示例#1
0
    def test_of_fa_location_in_different_units(self):
        """Testing location of value in different units """
        ta = TimeAxis(0.0, 1000, 0.1)
        
        ta.atype='complete'
        wa = ta.get_FrequencyAxis()
        
        with energy_units("1/cm"):

            val = 10000.0
            nsni = numpy.int(numpy.floor((val-wa.start)/wa.step))

            i1 = wa.locate(10000.0)
            self.assertEqual(nsni, i1[0])
            
        #with h5py.File("test_file_ValueAxes",driver="core", 
        #                   backing_store=False) as f:    
        with tempfile.TemporaryFile() as f:
        
            wa.save(f, test=True)
            
            tb = FrequencyAxis()
            tb = tb.load(f, test=True)
            
            
        
        numpy.testing.assert_array_equal(wa.data,tb.data)
示例#2
0
    def test_of_population_evolution_2(self):
        """Testing population evolution matrix 2x2 starting from t > 0"""

        KK = numpy.array([[-1.0 / 100.0, 1.0 / 100.0],
                          [1.0 / 100.0, -1.0 / 100.0]])

        U0 = numpy.eye(2)
        Ntd = 10

        t = TimeAxis(0.0, 1000, 1.0)
        prop = PopulationPropagator(t, rate_matrix=KK)

        td = TimeAxis(2.0, Ntd, 10.0)
        U = prop.get_PropagationMatrix(td)

        # analytical result

        Ucheck = numpy.zeros((2, 2, Ntd))
        Ucheck[0, 0, :] = 0.5 * (1.0 + numpy.exp(2.0 * KK[0, 0] * td.data))
        Ucheck[1, 1, :] = Ucheck[0, 0, :]
        Ucheck[1, 0, :] = 0.5 * (1.0 - numpy.exp(2.0 * KK[0, 0] * td.data))
        Ucheck[0, 1, :] = Ucheck[1, 0, :]

        for n in range(Ntd):
            numpy.testing.assert_allclose(U[:, :, n], Ucheck[:, :, n])
示例#3
0
    def test_of_fa_location_in_different_units(self):
        """Testing location of value in different units """
        ta = TimeAxis(0.0, 1000, 0.1)

        ta.atype = 'complete'
        wa = ta.get_FrequencyAxis()

        with energy_units("1/cm"):

            val = 10000.0
            nsni = numpy.int(numpy.floor((val - wa.start) / wa.step))

            i1 = wa.locate(10000.0)
            self.assertEqual(nsni, i1[0])

        #with h5py.File("test_file_ValueAxes",driver="core",
        #                   backing_store=False) as f:
        with tempfile.TemporaryFile() as f:

            wa.save(f, test=True)

            tb = FrequencyAxis()
            tb = tb.load(f, test=True)

        numpy.testing.assert_array_equal(wa.data, tb.data)
示例#4
0
    def test_TwoDSpectrumCalculator(self):
        """Testing basic functions of the TwoDSpectrumCalculator class
        
        """
        t1 = TimeAxis(0.0, 1000, 1.0)
        t3 = TimeAxis(0.0, 1000, 1.0)

        t2 = TimeAxis(30, 10, 10.0)

        twod_calc = TwoDSpectrumCalculator(t1, t2, t3)
示例#5
0
    def get_Aggregate_with_environment(self,
                                       name="dimer-1_env",
                                       timeaxis=None):

        if name == "dimer-1_env":
            agg = self.get_Aggregate(name="dimer-1")
            agg.name = name

        elif name == "trimer-1_env":
            agg = self.get_Aggregate(name="trimer-1")
            agg.name = name

            if timeaxis is None:
                time = TimeAxis(0, 5000, 1.0)
            else:
                time = timeaxis

            with energy_units("1/cm"):
                params = dict(ftype="OverdampedBrownian",
                              reorg=20,
                              cortime=100,
                              T=300)
                print(time)
                cf = CorrelationFunction(time, params)

