示例#1
0
    def get_layer_outputs(layer_name, input_path):
        is_grayscale = (input_channels == 1)
        input_img = load_img(join(abspath(input_folder), input_path),
                             single_input_shape,
                             grayscale=is_grayscale)

        output_generator = get_outputs_generator(model, layer_name)

        with get_evaluation_context():

            layer_outputs = output_generator(input_img)[0]
            output_files = []

            if keras.backend.backend() == 'theano':
                #correct for channel location difference betwen TF and Theano
                layer_outputs = np.rollaxis(layer_outputs, 0, 3)
            for z in range(0, layer_outputs.shape[2]):
                img = layer_outputs[:, :, z]
                deprocessed = deprocess_image(img)
                filename = get_output_name(temp_folder, layer_name, input_path,
                                           z)
                output_files.append(relpath(filename, abspath(temp_folder)))
                imsave(filename, deprocessed)

        return jsonify(output_files)
示例#2
0
def save_layer_img(layer_outputs, layer_name, idx, temp_folder, input_path):
    filename = get_output_filename(layer_name, idx, temp_folder, input_path)
    imsave(filename, deprocess_image(layer_outputs))
    return relpath(filename, abspath(temp_folder))
示例#3
0
def save_layer_img(layer_outputs, layer_name, idx, temp_folder, input_path):
    filename = get_output_filename(layer_name, idx, temp_folder, input_path)
    imageio.imwrite(filename, (deprocess_image(layer_outputs)*255).astype(np.uint8))
    return relpath(filename, abspath(temp_folder))