示例#1
0
    def test_ComplexSuperApply(self):
        """
        Superoperator: Efficient numerics and reference return same result,
        acting on non-composite system
        """
        rho_list = list(map(rand_dm, [2, 3, 2, 3, 2]))
        rho_input = tensor(rho_list)
        superop = kraus_to_super(rand_kraus_map(3))

        analytic_result = rho_list
        analytic_result[1] = Qobj(vec2mat(superop.data.todense() *
                                  mat2vec(analytic_result[1].data.todense())))
        analytic_result[3] = Qobj(vec2mat(superop.data.todense() *
                                  mat2vec(analytic_result[3].data.todense())))
        analytic_result = tensor(analytic_result)

        naive_result = subsystem_apply(rho_input, superop,
                                       [False, True, False, True, False],
                                       reference=True)
        naive_diff = (analytic_result - naive_result).data.todense()
        assert_(norm(naive_diff) < 1e-12)

        efficient_result = subsystem_apply(rho_input, superop,
                                           [False, True, False, True, False])
        efficient_diff = (efficient_result - analytic_result).data.todense()
        assert_(norm(efficient_diff) < 1e-12)
示例#2
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        print('Starting SVD solver...')

    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T

    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        return rhoss_list

    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
示例#3
0
    def test_ComplexSuperApply(self):
        """
        Superoperator: Efficient numerics and reference return same result,
        acting on non-composite system
        """
        tol = 1e-10
        rho_list = list(map(rand_dm, [2, 3, 2, 3, 2]))
        rho_input = tensor(rho_list)
        superop = kraus_to_super(rand_kraus_map(3))

        analytic_result = rho_list
        analytic_result[1] = Qobj(
            vec2mat(superop.full() @ mat2vec(analytic_result[1].full())))
        analytic_result[3] = Qobj(
            vec2mat(superop.full() @ mat2vec(analytic_result[3].full())))
        analytic_result = tensor(analytic_result)

        naive_result = subsystem_apply(rho_input,
                                       superop,
                                       [False, True, False, True, False],
                                       reference=True)
        naive_diff = (analytic_result - naive_result).full()
        naive_diff_norm = norm(naive_diff)
        assert_(naive_diff_norm < tol,
                msg="ComplexSuper: naive_diff_norm {} "
                "is beyond tolerance {}".format(naive_diff_norm, tol))

        efficient_result = subsystem_apply(rho_input, superop,
                                           [False, True, False, True, False])
        efficient_diff = (efficient_result - analytic_result).full()
        efficient_diff_norm = norm(efficient_diff)
        assert_(efficient_diff_norm < tol,
                msg="ComplexSuper: efficient_diff_norm {} "
                "is beyond tolerance {}".format(efficient_diff_norm, tol))
示例#4
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    ss_args['info'].pop('weight', None)
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        logger.debug('Starting SVD solver.')
    _svd_start = time.time()
    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    _svd_end = time.time()
    ss_args['info']['solution_time'] = _svd_end - _svd_start
    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        if ss_args['return_info']:
            return rhoss_list, ss_args['info']
        else:
            if ss_args['return_info']:
                return rhoss_list, ss_args['info']
            else:
                return rhoss_list
    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
示例#5
0
    def test_ComplexSuperApply(self):
        """
        Superoperator: Efficient numerics and reference return same result,
        acting on non-composite system
        """
        rho_list = list(map(rand_dm, [2, 3, 2, 3, 2]))
        rho_input = tensor(rho_list)
        superop = kraus_to_super(rand_kraus_map(3))

        analytic_result = rho_list
        analytic_result[1] = Qobj(
            vec2mat(superop.data.todense() *
                    mat2vec(analytic_result[1].data.todense())))
        analytic_result[3] = Qobj(
            vec2mat(superop.data.todense() *
                    mat2vec(analytic_result[3].data.todense())))
        analytic_result = tensor(analytic_result)

        naive_result = subsystem_apply(rho_input,
                                       superop,
                                       [False, True, False, True, False],
                                       reference=True)
        naive_diff = (analytic_result - naive_result).data.todense()
        assert_(norm(naive_diff) < 1e-12)

        efficient_result = subsystem_apply(rho_input, superop,
                                           [False, True, False, True, False])
        efficient_diff = (efficient_result - analytic_result).data.todense()
        assert_(norm(efficient_diff) < 1e-12)
示例#6
0
def _steadystate_svd_dense(L, ss_args):
    """
    Find the steady state(s) of an open quantum system by solving for the
    nullspace of the Liouvillian.
    """
    ss_args['info'].pop('weight', None)
    atol = 1e-12
    rtol = 1e-12
    if settings.debug:
        logger.debug('Starting SVD solver.')
    _svd_start = time.time()
    u, s, vh = svd(L.full(), full_matrices=False)
    tol = max(atol, rtol * s[0])
    nnz = (s >= tol).sum()
    ns = vh[nnz:].conj().T
    _svd_end = time.time()
    ss_args['info']['solution_time'] = _svd_end-_svd_start
    if ss_args['all_states']:
        rhoss_list = []
        for n in range(ns.shape[1]):
            rhoss = Qobj(vec2mat(ns[:, n]), dims=L.dims[0])
            rhoss_list.append(rhoss / rhoss.tr())
        if ss_args['return_info']:
            return rhoss_list, ss_args['info']
        else:
            if ss_args['return_info']:
                return rhoss_list, ss_args['info']
            else:
                return rhoss_list
    else:
        rhoss = Qobj(vec2mat(ns[:, 0]), dims=L.dims[0])
        return rhoss / rhoss.tr()
    def gradient_CFI(self, M):
        '''
        Input:
        1) M:
            TYPE: list of Qobj (matrix)
            DESCRIPTION: merasurement. It takes the form [M1,M2,...], where M1, M2 ...
            are matrices and satisfies M1+M2+... = identity matrix.
        Output:
        1) updated values of self.control_coefficients.
        Notice: To run this function, the function 'propagation_single()' has to run first.
        '''
        num = len(self.times)
        dH0 = 1.j * Qobj(liouvillian(self.Hamiltonian_derivative[0]).full())

        dim = self.freeHamiltonian.dims[0][0]
        dt = self.times[1] - self.times[0]
        Hc_coeff = self.control_coefficients
        D = self.propagator

        rhoT_vec = self.rho[num-1]
        drhoT_vec = self.rho_derivative[num-1]
        rhoT = Qobj(vec2mat(rhoT_vec.full()))
        drhoT = Qobj(vec2mat(drhoT_vec.full()))

        L1 = Qobj(np.array([[0. for i in range(0,dim)] for k in range(0,dim)]))
        L2 = Qobj(np.array([[0. for i in range(0,dim)] for k in range(0,dim)]))
        for mi in range(0, len(M)):
            ptemp = (rhoT * M[mi]).tr()
            dptemp = (drhoT * M[mi]).tr()
            if ptemp != 0:
                L1 += (dptemp / ptemp) * M[mi]
                L2 += ((dptemp / ptemp)**2) * M[mi]

        for ki in range(0, len(self.control_Hamiltonian)):
            Hk = 1.j * Qobj(liouvillian(self.control_Hamiltonian[ki]).full())
            Hc_ki = Hc_coeff[ki]
            for ti in range(0,num):
                Mj1 = 1.j * D[ti+1][num-1] * Hk * self.rho[ti]

                Mj2 = Qobj(np.zeros((dim*dim, 1)))
                for ri in range(0, ti+1):
                    Mj2 += D[ti+1][num-1] * Hk * D[ri+1][ti] * dH0 * self.rho[ri]

                Mj3 = Qobj(np.zeros((dim*dim, 1)))
                for ri in range(ti+1, num):
                    Mj3 += D[ri+1][num-1] * dH0 * D[ti+1][ri] * Hk * self.rho[ti]
                Mj1mat = Qobj(vec2mat(Mj1.full()))
                Mj2mat = Qobj(vec2mat(Mj2.full()))
                Mj3mat = Qobj(vec2mat(Mj3.full()))

                term1 = dt * (L2 * Mj1mat).tr()
                term2 = -2 * (dt * dt) * (L1 * (Mj2mat+Mj3mat)).tr()
                delta = np.real(term1 + term2)

                Hc_ki[ti] += Hc_ki[ti] + self.epsilon * delta

            Hc_coeff[ki] = Hc_ki

        self.control_coefficients = Hc_coeff
示例#8
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    if settings.debug:
        print('Starting Eigen solver...')

    dims = L.dims[0]
    shape = prod(dims[0])
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            print('Original bandwidth:', old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            print('RCM bandwidth:', rcm_band)
            print('Bandwidth reduction factor:', round(old_band/rcm_band, 1))

    eigval, eigvec = eigs(L, k=1, sigma=1e-15, tol=ss_args['tol'],
                          which='LM', maxiter=ss_args['maxiter'])

    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm,)]

    data = vec2mat(eigvec)
    data = 0.5 * (data + data.conj().T)
    out = Qobj(data, dims=dims, isherm=True)
    return out/out.tr()
示例#9
0
def qpt(U, op_basis_list):
    """
    Calculate the quantum process tomography chi matrix for a given 
    (possibly nonunitary) transformation matrix U, which transforms a 
    density matrix in vector form according to:

        vec(rho) = U * vec(rho0)

        or

        rho = vec2mat(U * mat2vec(rho0))

    U can be calculated for an open quantum system using the QuTiP propagator
    function.
    """

    E_ops = []
    # loop over all index permutations
    for inds in index_permutations([len(op_list) for op_list in op_basis_list]):
        # loop over all composite systems
        E_op_list = [op_basis_list[k][inds[k]] for k in range(len(op_basis_list))]
        E_ops.append(tensor(E_op_list))

    EE_ops = [spre(E1) * spost(E2.dag()) for E1 in E_ops for E2 in E_ops]

    M = hstack([mat2vec(EE.full()) for EE in EE_ops])

    Uvec = mat2vec(U.full())

    chi_vec = la.solve(M, Uvec)

    return vec2mat(chi_vec)
示例#10
0
def _smepdpsolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t,
                                   c_ops, e_ops, data):
    """ 
    Internal function.
    """
    states_list = []

    rho_t = np.copy(rho_t)

    prng = RandomState() # todo: seed it
    r_jump, r_op = prng.rand(2)

    jump_times = []
    jump_op_idx = []