            m1 = self.molecules[0]
            m1.set_transition_environment((0, 1), cf)
            m2 = self.molecules[1]
            m2.set_transition_environment((0, 1), cf)
            m3 = self.molecules[2]
            m3.set_transition_environment((0, 1), cf)

        elif name == "pentamer-1_env":
            agg = self.get_Aggregate(name="pentamer-1")
            agg.name = name

            if timeaxis is None:
                time = TimeAxis(0, 5000, 1.0)
            else:
                time = timeaxis

            with energy_units("1/cm"):
                params = dict(ftype="OverdampedBrownian",
                              reorg=20,
                              cortime=100,
                              T=300)
                cf = CorrelationFunction(time, params)

            for m in self.molecules:
                m.set_transition_environment((0, 1), cf)

        else:
            raise Exception("Unknown model name %s" % name)

        return agg
示例#6
0
 def test_(self):
     """Testing FrequencyAxis values """
     
     ta = TimeAxis(0.0, 1000, 0.1)
     
     ta.atype='complete'
     wa = ta.get_FrequencyAxis()
     
     # in internal units
     wadata =  2.0*numpy.pi*\
     numpy.fft.fftshift(numpy.fft.fftfreq(ta.length,d=ta.step))
     
     numpy.testing.assert_allclose(wa.data, wadata, atol=1.0e-12)
示例#7
0
    def test_(self):
        """Testing FrequencyAxis values """

        ta = TimeAxis(0.0, 1000, 0.1)

        ta.atype = 'complete'
        wa = ta.get_FrequencyAxis()

        # in internal units
        wadata =  2.0*numpy.pi*\
        numpy.fft.fftshift(numpy.fft.fftfreq(ta.length,d=ta.step))

        numpy.testing.assert_allclose(wa.data, wadata, atol=1.0e-12)
示例#8
0
    def test_of_fa_location_in_different_units(self):
        """Testing location of value in different units """
        ta = TimeAxis(0.0, 1000, 0.1)
        
        ta.atype='complete'
        wa = ta.get_FrequencyAxis()
        
        with energy_units("1/cm"):

            val = 10000.0
            nsni = numpy.int(numpy.floor((val-wa.start)/wa.step))

            i1 = wa.locate(10000.0)
            self.assertEqual(nsni, i1[0])
示例#9
0
    def test_propagation_in_different_basis(self):
        """(LINDBLAD) Testing comparison of propagations in different bases

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)

        time = TimeAxis(0.0, 1000, 1.0)

        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)

        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1, 1] = 1.0

        with eigenbasis_of(self.H1):
            rhot1_e = prop1.propagate(rho0)

        with eigenbasis_of(self.H1):
            rhot2_e = prop2.propagate(rho0)

        rhot1_l = prop1.propagate(rho0)
        rhot2_l = prop2.propagate(rho0)

        numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data)
        numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data)
        numpy.testing.assert_allclose(rhot1_e.data,
                                      rhot2_e.data)  #, rtol=1.0e-2)
示例#10
0
    def test_of_time_axis_creation(self):
        """Testing TimeAxis creation """

        ta = TimeAxis(0.0, 1000, 0.1)

        self.assertEqual(ta.min, ta.data[0])
        self.assertEqual(ta.max, ta.data[ta.length - 1])
示例#11
0
    def setUp(self, verbose=False):

        abss = AbsSpectrumBase()
        with energy_units("1/cm"):
            f = FrequencyAxis(10000.0, 2000, 1.0)
            a = self._spectral_shape(f, [1.0, 11000.0, 100.0])
            abss.axis = f
            abss.data = a
        self.abss = abss
        self.axis = abss.axis

        time = TimeAxis(0.0, 1000, 1.0)
        with energy_units("1/cm"):
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            params = dict(ftype="OverdampedBrownian",
                          reorg=20,
                          cortime=100,
                          T=300)
            mol1.set_dipole(0, 1, [0.0, 1.0, 0.0])
            cf = CorrelationFunction(time, params)
            mol1.set_transition_environment((0, 1), cf)

