示例#1
0
def test_swaption_price():

    kappa = 0.03

    swaption_expiry = 4
    swap_maturity = 5
    swap_freq = 0.5

    initial_curve = LiborCurve.from_constant_rate(0.06)
    swap_pricer = SwapPricer(initial_curve, kappa=kappa)

    sigma_r = LinearLocalVolatility.from_const(swap_maturity, 0.4, 0.1, 0)

    piterbarg_approx = PiterbargExpectationApproximator(sigma_r, swap_pricer)
    swap = Swap(swaption_expiry, swap_maturity, swap_freq)

    displaced_diffusion = DisplacedDiffusionParameterApproximator(sigma_r, swap_pricer, swap, piterbarg_approx)
    coupon = swap_pricer.price(swap, 0, 0, 0)

    swaption = Swaption(swaption_expiry, coupon, swap)

    b_s = displaced_diffusion.calculate_bs
    lambda_s_bar, b_bar = calculate_vola_skew(swaption.expiry, displaced_diffusion.calculate_lambda_square, b_s)

    swaption_value, black_implied_vola = lognormalimpliedvola(swaption, swap_pricer, lambda_s_bar, b_bar)

    print(lambda_s_bar, b_bar)
    print(swaption_value, black_implied_vola)
示例#2
0
def test_approx():
    kappa = 0.03

    initial_curve = LiborCurve.from_constant_rate(0.06)
    swap_pricer = SwapPricer(initial_curve, kappa=kappa)

    sigma_r = LinearLocalVolatility.from_const(15, 0.4, 0.06, 0.2)
    swaption_expiry = 4
    swap = Swap(swaption_expiry, 5, 0.5)

    coupon = swap_pricer.price(swap, 0, 0, 0)

    swaption = Swaption(swaption_expiry, coupon, swap)
    xyapproximator = RungeKuttaApproxXY
    #xyapproximator = PitergargDiscreteXY

    for xyapproximator in [RungeKuttaApproxXY, PitergargDiscreteXY]:
        for k in [16]:
            grid_size = 2**k + 1
            #xy_calculator = PitergargDiscreteXY(grid_size, swap_pricer, sigma_r, swap)
            xy_calculator = xyapproximator(grid_size, swap_pricer, sigma_r, swap)
            integration_approx = DiscreteParameterAveraging(grid_size, swap_pricer, sigma_r, swap, xy_calculator)
            lambda_avg, beta_avg = integration_approx.calculate_average_param()
            swaption_value, black_implied_vola = lognormalimpliedvola(swaption, swap_pricer, lambda_avg, beta_avg)

            print(lambda_avg, beta_avg)
            print(swaption_value, black_implied_vola)
示例#3
0
def plot_model_vs_market_data(market_data, res, approximator):

    expiry = market_data["Expiry"].iloc[0]
    tenor = market_data["Tenor"].iloc[0]
    curve_rate = market_data["Rate"].iloc[0]

    kappa = 0.03
    initial_curve = get_mock_yield_curve_const(rate=curve_rate)
    swap_pricer = SwapPricer(initial_curve, kappa)
    swaption_pricer = SwaptionPricer(swap_pricer)
    swap = Swap(expiry, expiry + tenor, frequency=0.5)

    atm_swap_price = swap_pricer.price(swap, 0, 0, 0)

    sigma_r = LinearLocalVolatility.from_const(int(swap.TN), res.x[0],
                                               curve_rate, res.x[1])

    xy_calculator = approximator(grid_size, swap_pricer, sigma_r, swap)
    aprox_type = str(xy_calculator)
    integration_approx = DiscreteParameterAveraging(grid_size, swap_pricer,
                                                    sigma_r, swap,
                                                    xy_calculator)
    lambda_avg, beta_avg = integration_approx.calculate_average_param()

    moneyness_ls = []
    market_implied_vola_ls = []
    black_implied_vola_ls = []
    swaption_value_fd_ls = []
    for row_id, inp_data in market_data.iterrows():
        expiry = inp_data["Expiry"]
        coupon = inp_data["moneyness"] + atm_swap_price
        if coupon < 0:
            continue
        swaption = Swaption(expiry, coupon, swap)
        market_implied_vola_ls.append(inp_data["implied black vola"])

        swaption_value_fd = price_fd(swaption_pricer, sigma_r, swaption)

        swaption_value_fd_ls.append(swaption_value_fd)
        swaption_value, black_implied_vola = lognormalimpliedvola(
            swaption, swap_pricer, lambda_avg, beta_avg)
        black_implied_vola_ls.append(black_implied_vola)
        print(swaption_value_fd_ls)
        moneyness_ls.append(inp_data["moneyness"])