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                data.expect[e_idx, t_idx] += expect_rho_vec(e, rho_t)
        else:
            states_list.append(Qobj(vec2mat(rho_t)))

        for j in range(N_substeps):

            if expect_rho_vec(d_op, sigma_t) < r_jump:
                # jump occurs
                p = np.array([rho_expect(c.dag() * c, rho_t) for c in c_ops])
                p = np.cumsum(p / np.sum(p))
                n = np.where(p >= r_op)[0][0]

                # apply jump
                rho_t = c_ops[n] * psi_t * c_ops[n].dag()
                rho_t /= rho_expect(c.dag() * c, rho_t)
                rho_t = np.copy(rho_t)

                # store info about jump
                jump_times.append(tlist[t_idx] + dt * j)
                jump_op_idx.append(n)

                # get new random numbers for next jump
                r_jump, r_op = prng.rand(2)

            # deterministic evolution wihtout correction for norm decay
            dsigma_t = spmv(L.data.data,
                            L.data.indices,
                            L.data.indptr, sigma_t) * dt

            # deterministic evolution with correction for norm decay
            drho_t = spmv(L.data.data,
                          L.data.indices,
                          L.data.indptr, rho_t) * dt

            rho_t += drho_t

            # increment density matrices
            sigma_t += dsigma_t
            rho_t += drho_t

    return states_list, jump_times, jump_op_idx
示例#11
0
def _steadystate_direct_dense(L, ss_args):
    """
    Direct solver that use numpy dense matrices. Suitable for
    small system, with a few states.
    """
    if settings.debug:
        logger.debug('Starting direct dense solver.')

    dims = L.dims[0]
    n = int(np.sqrt(L.shape[0]))
    b = np.zeros(n**2)
    b[0] = ss_args['weight']

    L = L.data.todense()
    L[0, :] = np.diag(ss_args['weight'] * np.ones(n)).reshape((1, n**2))
    _dense_start = time.time()
    v = np.linalg.solve(L, b)
    _dense_end = time.time()
    ss_args['info']['solution_time'] = _dense_end - _dense_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(b - L * v, np.inf)
    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)

    return Qobj(data, dims=dims, isherm=True)
示例#12
0
文件: propagator.py 项目: tmng/qutip
def propagator_steadystate(U):
    """Find the steady state for successive applications of the propagator
    :math:`U`.

    Parameters
    ----------
    U : qobj
        Operator representing the propagator.

    Returns
    -------
    a : qobj
        Instance representing the steady-state density matrix.

    """

    evals, evecs = la.eig(U.full())

    ev_min, ev_idx = _get_min_and_index(abs(evals - 1.0))

    evecs = evecs.T
    rho = Qobj(vec2mat(evecs[ev_idx]), dims=U.dims[0])
    rho = rho * (1.0 / rho.tr())
    rho = 0.5 * (rho + rho.dag())  # make sure rho is herm
    return rho
示例#13
0
def _subsystem_apply_reference(state, channel, mask):
    if isket(state):
        state = ket2dm(state)

    if isoper(channel):
        full_oper = tensor([channel if mask[j]
                            else qeye(state.dims[0][j])
                            for j in range(len(state.dims[0]))])
        return full_oper * state * full_oper.dag()
    else:
        # Go to Choi, then Kraus
        # chan_mat = array(channel.data.todense())
        choi_matrix = super_to_choi(channel)
        vals, vecs = eig(choi_matrix.full())
        vecs = list(map(array, zip(*vecs)))
        kraus_list = [sqrt(vals[j]) * vec2mat(vecs[j])
                      for j in range(len(vals))]
        # Kraus operators to be padded with identities:
        k_qubit_kraus_list = product(kraus_list, repeat=sum(mask))
        rho_out = Qobj(inpt=zeros(state.shape), dims=state.dims)
        for operator_iter in k_qubit_kraus_list:
            operator_iter = iter(operator_iter)
            op_iter_list = [next(operator_iter).conj().T if mask[j]
                            else qeye(state.dims[0][j])
                            for j in range(len(state.dims[0]))]
            full_oper = tensor(list(map(Qobj, op_iter_list)))
            rho_out = rho_out + full_oper * state * full_oper.dag()
        return Qobj(rho_out)
示例#14
0
def _steadystate_direct_dense(L, ss_args):
    """
    Direct solver that use numpy dense matrices. Suitable for
    small system, with a few states.
    """
    if settings.debug:
        logger.debug('Starting direct dense solver.')

    dims = L.dims[0]
    n = int(np.sqrt(L.shape[0]))
    b = np.zeros(n ** 2)
    b[0] = ss_args['weight']

    L = L.data.todense()
    L[0, :] = np.diag(ss_args['weight']*np.ones(n)).reshape((1, n ** 2))
    _dense_start = time.time()
    v = np.linalg.solve(L, b)
    _dense_end = time.time()
    ss_args['info']['solution_time'] = _dense_end-_dense_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(b - L*v, np.inf)
    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)

    return Qobj(data, dims=dims, isherm=True)
示例#15
0
文件: stochastic.py 项目: silky/qutip
def _smepdpsolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t,
                                   c_ops, e_ops, data):
    """ 
    Internal function.
    """
    states_list = []

    rho_t = np.copy(rho_t)

    prng = RandomState() # todo: seed it
    r_jump, r_op = prng.rand(2)

    jump_times = []
    jump_op_idx = []

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                data.expect[e_idx, t_idx] += expect_rho_vec(e, rho_t)
        else:
            states_list.append(Qobj(vec2mat(rho_t)))

        for j in range(N_substeps):

            if expect_rho_vec(d_op, sigma_t) < r_jump:
                # jump occurs
                p = np.array([rho_expect(c.dag() * c, rho_t) for c in c_ops])
                p = np.cumsum(p / np.sum(p))
                n = np.where(p >= r_op)[0][0]

                # apply jump
                rho_t = c_ops[n] * psi_t * c_ops[n].dag()
                rho_t /= rho_expect(c.dag() * c, rho_t)
                rho_t = np.copy(rho_t)

                # store info about jump
                jump_times.append(tlist[t_idx] + dt * j)
                jump_op_idx.append(n)

                # get new random numbers for next jump
                r_jump, r_op = prng.rand(2)

            # deterministic evolution wihtout correction for norm decay
            dsigma_t = spmv(L.data.data,
                            L.data.indices,
                            L.data.indptr, sigma_t) * dt

            # deterministic evolution with correction for norm decay
            drho_t = spmv(L.data.data,
                          L.data.indices,
                          L.data.indptr, rho_t) * dt

            rho_t += drho_t

            # increment density matrices
            sigma_t += dsigma_t
            rho_t += drho_t

    return states_list, jump_times, jump_op_idx
示例#16
0
def _subsystem_apply_reference(state, channel, mask):
    if isket(state):
        state = ket2dm(state)

    if isoper(channel):
        full_oper = tensor([
            channel if mask[j] else qeye(state.dims[0][j])
            for j in range(len(state.dims[0]))
        ])
        return full_oper * state * full_oper.dag()
    else:
        # Go to Choi, then Kraus
        # chan_mat = array(channel.data.todense())
        choi_matrix = super_to_choi(channel)
        vals, vecs = eig(choi_matrix.full())
        vecs = list(map(array, zip(*vecs)))
        kraus_list = [
            sqrt(vals[j]) * vec2mat(vecs[j]) for j in range(len(vals))
        ]
        # Kraus operators to be padded with identities:
        k_qubit_kraus_list = product(kraus_list, repeat=sum(mask))
        rho_out = Qobj(inpt=zeros(state.shape), dims=state.dims)
        for operator_iter in k_qubit_kraus_list:
            operator_iter = iter(operator_iter)
            op_iter_list = [
                next(operator_iter) if mask[j] else qeye(state.dims[0][j])
                for j in range(len(state.dims[0]))
            ]
            full_oper = tensor(list(map(Qobj, op_iter_list)))
            rho_out = rho_out + full_oper * state * full_oper.dag()
        return Qobj(rho_out)
示例#17
0
文件: propagator.py 项目: yipk2/qutip
def propagator_steadystate(U):
    """Find the steady state for successive applications of the propagator
    :math:`U`.

    Parameters
    ----------
    U : qobj
        Operator representing the propagator.

    Returns
    -------
    a : qobj
        Instance representing the steady-state density matrix.

    """

    evals, evecs = la.eig(U.full())

    ev_min, ev_idx = _get_min_and_index(abs(evals - 1.0))

    evecs = evecs.T
    rho = Qobj(vec2mat(evecs[ev_idx]), dims=U.dims[0])
    rho = rho * (1.0 / rho.tr())
    rho = 0.5 * (rho + rho.dag())  # make sure rho is herm
    return rho
示例#18
0
def _smesolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t,
                                A_ops, e_ops, data, rhs, d1, d2):
    """
    Internal function. See smesolve.
    """

    dW = np.sqrt(dt) * scipy.randn(len(A_ops), N_store, N_substeps)

    states_list = []

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                # XXX: need to keep hilbert space structure
                data.expect[e_idx, t_idx] += expect(e, Qobj(vec2mat(rho_t)))
        else:
            states_list.append(Qobj(rho_t))  # dito

        for j in range(N_substeps):

            drho_t = spmv(
                L.data.data, L.data.indices, L.data.indptr, rho_t) * dt

            for a_idx, A in enumerate(A_ops):

                drho_t += rhs(
                    L.data, rho_t, A, dt, dW[a_idx, t_idx, j], d1, d2)

            rho_t += drho_t

    return states_list
示例#19
0
def np_to_kraus(U):
    from scipy.linalg import eig
    from qutip.superoperator import vec2mat

    vals, vecs = eig(U)
    vecs = [np.array(_) for _ in zip(*vecs)]
    return [np.sqrt(val) * vec2mat(vec) for val, vec in zip(vals, vecs)]
示例#20
0
def _smesolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t, A_ops, e_ops, data, rhs, d1, d2):
    """
    Internal function. See smesolve.
    """

    dW = np.sqrt(dt) * scipy.randn(len(A_ops), N_store, N_substeps)

    states_list = []