            abs_calc = AbsSpectrumCalculator(time, system=mol1)
            abs_calc.bootstrap(rwa=12000)

        abs1 = abs_calc.calculate()

        self.abs1 = abs1
示例#12
0
 def setUp(self):
     self.en = [0.0, 1.0, 2.0]
     self.m = Molecule(name="Molecule", elenergies=self.en)
     time = TimeAxis(0, 1000, 1.0)
     params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
     with energy_units("1/cm"):
         fc = CorrelationFunction(time, params)
     self.m.set_transition_environment((0, 1), fc)
     self.fc = fc
示例#13
0
def time_interval(self, time_step, nsteps):
    """Matching the following
    
    #begin_feature    
    Given time interval from zero with time step <time_step> fs and <nsteps> steps
    #end_feature
    
    """
    world.time = TimeAxis(0.0, int(nsteps), float(time_step))
示例#14
0
def time_interval_sub(self, time_step, nsteps):
    """Matching the following
    
    #begin_feature    
    And a subset time interval from zero with time step <time_step_2> fs and <nsteps_2> steps
    #end_feature
    
    """
    world.time_sub = TimeAxis(0.0, int(nsteps), float(time_step))
示例#15
0
def upper_half_time_axis(self):

    for row in self.hashes:
        start = float(row['start'])
        Ns = int(row['number_of_steps'])
        dt = float(row['step'])

    print("TimeAxis", start, Ns, dt)
    # upper-half is default
    world.ta = TimeAxis(start, Ns, dt)

    tc = TestCase()
    tc.assertEqual(world.ta.atype, "upper-half")
示例#16
0
def complete_time_axis(self):

    for row in self.hashes:
        start = float(row['start'])
        Ns = int(row['number_of_steps'])
        dt = float(row['step'])

    print("TimeAxis", start, Ns, dt, "atype='complete'")
    # upper-half is default
    world.ta = TimeAxis(start, Ns, dt, atype="complete")

    tc = TestCase()
    tc.assertEqual(world.ta.atype, "complete")
    def test_reorganization_energy_consistence(self):
        """(CorrelationFunction) Checking that reorganization energy is represented consistently
        
        """
        
        t = TimeAxis(0.0, 2000, 1.0)
        
        params1 = dict(ftype="OverdampedBrownian",
                       reorg = 30.0,
                       cortime = 100.0,
                       T = 300.0)
        params2 = dict(ftype="OverdampedBrownian",
                       reorg = 40.0,
                       cortime = 100.0,
                       T = 300.0)
        params3 = dict(ftype="OverdampedBrownian",
                       reorg = 15.0,
                       cortime = 200.0,
                       T = 300.0)
        params4 = dict(ftype="OverdampedBrownian",
                       reorg = 10.0,
                       cortime = 50.0,
                       T = 300.0)     
        with energy_units("1/cm"):
            f1 = CorrelationFunction(t, params1)
            f2 = CorrelationFunction(t, params2)
            f3 = CorrelationFunction(t, params3)
            f4 = CorrelationFunction(t, params4)     
        
        l1 = f1.measure_reorganization_energy()
        l2 = f1.lamb
        #print(l1, l2, abs(l1-l2)/(l1+l2))
        
        l1 = f3.measure_reorganization_energy()
        l2 = f3.lamb
        #print(l1, l2, abs(l1-l2)/(l1+l2))
        
        self.assertTrue(f1.reorganization_energy_consistent())
        self.assertTrue(f2.reorganization_energy_consistent())
        self.assertTrue(f3.reorganization_energy_consistent())
        self.assertTrue(f4.reorganization_energy_consistent())        
        
        for i in range(5):
            f1 += f1        
        
        self.assertTrue(f1.reorganization_energy_consistent())

        for i in range(5):
            f3 += f2
            
        self.assertTrue(f3.reorganization_energy_consistent())
示例#18
0
    def test_if_time_axis_is_saveable(self):
        """Testing the Saveability of TimeAxis
        