    fig = plt.figure()
    plt.plot(moneyness_ls, market_implied_vola_ls, "g-x", label="Market data")
    plt.plot(moneyness_ls,
             black_implied_vola_ls,
             "r-x",
             label="Approximate solution")
    plt.plot(moneyness_ls,
             swaption_value_fd_ls,
             "b-x",
             label="Finite Difference repricing")
    plt.legend()

    return fig
示例#4
0
    def minimize_func(x):
        print("run minimize")
        lambda_param = x[0]
        beta_param = x[1]
        sigma_r = LinearLocalVolatility.from_const(int(swap.TN), lambda_param,
                                                   curve_rate, beta_param)

        xy_calculator = XYApproximator(grid_size, swap_pricer, sigma_r, swap)
        integration_approx = DiscreteParameterAveraging(
            grid_size, swap_pricer, sigma_r, swap, xy_calculator)
        lambda_avg, beta_avg = integration_approx.calculate_average_param()

        error = 0

        for row_id, inp_data in market_data.iterrows():
            expiry = inp_data["Expiry"]
            coupon = inp_data["moneyness"] + atm_swap_price
            swaption = Swaption(expiry, coupon, swap)
            market_implied_vola = inp_data["implied black vola"]
            swaption_value, black_implied_vola = lognormalimpliedvola(
                swaption, swap_pricer, lambda_avg, beta_avg)
            error += (black_implied_vola - market_implied_vola)**2

        return error
def calculate_swaption_prices():

    output_path = os.path.join(output_data_raw_approx, date_timestamp,
                               "result")
    output_file = os.path.join(output_path, "swaption_approximation.hdf")
    file_path = get_nonexistant_path(output_file)

    grid_size = 2**12 + 1
    swap_freq = 0.5
    curve_rate = 0.06

    initial_curve = LiborCurve.from_constant_rate(curve_rate)

    kappa_grid = [0.03]

    vola_parameters = [(i, curve_rate, j) for i in [0.6, 0.8]
                       for j in [0.05, 0.2]]
    vola_grid_df = pd.DataFrame(vola_parameters,
                                columns=["lambda", "alpha", "beta"])
    vola_grid_df = vola_grid_df.iloc[[0, 3]]

    #coupon_grid = [0, +0.0025, -0.0025, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015, 0.02, -0.02, 0.025, -0.025]

    XYApproximator = PitergargDiscreteXY
    XYApproximator = RungeKuttaApproxXY

    swap_ls = [(20, 21)]
    coupon_grid = [0, +0.005, -0.005, +0.01, -0.01, 0.015, -0.015]
    #vola_grid_df = vola_grid_df.iloc[9:10]

    for swap_T0_TN in swap_ls:
        print(swap_T0_TN)
        T0, TN = swap_T0_TN
        for kappa in kappa_grid:
            swap_pricer = SwapPricer(initial_curve, kappa)
            swap = Swap(T0, TN, 1 / 2)
            for index, vola_grid_row in vola_grid_df.iterrows():
                sigma_r = LinearLocalVolatility.from_const(
                    swap.TN, vola_grid_row["lambda"], vola_grid_row["alpha"],
                    vola_grid_row["beta"])

                swap = Swap(T0, TN, swap_freq)

                atm_swap_price = swap_pricer.price(swap, 0, 0, 0)
                strike_grid = [
                    atm_swap_price + coupon for coupon in coupon_grid
                ]
                #strike_grid = [0.01, 0.015, 0.02, 0.025, 0.03]

                xy_calculator = XYApproximator(grid_size, swap_pricer, sigma_r,
                                               swap)
                integration_approx = DiscreteParameterAveraging(
                    grid_size, swap_pricer, sigma_r, swap, xy_calculator)
                lambda_avg, beta_avg = integration_approx.calculate_average_param(
                )

                for strike in strike_grid:
                    swaption = Swaption(T0, strike, swap)
                    swaption_value, black_implied_vola = lognormalimpliedvola(
                        swaption, swap_pricer, lambda_avg, beta_avg)

                    output_data = pd.DataFrame({
                        'expiry': [T0],
                        "maturity": [TN],
                        "atm strike":
                        atm_swap_price,
                        "swaption_value": [swaption_value],
                        "kappa": [kappa],
                        "vola_lambda": [vola_grid_row["lambda"]],
                        "vola_alpha": [vola_grid_row["alpha"]],
                        "vola_beta": [vola_grid_row['beta']],
                        "strike": [strike],
                        'moneyness': [strike - atm_swap_price],
                        "curve_rate": [curve_rate],
                        "implied_black_vola": [black_implied_vola],
                        'integration_grid': [grid_size],
                        "xy_approximation": [str(xy_calculator)]
                    })
                    try:
                        all_output_data = pd.read_hdf(file_path, key="data")
                    except:
                        all_output_data = pd.DataFrame()
                    all_output_data = pd.concat([all_output_data, output_data])
                    all_output_data.to_hdf(file_path, key="data", complevel=9)