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                # XXX: need to keep hilbert space structure
                data.expect[e_idx, t_idx] += expect(e, Qobj(vec2mat(rho_t)))
        else:
            states_list.append(Qobj(rho_t))  # dito

        for j in range(N_substeps):

            drho_t = spmv(L.data.data, L.data.indices, L.data.indptr, rho_t) * dt

            for a_idx, A in enumerate(A_ops):

                drho_t += rhs(L.data, rho_t, A, dt, dW[a_idx, t_idx, j], d1, d2)

            rho_t += drho_t

    return states_list
示例#21
0
def qpt(U, op_basis_list):
    """
    Calculate the quantum process tomography chi matrix for a given 
    (possibly nonunitary) transformation matrix U, which transforms a 
    density matrix in vector form according to:

        vec(rho) = U * vec(rho0)

        or

        rho = vec2mat(U * mat2vec(rho0))

    U can be calculated for an open quantum system using the QuTiP propagator
    function.
    """

    E_ops = []
    # loop over all index permutations
    for inds in index_permutations([len(op_list) for op_list in op_basis_list]):
        # loop over all composite systems
        E_op_list = [op_basis_list[k][inds[k]] for k in range(len(op_basis_list))]
        E_ops.append(tensor(E_op_list))

    EE_ops = [spre(E1) * spost(E2.dag()) for E1 in E_ops for E2 in E_ops]

    M = hstack([mat2vec(EE.full()) for EE in EE_ops])

    Uvec = mat2vec(U.full())

    chi_vec = la.solve(M, Uvec)

    return vec2mat(chi_vec)
示例#22
0
def _steadystate_direct_sparse(L, ss_args):
    """
    Direct solver that uses scipy sparse matrices
    """
    if settings.debug:
        print('Starting direct solver...')

    dims = L.dims[0]
    weight = np.abs(L.data.data.max())
    n = prod(L.dims[0][0])
    b = np.zeros((n ** 2, 1), dtype=complex)
    b[0, 0] = weight
    L = L.data + sp.csr_matrix(
        (weight*np.ones(n), (np.zeros(n), [nn * (n + 1) for nn in range(n)])),
        shape=(n ** 2, n ** 2))
    L.sort_indices()
    use_solver(assumeSortedIndices=True, useUmfpack=ss_args['use_umfpack'])

    if ss_args['use_rcm']:
        perm = symrcm(L)
        L = sp_permute(L, perm, perm)
        b = b[np.ix_(perm,)]

    v = spsolve(L, b)
    if ss_args['use_rcm']:
        rev_perm = np.argsort(perm)
        v = v[np.ix_(rev_perm,)]

    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)
    return Qobj(data, dims=dims, isherm=True)
示例#23
0
    def gradient_QFI(self):
        '''
          Output:
          1) updated values of self.control_coefficients
          Notice: To run this function, the function 'propagation_single()' has to run first.
          '''
        num = len(self.times)
        dH0 = 1.j * Qobj(liouvillian(self.Hamiltonian_derivative[0]).full())
        rhomat_final = Qobj(vec2mat(self.rho[num - 1].full()))
        drhomat_final = Qobj(vec2mat(self.rho_derivative[num - 1].full()))
        SLD_final = CR.SLD(rhomat_final, drhomat_final)

        dim = self.freeHamiltonian.dims[0][0]
        dt = self.times[1] - self.times[0]
        Hc_coeff = self.control_coefficients
        D = self.propagator

        for ki in range(0, len(self.control_Hamiltonian)):
            Hk = 1.j * Qobj(liouvillian(self.control_Hamiltonian[ki]).full())
            Hc_ki = Hc_coeff[ki]
            for ti in range(0, num):
                Mj1 = 1.j * D[ti + 1][num - 1] * Hk * self.rho[ti]

                Mj2 = Qobj(np.zeros((dim * dim, 1)))
                for ri in range(0, ti + 1):
                    Mj2 += D[ti + 1][num -
                                     1] * Hk * D[ri +
                                                 1][ti] * dH0 * self.rho[ri]

                Mj3 = Qobj(np.zeros((dim * dim, 1)))
                for ri in range(ti + 1, num):
                    Mj3 += D[ri + 1][num -
                                     1] * dH0 * D[ti +
                                                  1][ri] * Hk * self.rho[ti]
                Mj1mat = Qobj(vec2mat(Mj1.full()))
                Mj2mat = Qobj(vec2mat(Mj2.full()))
                Mj3mat = Qobj(vec2mat(Mj3.full()))

                term1 = dt * (SLD_final * SLD_final * Mj1mat).tr()
                term2 = -2 * (dt * dt) * (SLD_final * (Mj2mat + Mj3mat)).tr()
                delta = np.real(term1 + term2)
                Hc_ki[ti] += self.epsilon * delta
            Hc_coeff[ki] = Hc_ki

        self.control_coefficients = Hc_coeff
示例#24
0
def choi_to_kraus(q_oper):
    """
    Takes a Choi matrix and returns a list of Kraus operators.
    TODO: Create a new class structure for quantum channels, perhaps as a
    strict sub-class of Qobj.
    """
    vals, vecs = eig(q_oper.data.todense())
    vecs = [array(_) for _ in zip(*vecs)]
    return [Qobj(inpt=sqrt(val)*vec2mat(vec)) for val, vec in zip(vals, vecs)]
示例#25
0
    def __call__(self,
                 H,
                 state,
                 dt,
                 c_ops=None,
                 backwards=False,
                 initialize=False):
        """Evaluation of a single propagation step

        Args:
            H (list): A Liouvillian superoperator in qutip's nested-list
                format, with a scalar value in the place of a time-dependency.
                For example, ``[L0, [L1, u]]`` for a drift Liouvillian ``L0``,
                a control Liouvillian ``H1``, and a scalar value ``u`` that is
                a time-dependent control evaluated for a particular point in
                time. If `initialize` is False, only the control values are
                taken into account; any operators are assumed to be identical
                to the internally cached values of `H` during initialization.
            state (qutip.Qobj): The density matrix to propagate. The passed
                value is ignored unless `initialize` is given as True.
                Otherwise, it is assumed that `state` matches the (internally
                stored) state that was the result from the previous propagation
                step.
            dt (float): The time step over which to propagate
            c_ops (list or None): An empty list, or None. Since this propagator
                assumes a full Liouvillian, it cannot be combined with Lindblad
                operators.
            backwards (bool): Whether the propagation is forward in time or
                backward in time. Since the equation of motion for a
                Liouvillian and conjugate Liouvillian is the same, this
                parameter has no effect. Instead, for the backward propagation,
                the conjugate Liouvillian must be passed for `L`.
            initialize (bool): Whether to (re-)initialize for a new
                propagation. This caches `H` (except for the control values)
                and `state` internally.
        """
        # H is really an L, but it's a very bad idea for a subclass not to
        # follow the interface of the parent (including argument names).
        # Internally, however, we'll use L instead of H
        if initialize or self.reentrant:
            self._initialize(H, state, dt, c_ops, backwards)
        else:
            if self.reentrant:
                self._initialize_integrator(self._y)
            # only update the control values
            for i in self._control_indices:
                self._L_list[i][1] = H[i][1]
        self._t += dt
        self._r.integrate(self._t)
        self._y = self._r.y
        return qutip.Qobj(
            dense2D_to_fastcsr_fmode(vec2mat(self._y), state.shape[0],
                                     state.shape[1]),
            dims=state.dims,
            isherm=True,
        )
示例#26
0
文件: stochastic.py 项目: coroa/qutip
def _smesolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t,
                                A_ops, e_ops, m_ops, data, rhs, d1, d2, d2_len,
                                homogeneous, distribution, args,
                                store_measurement=False, 
                                store_states=False, noise=None):
    """
    Internal function. See smesolve.
    """

    if noise is None:
        if homogeneous:
            if distribution == 'normal':
                dW = np.sqrt(dt) * scipy.randn(len(A_ops), N_store, N_substeps, d2_len)    
            else:
                raise TypeError('Unsupported increment distribution for homogeneous process.')
        else:
            if distribution != 'poisson':
                raise TypeError('Unsupported increment distribution for inhomogeneous process.')

            dW = np.zeros((len(A_ops), N_store, N_substeps, d2_len))
    else:
        dW = noise

    states_list = []
    measurements = np.zeros((len(tlist), len(m_ops)), dtype=complex)

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                s = expect_rho_vec(e.data, rho_t)
                data.expect[e_idx, t_idx] += s
                data.ss[e_idx, t_idx] += s ** 2 
        
        if store_states or not e_ops:
            # XXX: need to keep hilbert space structure
            states_list.append(Qobj(vec2mat(rho_t)))

        rho_prev = np.copy(rho_t)

        for j in range(N_substeps):

            if noise is None and not homogeneous:
                for a_idx, A in enumerate(A_ops):
                    dw_expect = np.real(cy_expect_rho_vec(A[4], rho_t)) * dt
                    dW[a_idx, t_idx, j, :] = np.random.poisson(dw_expect, d2_len)

            rho_t = rhs(L.data, rho_t, t + dt * j,
                        A_ops, dt, dW[:, t_idx, j, :], d1, d2, args)

        if store_measurement:
            for m_idx, m in enumerate(m_ops):
                # TODO: allow using more than one increment
                measurements[t_idx, m_idx] = cy_expect_rho_vec(m.data, rho_prev) * dt * N_substeps + dW[m_idx, t_idx, :, 0].sum()

    return states_list, dW, measurements
示例#27
0
def _smesolve_single_trajectory(L, dt, tlist, N_store, N_substeps, rho_t,
                                A_ops, e_ops, data, rhs, d1, d2, d2_len,
                                homogeneous, distribution, args,
                                store_measurement=False, 
                                store_states=False, noise=None):
    """
    Internal function. See smesolve.
    """

    if noise is None:
        if homogeneous:
            if distribution == 'normal':
                dW = np.sqrt(dt) * scipy.randn(len(A_ops), N_store, N_substeps, d2_len)    
            else:
                raise TypeError('Unsupported increment distribution for homogeneous process.')
        else:
            if distribution != 'poisson':
                raise TypeError('Unsupported increment distribution for inhomogeneous process.')