        """
        with h5py.File("test_file_ValueAxes",
                       driver="core",
                       backing_store=False) as f:
            ta = TimeAxis(0.0, 1000, 0.1)

            ta.save(f, test=True)

            tb = TimeAxis()
            tb.load(f, test=True)

        numpy.testing.assert_array_equal(ta.data, tb.data)
示例#19
0
    def test_thermal_density_matrix_finite_temp(self):
        """Thermal density matrix: molecule with one mode, finite temperature
        
        """

        timeAxis = TimeAxis(0.0, 1000, 1.0)
        params = {
            "ftype": "OverdampedBrownian",
            "T": 300,
            "reorg": 30,
            "cortime": 100
        }
        with energy_units("1/cm"):
            cfcion = CorrelationFunction(timeAxis, params)
            self.m.set_egcf((0, 1), cfcion)

            rho_eq = self.m.get_thermal_ReducedDensityMatrix()

        # Check if the matrix is diagonal
        dat = rho_eq.data.copy()
        for i in range(dat.shape[0]):
            dat[i, i] = 0.0
        zer = numpy.zeros(dat.shape, dtype=numpy.float)
        self.assertTrue(numpy.allclose(dat, zer))

        # Check if diagonal is a thermal population
        pop = numpy.zeros(dat.shape[0])
        # get temperature from the molecule
        T = self.m.get_temperature()
        self.assertTrue(T == 300.0)

        # get density matrix
        rpop = rho_eq.get_populations()

        # get Hamiltonian
        H = self.m.get_Hamiltonian()

        if numpy.abs(T) < 1.0e-10:
            pop[0] = 1.0

        else:
            # thermal populations
            psum = 0.0
            for n in range(pop.shape[0]):
                pop[n] = numpy.exp(-H.data[n, n] / (kB_intK * T))
                psum += pop[n]
            pop *= 1.0 / psum

        self.assertTrue(numpy.allclose(pop, rpop))
示例#20
0
    def setUp(self, verbose=False):

        self.verbose = verbose

        time = TimeAxis(0.0, 1000, 1.0)
        with energy_units("1/cm"):
            params = {
                "ftype": "OverdampedBrownian",
                "reorg": 30.0,
                "T": 300.0,
                "cortime": 100.0
            }

            cf1 = CorrelationFunction(time, params)
            cf2 = CorrelationFunction(time, params)
            sd = SpectralDensity(time, params)

        cm1 = CorrelationFunctionMatrix(time, 2, 1)
        cm1.set_correlation_function(cf1, [(0, 0), (1, 1)])
        cm2 = CorrelationFunctionMatrix(time, 2, 1)
        cm2.set_correlation_function(cf2, [(0, 0), (1, 1)])

        K11 = numpy.array([[1.0, 0.0], [0.0, 0.0]], dtype=numpy.float)
        K21 = numpy.array([[1.0, 0.0], [0.0, 0.0]], dtype=numpy.float)
        K12 = K11.copy()
        K22 = K21.copy()

        KK11 = Operator(data=K11)
        KK21 = Operator(data=K21)
        KK12 = Operator(data=K12)
        KK22 = Operator(data=K22)

        self.sbi1 = SystemBathInteraction([KK11, KK21], cm1)
        self.sbi2 = SystemBathInteraction([KK12, KK22], cm2)

        with energy_units("1/cm"):
            h1 = [[0.0, 100.0], [100.0, 0.0]]
            h2 = [[0.0, 100.0], [100.0, 0.0]]
            self.H1 = Hamiltonian(data=h1)
            self.H2 = Hamiltonian(data=h2)

        #sd.convert_2_spectral_density()
        with eigenbasis_of(self.H1):
            de = self.H1.data[1, 1] - self.H1.data[0, 0]
        self.c_omega_p = sd.at(de, approx="spline")  #interp_data(de)
        self.c_omega_m = sd.at(-de, approx="spline")  #interp_data(-de)
示例#21
0
    def test_comparison_with_and_without_vib(self):
        """Testing ElectronicLindbladForm in propagation
        
        """

