (self.term.width - 2)) + '*')

        def center_text(self, text, bold=False):
            tlen = len(text)
            spaces = self.term.width - tlen - 2
            lspaces = spaces // 2
            last = self.term.width - (tlen + 2 + 2 * lspaces)
            rspaces = lspaces + last
            if bold:
                tx = '*' + (' ' * lspaces) + self.term.bold(text) + (
                    ' ' * rspaces) + '*'
            else:
                tx = '*' + (' ' * lspaces) + text + (' ' * rspaces) + '*'
            print(tx)

        def left_text(self, text):
            tlen = len(text)
            spaces = self.term.width - tlen - 2
            print('*' + text + (' ' * spaces) + '*')

    indent = 4

    if splash:
        star_line = StarLine(term)
        print("")
        star_line.full()
        star_line.empty()
        star_line.center_text("lams (Loading and manipulating spectra)" +
                              " command line tool",
                              bold=True)
        star_line.center_text("Based on Quantarhei package " +
                              "(github.com/tmancal74/quantarhei)")
        star_line.empty()
        star_line.left_text("   Author: Tomas Mancal")
        star_line.left_text("           Charles University")
        star_line.left_text("   Email : [email protected] ")
        star_line.empty()
        star_line.left_text("   try 'lams -h' for basic usage information")
        star_line.empty()
        star_line.full()
        print("")

    if show_exe:
        with term.location(indent, term.height - 1):
            print("Location of Python executable: ", sys.executable, "\n")
        quit()

    with term.location(indent, term.height - 1):
        print("Lams task summary:")
    with term.location(indent, term.height - 1):
        print(oper, stype, ": outfile =", args.outfile)
        print("")

    fname, ext = os.path.splitext(args.outfile)
    ext = ext[1:]

    ###############################################################################
    #
    #  Identification of the files to work on
    #
    ###############################################################################
    files_abs = []
    for aaa in files:
        faaa = glob.glob(aaa)
        for f in faaa:
            files_abs.append(f)

    abs_sum = (stype == "abs") and (oper == "sum")
    abs_norm = (stype == "abs") and (oper == "norm")
    abs_max = (stype == "abs") and (oper == "max")
    abs_conv = (stype == "abs") and (oper == "convert")

    if abs_sum:

        with term.location(indent, term.height - 1):
            print("Summing absorption spectra")

        k = 0
        spect = None
        for fl in files_abs:

            a = AbsSpectrumBase()
            a.load(fl)

            #
            # sum them up
            #

            if spect is None:
                spect = a
            else:
                spect.add_to_data(a)

            k += 1

        spect.save(fname, ext=ext)

        with term.location(indent, term.height - 1):
            print("... finished with ", k, " files\n")

    if abs_norm:

        with term.location(indent, term.height - 1):
            print("Normalizing absorption spectra")

        k = 0

        fl = files_abs[0]
        spect = AbsSpectrumBase()
        spect.load(fl)

        #
        # Normalize spectra
        #

        mx = numpy.max(spect.data)
        spect.data = spect.data / mx

        k += 1

        spect.save(fname, ext=ext)

        with term.location(indent, term.height - 1):
            print("... finished with ", k, " files\n")

    if abs_max:

        with term.location(indent, term.height - 1):
            print("Looking for absorption maxima")

        k = 0

        fl = files_abs[0]
        spect = AbsSpectrumBase()
        spect.load(fl)

        #
        # Find location of maximum
        #

        mxi = numpy.argmax(spect.data)
        #with energy_units("1/cm"):
        mx = spect.axis.data[mxi]

        k += 1

        with term.location(indent, term.height - 1):
            print("{t.bold}Maximum at ".format(t=term), mx, "1/cm")

        with term.location(indent, term.height - 1):
            print("... finished with ", k, " files\n")

    if abs_conv:

        with term.location(indent, term.height - 1):
            print("Converting from nm to 1/cm")

        fl = files_abs[0]
        data = numpy.genfromtxt(fl, converters={0: lambda s: 1.0e7 / float(s)})

        x = data[:, 0]
        ab = data[:, 1]

        _spline_r = scipy.interpolate.UnivariateSpline(x, ab, s=0)

        wa = FrequencyAxis(10000.0, 5000, 1.0)
        data = numpy.zeros(wa.data.shape)
        i = 0
        for w in wa.data:
            data[i] = _spline_r(w)
            i += 1

        spect = AbsSpectrumBase(axis=wa, data=data)

        spect.save(fname, ext=ext)