            dW = np.zeros((len(A_ops), N_store, N_substeps, d2_len))
    else:
        dW = noise

    states_list = []
    measurements = np.zeros((len(tlist), len(A_ops)), dtype=complex)

    for t_idx, t in enumerate(tlist):

        if e_ops:
            for e_idx, e in enumerate(e_ops):
                s = expect_rho_vec(e.data, rho_t)
                data.expect[e_idx, t_idx] += s
                data.ss[e_idx, t_idx] += s ** 2 
        
        if store_states or not e_ops:
            # XXX: need to keep hilbert space structure
            states_list.append(Qobj(vec2mat(rho_t)))

        rho_prev = np.copy(rho_t)

        for j in range(N_substeps):

            if noise is None and not homogeneous:
                for a_idx, A in enumerate(A_ops):
                    dw_expect = np.real(cy_expect_rho_vec(A[4], rho_t)) * dt
                    dW[a_idx, t_idx, j, :] = np.random.poisson(dw_expect, d2_len)

            rho_t = rhs(L.data, rho_t, t + dt * j,
                        A_ops, dt, dW[:, t_idx, j, :], d1, d2, args)

        if store_measurement:
            for a_idx, A in enumerate(A_ops):
                measurements[t_idx, a_idx] = cy_expect_rho_vec(A[0], rho_prev) * dt * N_substeps + dW[a_idx, t_idx, :, 0].sum()

    return states_list, dW, measurements
示例#28
0
def choi_to_kraus(q_oper):
    """
    Takes a Choi matrix and returns a list of Kraus operators.
    TODO: Create a new class structure for quantum channels, perhaps as a
    strict sub-class of Qobj.
    """
    vals, vecs = eig(q_oper.data.todense())
    vecs = [array(_) for _ in zip(*vecs)]
    return [
        Qobj(inpt=sqrt(val) * vec2mat(vec)) for val, vec in zip(vals, vecs)
    ]
示例#29
0
def choi_to_kraus(q_oper):
    """
    Takes a Choi matrix and returns a list of Kraus operators.
    # TODO Create a new class structure for quantum channels, perhaps as a
    strict sub-class of Qobj.
    """
    vals, vecs = eig(q_oper.data.todense())
    vecs = list(map(array, zip(*vecs)))
    return list(
        map(lambda x: Qobj(inpt=x),
            [sqrt(vals[j]) * vec2mat(vecs[j]) for j in range(len(vals))]))
示例#30
0
def choi_to_kraus(q_oper):
    """
    Takes a Choi matrix and returns a list of Kraus operators.
    TODO: Create a new class structure for quantum channels, perhaps as a
    strict sub-class of Qobj.
    """
    vals, vecs = eig(q_oper.data.todense())
    vecs = list(map(array, zip(*vecs)))
    return list(map(lambda x: Qobj(inpt=x),
                    [sqrt(vals[j]) * vec2mat(vecs[j])
                     for j in range(len(vals))]))
示例#31
0
def choi_to_kraus(q_oper, tol=1e-9):
    """
    Takes a Choi matrix and returns a list of Kraus operators.
    TODO: Create a new class structure for quantum channels, perhaps as a
    strict sub-class of Qobj.
    """
    vals, vecs = eig(q_oper.data.todense())
    vecs = [array(_) for _ in zip(*vecs)]
    shape = [np.prod(q_oper.dims[0][i]) for i in range(2)][::-1]
    return [Qobj(inpt=sqrt(val)*vec2mat(vec, shape=shape),
            dims=q_oper.dims[0][::-1])
            for val, vec in zip(vals, vecs) if abs(val) >= tol]
示例#32
0
def _steadystate_iterative(L, ss_args):
    """
    Iterative steady state solver using the LGMRES algorithm
    and a sparse incomplete LU preconditioner.
    """

    if settings.debug:
        print('Starting GMRES solver...')

    dims = L.dims[0]
    n = prod(L.dims[0][0])
    b = np.zeros(n ** 2)
    b[0] = 1.0
    L = L.data.tocsc() + sp.csc_matrix(
        (1e-1 * np.ones(n), (np.zeros(n), [nn * (n + 1) for nn in range(n)])),
        shape=(n ** 2, n ** 2))

    if ss_args['use_rcm']:
        if settings.debug:
            print('Original bandwidth ', sp_bandwidth(L))
        perm = symrcm(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        b = b[np.ix_(perm,)]
        if settings.debug:
            print('RCM bandwidth ', sp_bandwidth(L))
    
    L.sort_indices()

    if ss_args['M'] is None and ss_args['use_precond']:
        M = _iterative_precondition(L, n, ss_args['drop_tol'], 
                                    ss_args['diag_pivot_thresh'],
                                    ss_args['fill_factor'])

    v, check = gmres(L, b, tol=ss_args['tol'], M=ss_args['M'], maxiter=ss_args['maxiter'])
    if check > 0:
        raise Exception("Steadystate solver did not reach tolerance after " +
                        str(check) + " steps.")
    elif check < 0:
        raise Exception(
            "Steadystate solver failed with fatal error: " + str(check) + ".")

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm,)]

    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)

    return Qobj(data, dims=dims, isherm=True)
示例#33
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting Eigen solver.')

    dims = L.dims[0]
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            logger.debug('Original bandwidth: %i' % old_band)
        perm = sp.csgraph.reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            logger.debug('RCM bandwidth: %i' % rcm_band)
            logger.debug('Bandwidth reduction factor: %f' %
                         (old_band / rcm_band))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L,
                          k=1,
                          sigma=1e-15,
                          tol=ss_args['tol'],
                          which='LM',
                          maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L * eigvec, np.inf)
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm, )]
    _temp = vec2mat(eigvec)
    data = dense2D_to_fastcsr_fmode(_temp, _temp.shape[0], _temp.shape[1])
    data = 0.5 * (data + data.H)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out / out.tr(), ss_args['info']
    else:
        return out / out.tr()
示例#34
0
    def test_SimpleSuperApply(self):
        """
        Non-composite system, operator on Liouville space.
        """
        rho_3 = rand_dm(3)
        superop = kraus_to_super(rand_kraus_map(3))
        analytic_result = vec2mat(superop.data.todense() *
                                  mat2vec(rho_3.data.todense()))

        naive_result = subsystem_apply(rho_3, superop, [True], reference=True)
        naive_diff = (analytic_result - naive_result).data.todense()
        assert_(norm(naive_diff) < 1e-12)

        efficient_result = subsystem_apply(rho_3, superop, [True])
        efficient_diff = (efficient_result - analytic_result).data.todense()
        assert_(norm(efficient_diff) < 1e-12)
示例#35
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        print('Starting Eigen solver...')

    dims = L.dims[0]
    shape = prod(dims[0])
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            print('Original bandwidth:', old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            print('RCM bandwidth:', rcm_band)
            print('Bandwidth reduction factor:', round(old_band / rcm_band, 1))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L,
                          k=1,
                          sigma=1e-15,
                          tol=ss_args['tol'],
                          which='LM',
                          maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm, )]

    data = vec2mat(eigvec)
    data = 0.5 * (data + data.conj().T)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out / out.tr(), ss_args['info']
    else:
        return out / out.tr()
示例#36
0
    def test_SimpleSuperApply(self):
        """
        Non-composite system, operator on Liouville space.
        """
        rho_3 = rand_dm(3)
        superop = kraus_to_super(rand_kraus_map(3))
        analytic_result = vec2mat(superop.data.todense() *
                                  mat2vec(rho_3.data.todense()))

        naive_result = subsystem_apply(rho_3, superop, [True],
                                       reference=True)
        naive_diff = (analytic_result - naive_result).data.todense()
        assert_(norm(naive_diff) < 1e-12)

        efficient_result = subsystem_apply(rho_3, superop, [True])
        efficient_diff = (efficient_result - analytic_result).data.todense()
        assert_(norm(efficient_diff) < 1e-12)
示例#37
0
def _steadystate_eigen(L, ss_args):
    """
    Internal function for solving the steady state problem by
    finding the eigenvector corresponding to the zero eigenvalue
    of the Liouvillian using ARPACK.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting Eigen solver.')

    dims = L.dims[0]
    L = L.data.tocsc()

    if ss_args['use_rcm']:
        ss_args['info']['perm'].append('rcm')
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            logger.debug('Original bandwidth: %i' % old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        if settings.debug:
            rcm_band = sp_bandwidth(L)[0]
            logger.debug('RCM bandwidth: %i' % rcm_band)
            logger.debug('Bandwidth reduction factor: %f' %
                         (old_band/rcm_band))

    _eigen_start = time.time()
    eigval, eigvec = eigs(L, k=1, sigma=1e-15, tol=ss_args['tol'],
                          which='LM', maxiter=ss_args['maxiter'])
    _eigen_end = time.time()
    ss_args['info']['solution_time'] = _eigen_end - _eigen_start
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L*eigvec, np.inf)
    if ss_args['use_rcm']:
        eigvec = eigvec[np.ix_(rev_perm,)]
    _temp = vec2mat(eigvec)
    data = dense2D_to_fastcsr_fmode(_temp, _temp.shape[0], _temp.shape[1])
    data = 0.5 * (data + data.H)
    out = Qobj(data, dims=dims, isherm=True)
    if ss_args['return_info']:
        return out/out.tr(), ss_args['info']
    else:
        return out/out.tr()
示例#38
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    if settings.debug:
        print('Starting iterative power method Solver...')
    tol=ss_args['tol']
    maxiter=ss_args['maxiter']
    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())

    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True

    return rhoss
示例#39
0
def _steadystate_direct_dense(L):
    """
    Direct solver that use numpy dense matrices. Suitable for
    small system, with a few states.
    """
    if settings.debug:
        print('Starting direct dense solver...')

    dims = L.dims[0]
    n = prod(L.dims[0][0])
    b = np.zeros(n ** 2)
    b[0] = ss_args['weight']