        # Lindblad forms
        LT = ElectronicLindbladForm(self.ham, self.sbi, as_operators=False)
        vLT = ElectronicLindbladForm(self.vham, self.vsbi, as_operators=False)

        # Propagators
        time = TimeAxis(0.0, 1000, 1.0)
        el_prop = ReducedDensityMatrixPropagator(time, self.ham, LT)
        vib_prop = ReducedDensityMatrixPropagator(time, self.vham, vLT)

        # electronic initial condition
        rho0 = ReducedDensityMatrix(dim=self.ham.dim)
        rho0.data[2, 2] = 1.0

        # vibronic intial condition
        vrho0 = ReducedDensityMatrix(dim=self.vham.dim)
        agg = self.vsbi.system
        Nin = agg.vibindices[2][0]
        vrho0.data[Nin, Nin] = 1.0

        # propagations
        rhot = el_prop.propagate(rho0)
        vrhot = vib_prop.propagate(vrho0)

        # averaging over vibrational level at t=0
        Nel = agg.Nel

        aver_vrhot0 = agg.trace_over_vibrations(vrho0)

        # Test
        numpy.testing.assert_array_equal(rhot._data[0, :, :], rho0._data)
        numpy.testing.assert_array_equal(rhot._data[0, :, :],
                                         aver_vrhot0._data)

        aver_vrhot10 = agg.trace_over_vibrations(vrhot, 10)
        numpy.testing.assert_array_equal(rhot._data[10, :, :],
                                         aver_vrhot10._data)

        aver_vrhot800 = agg.trace_over_vibrations(vrhot, 800)
        numpy.testing.assert_array_equal(rhot._data[800, :, :],
                                         aver_vrhot800._data)
    def test_of_correlation_function_as_Saveable(self):
        """(CorrelationFunction) Testing of saving """
        
        t = TimeAxis(0.0, 1000, 1.0)
        params1 = dict(ftype="OverdampedBrownian",
                       reorg = 30.0,
                       cortime = 100.0,
                       T = 300.0)
        params2 = dict(ftype="OverdampedBrownian",
                       reorg = 40.0,
                       cortime = 100.0,
                       T = 300.0)
        
        with energy_units("1/cm"):
            f1 = CorrelationFunction(t, params1)
            f2 = CorrelationFunction(t, params2)

        import tempfile
        with tempfile.TemporaryFile() as f:
        #with h5py.File("test_file_1",driver="core", 
        #                   backing_store=False) as f:
            
            f1.save(f)#, test=True)
            f.seek(0)
            f1_loaded = CorrelationFunction()
            f1_loaded = f1_loaded.load(f) #, test=True)
            
        with tempfile.TemporaryFile() as f:
        #with h5py.File("test_file_2",driver="core", 
        #                   backing_store=False) as f:
            
            f2.save(f) #, test=True)
            f.seek(0)
            f2_loaded = CorrelationFunction()
            f2_loaded = f2_loaded.load(f) #, test=True)
            
            
        numpy.testing.assert_array_equal(f1.data, f1_loaded.data)
        numpy.testing.assert_array_equal(f1.axis.data, f1_loaded.axis.data)        
 
        numpy.testing.assert_array_equal(f2.data, f2_loaded.data)
        numpy.testing.assert_array_equal(f2.axis.data, f2_loaded.axis.data)        
       
            
            
 def test_of_correlation_function_addition_T(self):
     """CorrelationFunction addition with different temperatures raises Exception
     
     """
     t = TimeAxis(0.0, 1000, 1.0)
     params1 = dict(ftype="OverdampedBrownian",
                    reorg = 30.0,
                    cortime = 100.0,
                    T = 300.0)
     params2 = dict(ftype="OverdampedBrownian",
                    reorg = 40.0,
                    cortime = 100.0,
                    T = 100.0)    
     
     
     f1 = CorrelationFunction(t, params1)
     f2 = CorrelationFunction(t, params2)
     
     self.assertRaises(Exception, f = f1 + f2)
示例#24
0
    def test_thermal_density_matrix_finite_temp_nondiag(self):
        """Thermal density matrix: finite temperature, non-diagonal Hamiltonian
        