    L = L.data.todense()
    L[0, :] = np.diag(ss_args['weight']*np.ones(n)).reshape((1, n ** 2))
    v = np.linalg.solve(L, b)

    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)

    return Qobj(data, dims=dims, isherm=True)
示例#40
0
    def test_SimpleSuperApply(self):
        """
        Non-composite system, operator on Liouville space.
        """
        tol = 1e-12
        rho_3 = rand_dm(3)
        superop = kraus_to_super(rand_kraus_map(3))
        analytic_result = vec2mat(superop.full() @ mat2vec(rho_3.full()))
        naive_result = subsystem_apply(rho_3, superop, [True], reference=True)
        naive_diff = (analytic_result - naive_result).full()
        naive_diff_norm = norm(naive_diff)
        assert_(naive_diff_norm < tol,
                msg="SimpleSuper: naive_diff_norm {} "
                "is beyond tolerance {}".format(naive_diff_norm, tol))

        efficient_result = subsystem_apply(rho_3, superop, [True])
        efficient_diff = (efficient_result - analytic_result).full()
        efficient_diff_norm = norm(efficient_diff)
        assert_(efficient_diff_norm < tol,
                msg="SimpleSuper: efficient_diff_norm {} "
                "is beyond tolerance {}".format(efficient_diff_norm, tol))
示例#41
0
def _steadystate_direct_dense(L):
    """
    Direct solver that use numpy dense matrices. Suitable for
    small system, with a few states.
    """
    if settings.debug:
        print('Starting direct dense solver...')

    dims = L.dims[0]
    n = prod(L.dims[0][0])
    b = np.zeros(n**2)
    b[0] = ss_args['weight']

    L = L.data.todense()
    L[0, :] = np.diag(ss_args['weight'] * np.ones(n)).reshape((1, n**2))
    _dense_start = time.time()
    v = np.linalg.solve(L, b)
    _dense_end = time.time()
    ss_args['info']['solution_time'] = _dense_end - _dense_start
    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)

    return Qobj(data, dims=dims, isherm=True)
示例#42
0
def integrate(L,E0,ti,tf,opt=qt.Options()):
    """
    Basic ode integrator
    """
    def _rhs(t,y,L):
        ym = y.reshape(L.shape)
        return (L*ym).flatten()

    from qutip.superoperator import vec2mat
    r = sp.integrate.ode(_rhs)
    r.set_f_params(L.data)
    initial_vector = E0.data.toarray().flatten()
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, ti)
    r.integrate(tf)
    if not r.successful():
        raise Exception("ODE integration error: Try to increase "
                        "the allowed number of substeps by increasing "
                        "the nsteps parameter in the Options class.")

    return qt.Qobj(vec2mat(r.y)).trans()
示例#43
0
    def test_SimpleSuperApply(self):
        """
        Non-composite system, operator on Liouville space.
        """
        tol = 1e-12
        rho_3 = rand_dm(3)
        superop = kraus_to_super(rand_kraus_map(3))
        analytic_result = vec2mat(superop.data.todense() * mat2vec(rho_3.data.todense()))

        naive_result = subsystem_apply(rho_3, superop, [True], reference=True)
        naive_diff = (analytic_result - naive_result).data.todense()
        naive_diff_norm = norm(naive_diff)
        assert_(
            naive_diff_norm < tol,
            msg="SimpleSuper: naive_diff_norm {} " "is beyond tolerance {}".format(naive_diff_norm, tol),
        )

        efficient_result = subsystem_apply(rho_3, superop, [True])
        efficient_diff = (efficient_result - analytic_result).data.todense()
        efficient_diff_norm = norm(efficient_diff)
        assert_(
            efficient_diff_norm < tol,
            msg="SimpleSuper: efficient_diff_norm {} " "is beyond tolerance {}".format(efficient_diff_norm, tol),
        )
示例#44
0
def ode2es(L, rho0):
    """Creates an exponential series that describes the time evolution for the
    initial density matrix (or state vector) `rho0`, given the Liouvillian
    (or Hamiltonian) `L`.

    .. deprecated:: 4.6.0
        :obj:`~ode2es` will be removed in QuTiP 5.  Please use
        :obj:`Qobj.eigenstates` to get the eigenstates and -values, and use
        :obj:`~QobjEvo` for general time-dependence.

    Parameters
    ----------
    L : qobj
        Liouvillian of the system.

    rho0 : qobj
        Initial state vector or density matrix.

    Returns
    -------
    eseries : :class:`qutip.eseries`
        ``eseries`` represention of the system dynamics.

    """
    if issuper(L):
        # check initial state
        if isket(rho0):
            # Got a wave function as initial state: convert to density matrix.
            rho0 = rho0 * rho0.dag()
        # check if state is below error threshold
        if abs(rho0.full()).sum() < 1e-10 + 1e-24:
            # enforce zero operator
            return eseries(qzero(rho0.dims[0]))
        w, v = L.eigenstates()
        v = np.hstack([ket.full() for ket in v])
        # w[i]   = eigenvalue i
        # v[:,i] = eigenvector i

        rlen = np.prod(rho0.shape)
        r0 = mat2vec(rho0.full())
        v0 = la.solve(v, r0)
        vv = v * sp.spdiags(v0.T, 0, rlen, rlen)

        out = None
        for i in range(rlen):
            qo = Qobj(vec2mat(vv[:, i]), dims=rho0.dims, shape=rho0.shape)
            if out:
                out += eseries(qo, w[i])
            else:
                out = eseries(qo, w[i])

    elif isoper(L):

        if not isket(rho0):
            raise TypeError('Second argument must be a ket if first' +
                            'is a Hamiltonian.')

        # check if state is below error threshold
        if abs(rho0.full()).sum() < 1e-5 + 1e-20:
            # enforce zero operator
            dims = rho0.dims
            return eseries(
                Qobj(sp.csr_matrix((dims[0][0], dims[1][0]), dtype=complex)))

        w, v = L.eigenstates()
        v = np.hstack([ket.full() for ket in v])
        # w[i]   = eigenvalue i
        # v[:,i] = eigenvector i

        rlen = np.prod(rho0.shape)
        r0 = rho0.full()
        v0 = la.solve(v, r0)
        vv = v * sp.spdiags(v0.T, 0, rlen, rlen)

        out = None
        for i in range(rlen):
            qo = Qobj(np.array(vv[:, i]).T, dims=rho0.dims, shape=rho0.shape)
            if out:
                out += eseries(qo, -1.0j * w[i])
            else:
                out = eseries(qo, -1.0j * w[i])

    else:
        raise TypeError('First argument must be a Hamiltonian or Liouvillian.')

    return estidy(out)
示例#45
0
def _td_brmesolve(H, psi0, tlist, a_ops=[], e_ops=[], c_ops=[], args={},
                 use_secular=True, sec_cutoff=0.1,
                 tol=qset.atol, options=None, 
                 progress_bar=None,_safe_mode=True,
                 verbose=False,
                 _prep_time=0):
    
    if isket(psi0):
        rho0 = ket2dm(psi0)
    else:
        rho0 = psi0
    nrows = rho0.shape[0]
    
    H_terms = []
    H_td_terms = []
    H_obj = []
    A_terms = []
    A_td_terms = []
    C_terms = []
    C_td_terms = []
    CA_obj = []
    spline_count = [0,0]
    coupled_ops = []
    coupled_lengths = []
    coupled_spectra = []
    
    if isinstance(H, Qobj):
        H_terms.append(H.full('f'))
        H_td_terms.append('1')
    else: 
        for kk, h in enumerate(H):
            if isinstance(h, Qobj):
                H_terms.append(h.full('f'))
                H_td_terms.append('1')
            elif isinstance(h, list):
                H_terms.append(h[0].full('f'))
                if isinstance(h[1], Cubic_Spline):
                    H_obj.append(h[1].coeffs)
                    spline_count[0] += 1
                H_td_terms.append(h[1])
            else:
                raise Exception('Invalid Hamiltonian specification.')
    
            
    for kk, c in enumerate(c_ops):
        if isinstance(c, Qobj):
            C_terms.append(c.full('f'))
            C_td_terms.append('1')
        elif isinstance(c, list):
            C_terms.append(c[0].full('f'))
            if isinstance(c[1], Cubic_Spline):
                CA_obj.append(c[1].coeffs)
                spline_count[0] += 1
            C_td_terms.append(c[1])
        else:
            raise Exception('Invalid collapse operator specification.')
            
    coupled_offset = 0
    for kk, a in enumerate(a_ops):
        if isinstance(a, list):
            if isinstance(a[0], Qobj):
                A_terms.append(a[0].full('f'))
                A_td_terms.append(a[1])
                if isinstance(a[1], tuple):
                    if not len(a[1])==2:
                       raise Exception('Tuple must be len=2.')
                    if isinstance(a[1][0],Cubic_Spline):
                        spline_count[1] += 1
                    if isinstance(a[1][1],Cubic_Spline):
                        spline_count[1] += 1
            elif isinstance(a[0], tuple):
                if not isinstance(a[1], tuple):
                    raise Exception('Invalid bath-coupling specification.')
                if (len(a[0])+1) != len(a[1]):
                    raise Exception('BR a_ops tuple lengths not compatible.')
                
                coupled_ops.append(kk+coupled_offset)
                coupled_lengths.append(len(a[0]))
                coupled_spectra.append(a[1][0])
                coupled_offset += len(a[0])-1
                if isinstance(a[1][0],Cubic_Spline):
                    spline_count[1] += 1
                
                for nn, _a in enumerate(a[0]):
                    A_terms.append(_a.full('f'))
                    A_td_terms.append(a[1][nn+1])
                    if isinstance(a[1][nn+1],Cubic_Spline):
                        CA_obj.append(a[1][nn+1].coeffs)
                        spline_count[1] += 1
                                
        else:
            raise Exception('Invalid bath-coupling specification.')
            
    
    string_list = []
    for kk,_ in enumerate(H_td_terms):
        string_list.append("H_terms[{0}]".format(kk))
    for kk,_ in enumerate(H_obj):
        string_list.append("H_obj[{0}]".format(kk))
    for kk,_ in enumerate(C_td_terms):
        string_list.append("C_terms[{0}]".format(kk))
    for kk,_ in enumerate(CA_obj):
        string_list.append("CA_obj[{0}]".format(kk))
    for kk,_ in enumerate(A_td_terms):
        string_list.append("A_terms[{0}]".format(kk))
    #Add nrows to parameters
    string_list.append('nrows')
    for name, value in args.items():
        if isinstance(value, np.ndarray):
            raise TypeError('NumPy arrays not valid args for BR solver.')
        else:
            string_list.append(str(value))
    parameter_string = ",".join(string_list)
    
    if verbose:
        print('BR prep time:', time.time()-_prep_time)
    #
    # generate and compile new cython code if necessary
    #
    if not options.rhs_reuse or config.tdfunc is None:
        if options.rhs_filename is None:
            config.tdname = "rhs" + str(os.getpid()) + str(config.cgen_num)
        else:
            config.tdname = opt.rhs_filename
        if verbose:
            _st = time.time()
        cgen = BR_Codegen(h_terms=len(H_terms), 
                    h_td_terms=H_td_terms, h_obj=H_obj,
                    c_terms=len(C_terms), 
                    c_td_terms=C_td_terms, c_obj=CA_obj,
                    a_terms=len(A_terms), a_td_terms=A_td_terms,
                    spline_count=spline_count,
                    coupled_ops = coupled_ops,
                    coupled_lengths = coupled_lengths,
                    coupled_spectra = coupled_spectra,
                    config=config, sparse=False,
                    use_secular = use_secular,
                    sec_cutoff = sec_cutoff,
                    args=args,
                    use_openmp=options.use_openmp, 
                    omp_thresh=qset.openmp_thresh if qset.has_openmp else None,
                    omp_threads=options.num_cpus, 
                    atol=tol)
        
        cgen.generate(config.tdname + ".pyx")
        code = compile('from ' + config.tdname + ' import cy_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        config.tdfunc = cy_td_ode_rhs
        if verbose:
            print('BR compile time:', time.time()-_st)
    initial_vector = mat2vec(rho0.full()).ravel()
    
    _ode = scipy.integrate.ode(config.tdfunc)
    code = compile('_ode.set_f_params(' + parameter_string + ')',
                    '<string>', 'exec')
    _ode.set_integrator('zvode', method=options.method, 
                    order=options.order, atol=options.atol, 
                    rtol=options.rtol, nsteps=options.nsteps,
                    first_step=options.first_step, 
                    min_step=options.min_step,
                    max_step=options.max_step)
    _ode.set_initial_value(initial_vector, tlist[0])
    exec(code, locals())
    
    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "brmesolve"
    output.times = tlist

    if options.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):
        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            options.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    if type(progress_bar)==BaseProgressBar and verbose:
        _run_time = time.time()
    
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not _ode.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if options.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])

            if options.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         _ode.y, 1)

        if t_idx < n_tsteps - 1:
            _ode.integrate(_ode.t + dt[t_idx])

    progress_bar.finished()
    
    if type(progress_bar)==BaseProgressBar and verbose:
        print('BR runtime:', time.time()-_run_time)

    if (not options.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)
    
    if options.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(_ode.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
示例#46
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting iterative inverse-power method solver.')
    tol = ss_args['tol']
    mtol = ss_args['mtol']
    if mtol is None:
        mtol = max(0.1 * tol, 1e-15)
    maxiter = ss_args['maxiter']

    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = L.shape[0]
    # Build Liouvillian
    if ss_args['solver'] == 'mkl' and ss_args['method'] == 'power':
        has_mkl = 1
    else:
        has_mkl = 0
    L, perm, perm2, rev_perm, ss_args = _steadystate_power_liouvillian(
        L, ss_args, has_mkl)
    orig_nnz = L.nnz
    # start with all ones as RHS
    v = np.ones(n, dtype=complex)
    if ss_args['use_rcm']:
        v = v[np.ix_(perm2, )]

    # Do preconditioning
    if ss_args['solver'] == 'scipy':
        if ss_args['M'] is None and ss_args['use_precond'] and \
                ss_args['method'] in ['power-gmres',
                                      'power-lgmres',
                                      'power-bicgstab']:
            ss_args['M'], ss_args = _iterative_precondition(
                L, int(np.sqrt(n)), ss_args)
            if ss_args['M'] is None:
                warnings.warn("Preconditioning failed. Continuing without.",
                              UserWarning)

    ss_iters = {'iter': 0}

    def _iter_count(r):
        ss_iters['iter'] += 1
        return

    _power_start = time.time()
    # Get LU factors
    if ss_args['method'] == 'power':
        if ss_args['solver'] == 'mkl':
            lu = mkl_splu(L,
                          max_iter_refine=ss_args['max_iter_refine'],
                          scaling_vectors=ss_args['scaling_vectors'],
                          weighted_matching=ss_args['weighted_matching'])
        else:
            lu = splu(L,
                      permc_spec=ss_args['permc_spec'],
                      diag_pivot_thresh=ss_args['diag_pivot_thresh'],
                      options=dict(ILU_MILU=ss_args['ILU_MILU']))

            if settings.debug and _scipy_check:
                L_nnz = lu.L.nnz
                U_nnz = lu.U.nnz
                logger.debug('L NNZ: %i ; U NNZ: %i' % (L_nnz, U_nnz))
                logger.debug('Fill factor: %f' % ((L_nnz + U_nnz) / orig_nnz))

    it = 0
    # FIXME: These atol keyword except checks can be removed once scipy 1.1
    # is a minimum requirement
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        check = 0
        if ss_args['method'] == 'power':
            v = lu.solve(v)
        elif ss_args['method'] == 'power-gmres':
            try:
                v, check = gmres(L,
                                 v,
                                 tol=mtol,
                                 atol=ss_args['matol'],
                                 M=ss_args['M'],
                                 x0=ss_args['x0'],
                                 restart=ss_args['restart'],
                                 maxiter=ss_args['maxiter'],
                                 callback=_iter_count)
            except TypeError as e:
                if "unexpected keyword argument 'atol'" in str(e):
                    v, check = gmres(L,
                                     v,
                                     tol=mtol,
                                     M=ss_args['M'],
                                     x0=ss_args['x0'],
                                     restart=ss_args['restart'],
                                     maxiter=ss_args['maxiter'],
                                     callback=_iter_count)

        elif ss_args['method'] == 'power-lgmres':
            try:
                v, check = lgmres(L,
                                  v,
                                  tol=mtol,
                                  atol=ss_args['matol'],
                                  M=ss_args['M'],
                                  x0=ss_args['x0'],
                                  maxiter=ss_args['maxiter'],
                                  callback=_iter_count)
            except TypeError as e:
                if "unexpected keyword argument 'atol'" in str(e):
                    v, check = lgmres(L,
                                      v,
                                      tol=mtol,
                                      M=ss_args['M'],
                                      x0=ss_args['x0'],
                                      maxiter=ss_args['maxiter'],
                                      callback=_iter_count)

        elif ss_args['method'] == 'power-bicgstab':
            try:
                v, check = bicgstab(L,
                                    v,
                                    tol=mtol,
                                    atol=ss_args['matol'],
                                    M=ss_args['M'],
                                    x0=ss_args['x0'],
                                    maxiter=ss_args['maxiter'],
                                    callback=_iter_count)
            except TypeError as e:
                if "unexpected keyword argument 'atol'" in str(e):
                    v, check = bicgstab(L,
                                        v,
                                        tol=mtol,
                                        M=ss_args['M'],
                                        x0=ss_args['x0'],
                                        maxiter=ss_args['maxiter'],
                                        callback=_iter_count)
        else:
            raise Exception("Invalid iterative solver method.")
        if check > 0:
            raise Exception("{} failed to find solution in "
                            "{} iterations.".format(ss_args['method'], check))
        if check < 0:
            raise Exception("Breakdown in {}".format(ss_args['method']))
        v = v / la.norm(v, np.inf)
        it += 1
    if ss_args['method'] == 'power' and ss_args['solver'] == 'mkl':
        lu.delete()
        if ss_args['return_info']:
            ss_args['info']['max_iter_refine'] = ss_args['max_iter_refine']
            ss_args['info']['scaling_vectors'] = ss_args['scaling_vectors']
            ss_args['info']['weighted_matching'] = ss_args['weighted_matching']

    if it >= maxiter:
        raise Exception('Failed to find steady state after ' + str(maxiter) +
                        ' iterations')
    _power_end = time.time()
    ss_args['info']['solution_time'] = _power_end - _power_start
    ss_args['info']['iterations'] = it
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L * v, np.inf)
    if settings.debug:
        logger.debug('Number of iterations: %i' % it)

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm, )]

    # normalise according to type of problem
    if sflag:
        trow = v[::rhoss.shape[0] + 1]
        data = v / np.sum(trow)
    else:
        data = data / la.norm(v)

    data = dense2D_to_fastcsr_fmode(vec2mat(data), rhoss.shape[0],
                                    rhoss.shape[0])
    rhoss.data = 0.5 * (data + data.H)
    rhoss.isherm = True
    if ss_args['return_info']:
        return rhoss, ss_args['info']
    else:
        return rhoss
示例#47
0
def floquet_markov_mesolve(R,
                           ekets,
                           rho0,
                           tlist,
                           e_ops,
                           f_modes_table=None,
                           options=None,
                           floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho = Qobj(vec2mat(r.y), rho0.dims, rho0.shape)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output
示例#48
0
def _steadystate_iterative(L, ss_args):
    """
    Iterative steady state solver using the GMRES, LGMRES, or BICGSTAB
    algorithm and a sparse incomplete LU preconditioner.
    """
    ss_iters = {'iter': 0}

    def _iter_count(r):
        ss_iters['iter'] += 1
        return

    if settings.debug:
        logger.debug('Starting %s solver.' % ss_args['method'])

    dims = L.dims[0]
    n = int(np.sqrt(L.shape[0]))
    b = np.zeros(n**2)
    b[0] = ss_args['weight']