        """

        timeAxis = TimeAxis(0.0, 1000, 1.0)
        params = {
            "ftype": "OverdampedBrownian",
            "T": 300.0,
            "reorg": 30,
            "cortime": 100
        }
        cfcion = CorrelationFunction(timeAxis, params)
        self.m2.set_egcf((0, 1), cfcion)
        self.m2.set_egcf((0, 2), cfcion)

        rho_eq = self.m2.get_thermal_ReducedDensityMatrix()

        pop = numpy.zeros(rho_eq._data.shape[0])
        # get temperature from the molecule
        T = self.m2.get_temperature()
        self.assertTrue(numpy.abs(T - 300.0) < 1.0e-10)

        # get Hamiltonian
        H = self.m2.get_Hamiltonian()

        with eigenbasis_of(H):
            # get density matrix

            rpop = rho_eq.get_populations()

            if numpy.abs(T) < 1.0e-10:
                pop[0] = 1.0

            else:
                # thermal populations
                psum = 0.0
                for n in range(pop.shape[0]):
                    pop[n] = numpy.exp(-H.data[n, n] / (kB_intK * T))
                    psum += pop[n]
                pop *= 1.0 / psum

        self.assertTrue(numpy.allclose(pop, rpop))
示例#25
0
    def setUp(self, verbose=False):

        lindichs = LinDichSpectrumBase()
        with energy_units("1/cm"):
            f = FrequencyAxis(10000.0, 2000, 1.0)
            a = self._spectral_shape(f, [1.0, 11000.0, 100.0])
            lindichs.axis = f
            lindichs.data = a
        self.lindichs = lindichs
        self.axis = lindichs.axis

        #make a single-molecule system
        time = TimeAxis(0.0, 1000, 1.0)
        self.ta = time
        with energy_units("1/cm"):
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            mol2 = Molecule(elenergies=[0.0, 12000.0])

            params = dict(ftype="OverdampedBrownian",
                          reorg=20,
                          cortime=100,
                          T=300)
            mol1.set_dipole(0, 1, [0.0, 1.0, 0.0])
            mol2.set_dipole(0, 1, [0.0, 1.0, 0.0])

            cf = CorrelationFunction(time, params)
            mol1.set_transition_environment((0, 1), cf)
            mol2.set_transition_environment((0, 1), cf)

            mol1.position = [0, 0, 0]
            mol2.position = [10, 10, 10]

            agg = Aggregate(name="tester_dim", molecules=[mol1, mol2])
            agg.build()

            lindich_calc = LinDichSpectrumCalculator(time, system=agg, \
                                vector_perp_to_membrane=numpy.array((0,1,0)))
            lindich_calc.bootstrap(rwa=12000)

        lindich1 = lindich_calc.calculate()

        self.lindich1 = lindich1
示例#26
0
    def test_comparison_of_dynamics(self):
        """Testing site basis dynamics by Lindblad

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)

        time = TimeAxis(0.0, 1000, 1.0)

        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)

        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1, 1] = 1.0

        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)

        numpy.testing.assert_allclose(rhot1.data, rhot2.data)  #, rtol=1.0e-2)
    def test_of_correlation_function_addition_T(self):
        """(CorrelationFunction) Testing that addition with different temperatures raises Exception
        
        """
        t = TimeAxis(0.0, 1000, 1.0)
        params1 = dict(ftype="OverdampedBrownian",
                       reorg = 30.0,
                       cortime = 100.0,
                       T = 300.0)
        params2 = dict(ftype="OverdampedBrownian",
                       reorg = 40.0,
                       cortime = 100.0,
                       T = 100.0)    
        

        with energy_units("1/cm"):        
            f1 = CorrelationFunction(t, params1)
            f2 = CorrelationFunction(t, params2)   
        
        with self.assertRaises(Exception):
            f = f1 + f2
示例#28
0
    def setUp(self):

        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])