    L, perm, perm2, rev_perm, ss_args = _steadystate_LU_liouvillian(L, ss_args)
    if np.any(perm):
        b = b[np.ix_(perm, )]
    if np.any(perm2):
        b = b[np.ix_(perm2, )]

    use_solver(assumeSortedIndices=True)

    if ss_args['M'] is None and ss_args['use_precond']:
        ss_args['M'], ss_args = _iterative_precondition(L, n, ss_args)
        if ss_args['M'] is None:
            warnings.warn("Preconditioning failed. Continuing without.",
                          UserWarning)

    # Select iterative solver type
    _iter_start = time.time()
    # FIXME: These atol keyword except checks can be removed once scipy 1.1
    # is a minimum requirement
    extra = {"callback_type": 'legacy'} if scipy.__version__ >= "1.4" else {}
    if ss_args['method'] == 'iterative-gmres':
        try:
            v, check = gmres(L,
                             b,
                             tol=ss_args['tol'],
                             atol=ss_args['matol'],
                             M=ss_args['M'],
                             x0=ss_args['x0'],
                             restart=ss_args['restart'],
                             maxiter=ss_args['maxiter'],
                             callback=_iter_count,
                             **extra)
        except TypeError as e:
            if "unexpected keyword argument 'atol'" in str(e):
                v, check = gmres(L,
                                 b,
                                 tol=ss_args['tol'],
                                 M=ss_args['M'],
                                 x0=ss_args['x0'],
                                 restart=ss_args['restart'],
                                 maxiter=ss_args['maxiter'],
                                 callback=_iter_count)

    elif ss_args['method'] == 'iterative-lgmres':
        try:
            v, check = lgmres(L,
                              b,
                              tol=ss_args['tol'],
                              atol=ss_args['matol'],
                              M=ss_args['M'],
                              x0=ss_args['x0'],
                              maxiter=ss_args['maxiter'],
                              callback=_iter_count)
        except TypeError as e:
            if "unexpected keyword argument 'atol'" in str(e):
                v, check = lgmres(L,
                                  b,
                                  tol=ss_args['tol'],
                                  M=ss_args['M'],
                                  x0=ss_args['x0'],
                                  maxiter=ss_args['maxiter'],
                                  callback=_iter_count)

    elif ss_args['method'] == 'iterative-bicgstab':
        try:
            v, check = bicgstab(L,
                                b,
                                tol=ss_args['tol'],
                                atol=ss_args['matol'],
                                M=ss_args['M'],
                                x0=ss_args['x0'],
                                maxiter=ss_args['maxiter'],
                                callback=_iter_count)
        except TypeError as e:
            if "unexpected keyword argument 'atol'" in str(e):
                v, check = bicgstab(L,
                                    b,
                                    tol=ss_args['tol'],
                                    M=ss_args['M'],
                                    x0=ss_args['x0'],
                                    maxiter=ss_args['maxiter'],
                                    callback=_iter_count)
    else:
        raise Exception("Invalid iterative solver method.")
    _iter_end = time.time()

    ss_args['info']['iter_time'] = _iter_end - _iter_start
    if 'precond_time' in ss_args['info'].keys():
        ss_args['info']['solution_time'] = (ss_args['info']['iter_time'] +
                                            ss_args['info']['precond_time'])
    else:
        ss_args['info']['solution_time'] = ss_args['info']['iter_time']
    ss_args['info']['iterations'] = ss_iters['iter']
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(b - L * v, np.inf)

    if settings.debug:
        logger.debug('Number of Iterations: %i' % ss_iters['iter'])
        logger.debug('Iteration. time: %f' % (_iter_end - _iter_start))

    if check > 0:
        raise Exception("Steadystate error: Did not reach tolerance after " +
                        str(ss_args['maxiter']) + " steps." +
                        "\nResidual norm: " +
                        str(ss_args['info']['residual_norm']))

    elif check < 0:
        raise Exception("Steadystate error: Failed with fatal error: " +
                        str(check) + ".")

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm, )]

    data = vec2mat(v)
    data = 0.5 * (data + data.conj().T)
    if ss_args['return_info']:
        return Qobj(data, dims=dims, isherm=True), ss_args['info']
    else:
        return Qobj(data, dims=dims, isherm=True)
示例#49
0
def propagator(H, t, c_op_list, H_args=None, opt=None):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).
    t : float or array-like
        Time or list of times for which to evaluate the propagator.
    c_op_list : list
        List of qobj collapse operators.
    H_args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if opt is None:
        opt = Odeoptions()
        opt.rhs_reuse = True

    tlist = [0, t] if isinstance(t, (int, float, np.int64, np.float64)) else t

    if len(c_op_list) == 0:
        # calculate propagator for the wave function

        if isinstance(H, types.FunctionType):
            H0 = H(0.0, H_args)
            N = H0.shape[0]
            dims = H0.dims
        elif isinstance(H, list):
            H0 = H[0][0] if isinstance(H[0], list) else H[0]
            N = H0.shape[0]
            dims = H0.dims
        else:
            N = H.shape[0]
            dims = H.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            output = mesolve(H, psi0, tlist, [], [], H_args, opt)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T

        # todo: evolving a batch of wave functions:
        #psi_0_list = [basis(N, n) for n in range(N)]
        #psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], H_args, opt)
        #for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        if isinstance(H, types.FunctionType):
            H0 = H(0.0, H_args)
            N = H0.shape[0]
            dims = [H0.dims, H0.dims]
        elif isinstance(H, list):
            H0 = H[0][0] if isinstance(H[0], list) else H[0]
            N = H0.shape[0]
            dims = [H0.dims, H0.dims]
        else:
            N = H.shape[0]
            dims = [H.dims, H.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        for n in range(0, N * N):
            psi0 = basis(N * N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, c_op_list, [], H_args, opt)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
示例#50
0
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            raise Exception("ODE integration error: Try to increase "
                            "the allowed number of substeps by increasing "
                            "the nsteps parameter in the Options class.")

        if opt.store_states or expt_callback:
            rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])

            if opt.store_states:
                output.states.append(Qobj(rho, isherm=True))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m],
                                                         r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if (not opt.rhs_reuse) and (config.tdname is not None):
        _cython_build_cleanup(config.tdname)

    if opt.store_final_state:
        rho.data = dense2D_to_fastcsr_fmode(vec2mat(r.y), rho.shape[0], rho.shape[1])
        output.final_state = Qobj(rho, dims=rho0.dims, isherm=True)

    return output
示例#51
0
文件: mesolve.py 项目: qutip/qutip
 def get_curr_state_data(r):
     return vec2mat(r.y)
示例#52
0
文件: propagator.py 项目: tmng/qutip
def propagator(H, t, c_op_list, args=None, options=None, sparse=False):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            output = sesolve(H, psi0, tlist, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        for n in range(0, N):
            psi0 = basis(N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, [], [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if sparse:
            for n in range(N * N):
                psi0 = basis(N * N, n)
                psi0.dims = [dims[0], 1]
                rho0 = vector_to_operator(psi0)
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = operator_to_vector(
                        output.states[k]).full(squeeze=True)

        else:
            for n in range(N * N):
                psi0 = basis(N * N, n)
                rho0 = Qobj(vec2mat(psi0.full()))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
示例#53
0
def _steadystate_direct_sparse(L, ss_args):
    """
    Direct solver that uses scipy sparse matrices
    """
    if settings.debug:
        logger.debug('Starting direct LU solver.')

    dims = L.dims[0]
    n = int(np.sqrt(L.shape[0]))
    b = np.zeros(n**2, dtype=complex)
    b[0] = ss_args['weight']

    if ss_args['solver'] == 'mkl':
        has_mkl = 1
    else:
        has_mkl = 0

    ss_lu_liouv_list = _steadystate_LU_liouvillian(L, ss_args, has_mkl)
    L, perm, perm2, rev_perm, ss_args = ss_lu_liouv_list
    if np.any(perm):
        b = b[np.ix_(perm, )]
    if np.any(perm2):
        b = b[np.ix_(perm2, )]

    if ss_args['solver'] == 'scipy':
        ss_args['info']['permc_spec'] = ss_args['permc_spec']
        ss_args['info']['drop_tol'] = ss_args['drop_tol']
        ss_args['info']['diag_pivot_thresh'] = ss_args['diag_pivot_thresh']
        ss_args['info']['fill_factor'] = ss_args['fill_factor']
        ss_args['info']['ILU_MILU'] = ss_args['ILU_MILU']

    if not ss_args['solver'] == 'mkl':
        # Use superLU solver
        orig_nnz = L.nnz
        _direct_start = time.time()
        lu = splu(L,
                  permc_spec=ss_args['permc_spec'],
                  diag_pivot_thresh=ss_args['diag_pivot_thresh'],
                  options=dict(ILU_MILU=ss_args['ILU_MILU']))
        v = lu.solve(b)
        _direct_end = time.time()
        ss_args['info']['solution_time'] = _direct_end - _direct_start
        if (settings.debug or ss_args['return_info']) and _scipy_check:
            L_nnz = lu.L.nnz
            U_nnz = lu.U.nnz
            ss_args['info']['l_nnz'] = L_nnz
            ss_args['info']['u_nnz'] = U_nnz
            ss_args['info']['lu_fill_factor'] = (L_nnz + U_nnz) / L.nnz
            if settings.debug:
                logger.debug('L NNZ: %i ; U NNZ: %i' % (L_nnz, U_nnz))
                logger.debug('Fill factor: %f' % ((L_nnz + U_nnz) / orig_nnz))

    else:  # Use MKL solver
        if len(ss_args['info']['perm']) != 0:
            in_perm = np.arange(n**2, dtype=np.int32)
        else:
            in_perm = None
        _direct_start = time.time()
        v = mkl_spsolve(L,
                        b,
                        perm=in_perm,
                        verbose=ss_args['verbose'],
                        max_iter_refine=ss_args['max_iter_refine'],
                        scaling_vectors=ss_args['scaling_vectors'],
                        weighted_matching=ss_args['weighted_matching'])
        _direct_end = time.time()
        ss_args['info']['solution_time'] = _direct_end - _direct_start

    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(b - L * v, np.inf)
        ss_args['info']['max_iter_refine'] = ss_args['max_iter_refine']
        ss_args['info']['scaling_vectors'] = ss_args['scaling_vectors']
        ss_args['info']['weighted_matching'] = ss_args['weighted_matching']

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm, )]

    data = dense2D_to_fastcsr_fmode(vec2mat(v), n, n)
    data = 0.5 * (data + data.H)
    if ss_args['return_info']:
        return Qobj(data, dims=dims, isherm=True), ss_args['info']
    else:
        return Qobj(data, dims=dims, isherm=True)
示例#54
0
def bloch_redfield_solve(R, ekets, rho0, tlist, e_ops=[], options=None):
    """
    Evolve the ODEs defined by Bloch-Redfield master equation. The
    Bloch-Redfield tensor can be calculated by the function
    :func:`bloch_redfield_tensor`.