        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)

        m1.set_transition_environment((0, 1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0, 1, [10.0, 0.0, 0.0])
        m2.set_transition_environment((0, 1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0, 1, [10.0, 0.0, 0.0])

        self.agg = Aggregate(name="TestAgg", molecules=[m1, m2])

        self.agg.set_coupling_by_dipole_dipole()

        self.agg.build()

        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))

        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)

        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)

        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()
    # Plot spectral density
    with energy_units("1/cm"):
        #cF1.plot(show=False)
        #cF1e.plot(show=False)
        cF1o.plot(show=False)
        sd1.plot(show=False)
        sd.plot(axis=[-1000,1000,-0.008,0.008])
    
df = numpy.max(numpy.abs(cF1o.data-sd1.data))
print(df)
mx = numpy.max(numpy.abs(sd1.data))
print(mx)
print(df/mx)    
           
with energy_units("eV"):
    tm = TimeAxis(0.0,100,1.0)
    wm = tm.get_FrequencyAxis()

with energy_units("eV"):
    print(wm.data[1]-wm.data[0])
    print(wm.step)
 
ftc = sd1.get_FTCorrelationFunction()  
if _show_plots_:
    cF1.plot(show=False)
    ftc.plot(axis=[-0.1,0.1,0,0.06])

 


    
示例#30
0
# Corresponding Lindblad form
#
from quantarhei.qm import LindbladForm

LF = LindbladForm(HH, sbi, as_operators=False)

print(LF.data[1, 1, 2, 2])
print(LF.data[1, 2, 1, 2])

#
# We can get it also from the aggregate
#

from quantarhei import TimeAxis

time = TimeAxis()

# time is not used here at all
LFa, ham = agg.get_RelaxationTensor(time,
                                    relaxation_theory="electronic_Lindblad")
LFa.convert_2_tensor()

print(LFa.data[1, 1, 2, 2])
print(LFa.data[1, 2, 1, 2])

#
# VIBRONIC Aggregate of two molecules
#

m1v = Molecule([0.0, 1.0])
m2v = Molecule([0.0, 1.1])
示例#31
0
from quantarhei.spectroscopy.twod2 import TwoDSpectrumCalculator
from quantarhei.spectroscopy.twod2 import TwoDSpectrumContainer
from quantarhei.spectroscopy.twod2 import TwoDSpectrum

from aceto.lab_settings import lab_settings

from quantarhei import Manager

print(Manager().version)

t_fstart = time.time()

# Time axis for t1 and t3 times
Nr = 1000
ta = TimeAxis(0.0, Nr, 2.0)

###############################################################################
#
# Define problem
#
###############################################################################

#
# define molecules
#
with energy_units("1/cm"):
    mol1 = Molecule(elenergies=[0.0, 12300.0])
    mol2 = Molecule(elenergies=[0.0, 12000.0])
mol1.position = [0.0, 0.0, 0.0]
# dimer 1
示例#32
0
from quantarhei.core.units import kB_int

import numpy
"""

"""
print("\n")
print("*****************************************************************")
print("*                                                               *")
print("*    Demo of the quantarhei CorrelationFunction                 *")
print("*         and Spectral Density classes                          *")
print("*                                                               *")
print("*****************************************************************")

# time interval om which functions will be defined
ta = TimeAxis(0.0, 1000, 1.0)

temperature = 300.0
# parameters of the correlation function
params = {
    "ftype": "OverdampedBrownian",
    "reorg": 20.0,
    "cortime": 100.0,
    "T": temperature,
    "matsubara": 20
}

# here we create the correlation function assuming that the energy parameters
# are given in 1/cm
with energy_units("1/cm"):
    cf = CorrelationFunction(ta, params)
示例#33
0
    def test_comparison_of_exciton_dynamics(self):
        """Testing exciton basis dynamics by Lindblad

        """

        # site basis form to be compared with
        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)

        # exciton basis forms
        LT13 = LindbladForm(self.H3, self.sbi3, as_operators=True)
        LT23 = LindbladForm(self.H3, self.sbi3, as_operators=False)

        LT4e = LindbladForm(self.H4, self.sbi4e, as_operators=True)
        LT4s = LindbladForm(self.H4s, self.sbi4s, as_operators=True)

        time = TimeAxis(0.0, 1000, 1.0)

        #
        # Propagators
        #
        prop0 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop1 = ReducedDensityMatrixPropagator(time, self.H3, LT13)
        prop2 = ReducedDensityMatrixPropagator(time, self.H3, LT23)
        prop4e = ReducedDensityMatrixPropagator(time, self.H4, LT4e)
        prop4s = ReducedDensityMatrixPropagator(time, self.H4s, LT4s)

        #
        # Initial conditions
        #
        rho0 = ReducedDensityMatrix(dim=self.H3.dim)
        rho0c = ReducedDensityMatrix(dim=self.H1.dim)  # excitonic
        with eigenbasis_of(self.H3):
            rho0c.data[1, 1] = 1.0
        rho0.data[1, 1] = 1.0

        rho04e = ReducedDensityMatrix(dim=self.H4.dim)
        rho04s = ReducedDensityMatrix(dim=self.H4.dim)
        with eigenbasis_of(self.H4):
            rho04e.data[2, 2] = 1.0
        rho04s.data[2, 2] = 1.0

        #
        # Propagations
        #
        rhotc = prop0.propagate(rho0c)
        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)

        rhot4e = prop4e.propagate(rho04e)
        rhot4s = prop4s.propagate(rho04s)

        # propagation with operator- and tensor forms should be the same
        numpy.testing.assert_allclose(rhot1.data, rhot2.data)  #, rtol=1.0e-2)

        #
        # Population time evolution by Lindblad is independent
        # of the level structure and basis, as long as I compare
        # populations in basis in which the Lindblad form was defined
        #

        P = numpy.zeros((2, time.length))
        Pc = numpy.zeros((2, time.length))

        P4e = numpy.zeros((3, time.length))
        P4s = numpy.zeros((3, time.length))

        with eigenbasis_of(self.H3):
            for i in range(time.length):
                P[0, i] = numpy.real(rhot1.data[i, 0,
                                                0])  # population of exciton 0
                P[1, i] = numpy.real(rhot1.data[i, 1,
                                                1])  # population of exciton 1

        for i in range(time.length):
            Pc[0, i] = numpy.real(rhotc.data[i, 0,
                                             0])  # population of exciton 0
            Pc[1, i] = numpy.real(rhotc.data[i, 1,
                                             1])  # population of exciton 1

        # we compare populations
        numpy.testing.assert_allclose(Pc, P)  #, rtol=1.0e-2)

        with eigenbasis_of(self.H4):
            for i in range(time.length):
                P4e[0,
                    i] = numpy.real(rhot4e.data[i, 0,
                                                0])  # population of exciton 0
                P4e[1,
                    i] = numpy.real(rhot4e.data[i, 1,
                                                1])  # population of exciton 1
                P4e[2,
                    i] = numpy.real(rhot4e.data[i, 2,
                                                2])  # population of exciton 1

        for i in range(time.length):
            P4s[0, i] = numpy.real(rhot4s.data[i, 0,
                                               0])  # population of exciton 0
            P4s[1, i] = numpy.real(rhot4s.data[i, 1,
                                               1])  # population of exciton 1
            P4s[2, i] = numpy.real(rhot4s.data[i, 2,
                                               2])  # population of exciton 1


#        import matplotlib.pyplot as plt
#
#        plt.plot(time.data,P4s[0,:], "-r")
#        plt.plot(time.data,P4s[1,:], "-r")
#        plt.plot(time.data,P4s[2,:], "-r")
#        plt.plot(time.data,P4e[0,:], "-g")
#        plt.plot(time.data,P4e[1,:], "-g")
#        plt.plot(time.data,P4e[2,:], "-g")

#        plt.show()

        numpy.testing.assert_allclose(P4e, P4s, atol=1.0e-8)