    Parameters
    ----------

    R : :class:`qutip.qobj`
        Bloch-Redfield tensor.

    ekets : array of :class:`qutip.qobj`
        Array of kets that make up a basis tranformation for the eigenbasis.

    rho0 : :class:`qutip.qobj`
        Initial density matrix.

    tlist : *list* / *array*
        List of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    options : :class:`qutip.Qdeoptions`
        Options for the ODE solver.

    Returns
    -------

    output: :class:`qutip.solver`

        An instance of the class :class:`qutip.solver`, which contains either
        an *array* of expectation values for the times specified by `tlist`.

    """

    if options is None:
        options = Options()

    if options.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = rho0 * rho0.dag()

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]
    result_list = []

    #
    # transform the initial density matrix and the e_ops opterators to the
    # eigenbasis
    #
    rho_eb = rho0.transform(ekets)
    e_eb_ops = [e.transform(ekets) for e in e_ops]

    for e_eb in e_eb_ops:
        result_list.append(np.zeros(n_tsteps, dtype=complex))

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho_eb.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode', method=options.method, order=options.order,
                     atol=options.atol, rtol=options.rtol,
                     nsteps=options.nsteps, first_step=options.first_step,
                     min_step=options.min_step, max_step=options.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    dt = np.diff(tlist)
    for t_idx, _ in enumerate(tlist):

        if not r.successful():
            break

        rho_eb.data = vec2mat(r.y)

        # calculate all the expectation values, or output rho_eb if no
        # expectation value operators are given
        if e_ops:
            rho_eb_tmp = Qobj(rho_eb)
            for m, e in enumerate(e_eb_ops):
                result_list[m][t_idx] = expect(e, rho_eb_tmp)
        else:
            result_list.append(rho_eb.transform(ekets, True))

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    return result_list
示例#55
0
文件: propagator.py 项目: yipk2/qutip
def propagator(H,
               t,
               c_op_list,
               args=None,
               options=None,
               sparse=False,
               progress_bar=None):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        progress_bar.start(N)
        for n in range(0, N):
            progress_bar.update(n)
            psi0 = basis(N, n)
            output = sesolve(H, psi0, tlist, [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = output.states[k].full().T
        progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        progress_bar.start(N)
        for n in range(0, N):
            progress_bar.update(n)
            psi0 = basis(N, n)
            rho0 = Qobj(vec2mat(psi0.full()))
            output = mesolve(H, rho0, tlist, [], [], args, options)
            for k, t in enumerate(tlist):
                u[:, n, k] = mat2vec(output.states[k].full()).T
        progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if sparse:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                psi0 = basis(N * N, n)
                psi0.dims = [dims[0], 1]
                rho0 = vector_to_operator(psi0)
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = operator_to_vector(
                        output.states[k]).full(squeeze=True)
            progress_bar.finished()

        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                psi0 = basis(N * N, n)
                rho0 = Qobj(vec2mat(psi0.full()))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))]
示例#56
0
文件: mesolve.py 项目: wa4557/qutip
def _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar):
    """
    Internal function for solving ME. Solve an ODE which solver parameters
    already setup (r). Calculate the required expectation values or invoke
    callback function at each time step.
    """

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    e_sops_data = []

    output = Result()
    output.solver = "mesolve"
    output.times = tlist

    if opt.store_states:
        output.states = []

    if isinstance(e_ops, types.FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            # fall back on storing states
            output.states = []
            opt.store_states = True
        else:
            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # start evolution
    #
    progress_bar.start(n_tsteps)

    rho = Qobj(rho0)

    dt = np.diff(tlist)
    for t_idx, t in enumerate(tlist):
        progress_bar.update(t_idx)

        if not r.successful():
            break

        if opt.store_states or expt_callback:
            rho.data = vec2mat(r.y)

            if opt.store_states:
                output.states.append(Qobj(rho))

            if expt_callback:
                # use callback method
                e_ops(t, rho)

        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 0)
            else:
                output.expect[m][t_idx] = expect_rho_vec(e_sops_data[m], r.y, 1)

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    progress_bar.finished()

    if not opt.rhs_reuse and config.tdname is not None:
        try:
            os.remove(config.tdname + ".pyx")
        except:
            pass

    if opt.store_final_state:
        rho.data = vec2mat(r.y)
        output.final_state = Qobj(rho)

    return output
示例#57
0
文件: essolve.py 项目: prvn16/qutip
def ode2es(L, rho0):
    """Creates an exponential series that describes the time evolution for the
    initial density matrix (or state vector) `rho0`, given the Liouvillian
    (or Hamiltonian) `L`.

    Parameters
    ----------
    L : qobj
        Liouvillian of the system.

    rho0 : qobj
        Initial state vector or density matrix.

    Returns
    -------
    eseries : :class:`qutip.eseries`
        ``eseries`` represention of the system dynamics.

    """

    if issuper(L):

        # check initial state
        if isket(rho0):
            # Got a wave function as initial state: convert to density matrix.
            rho0 = rho0 * rho0.dag()

        w, v = L.eigenstates()
        v = np.hstack([ket.full() for ket in v])
        # w[i]   = eigenvalue i
        # v[:,i] = eigenvector i

        rlen = np.prod(rho0.shape)
        r0 = mat2vec(rho0.full())
        v0 = la.solve(v, r0)
        vv = v * sp.spdiags(v0.T, 0, rlen, rlen)

        out = None
        for i in range(rlen):
            qo = Qobj(vec2mat(vv[:, i]), dims=rho0.dims, shape=rho0.shape)
            if out:
                out += eseries(qo, w[i])
            else:
                out = eseries(qo, w[i])

    elif isoper(L):

        if not isket(rho0):
            raise TypeError("Second argument must be a ket if first" + "is a Hamiltonian.")

        w, v = L.eigenstates()
        v = np.hstack([ket.full() for ket in v])
        # w[i]   = eigenvalue i
        # v[:,i] = eigenvector i

        rlen = np.prod(rho0.shape)
        r0 = rho0.full()
        v0 = la.solve(v, r0)
        vv = v * sp.spdiags(v0.T, 0, rlen, rlen)

        out = None
        for i in range(rlen):
            qo = Qobj(np.matrix(vv[:, i]).T, dims=rho0.dims, shape=rho0.shape)
            if out:
                out += eseries(qo, -1.0j * w[i])
            else:
                out = eseries(qo, -1.0j * w[i])

    else:
        raise TypeError("First argument must be a Hamiltonian or Liouvillian.")

    return estidy(out)
示例#58
0
def _ode_super_func(t, y, data):
    ym = vec2mat(y)
    return (data*ym).ravel('F')
示例#59
0
def bloch_redfield_solve(R, ekets, rho0, tlist, e_ops=[], options=None):
    """
    Evolve the ODEs defined by Bloch-Redfield master equation. The
    Bloch-Redfield tensor can be calculated by the function
    :func:`bloch_redfield_tensor`.

    Parameters
    ----------

    R : :class:`qutip.qobj`
        Bloch-Redfield tensor.

    ekets : array of :class:`qutip.qobj`
        Array of kets that make up a basis tranformation for the eigenbasis.

    rho0 : :class:`qutip.qobj`
        Initial density matrix.

    tlist : *list* / *array*
        List of times for :math:`t`.

    e_ops : list of :class:`qutip.qobj` / callback function
        List of operators for which to evaluate expectation values.

    options : :class:`qutip.Qdeoptions`
        Options for the ODE solver.

    Returns
    -------

    output: :class:`qutip.solver`

        An instance of the class :class:`qutip.solver`, which contains either
        an *array* of expectation values for the times specified by `tlist`.

    """

    if options is None:
        options = Options()

    if options.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = rho0 * rho0.dag()

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]
    result_list = []

    #
    # transform the initial density matrix and the e_ops opterators to the
    # eigenbasis
    #
    rho_eb = rho0.transform(ekets)
    e_eb_ops = [e.transform(ekets) for e in e_ops]

    for e_eb in e_eb_ops:
        result_list.append(np.zeros(n_tsteps, dtype=complex))

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho_eb.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode',
                     method=options.method,
                     order=options.order,
                     atol=options.atol,
                     rtol=options.rtol,
                     nsteps=options.nsteps,
                     first_step=options.first_step,
                     min_step=options.min_step,
                     max_step=options.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    dt = np.diff(tlist)
    for t_idx, _ in enumerate(tlist):

        if not r.successful():
            break

        rho_eb.data = vec2mat(r.y)

        # calculate all the expectation values, or output rho_eb if no
        # expectation value operators are given
        if e_ops:
            rho_eb_tmp = Qobj(rho_eb)
            for m, e in enumerate(e_eb_ops):
                result_list[m][t_idx] = expect(e, rho_eb_tmp)
        else:
            result_list.append(rho_eb.transform(ekets, True))

        if t_idx < n_tsteps - 1:
            r.integrate(r.t + dt[t_idx])

    return result_list
示例#60
0
def floquet_markov_mesolve(R, ekets, rho0, tlist, e_ops, f_modes_table=None,
                           options=None, floquet_basis=True):
    """
    Solve the dynamics for the system using the Floquet-Markov master equation.
    """

    if options is None:
        opt = Options()
    else:
        opt = options

    if opt.tidy:
        R.tidyup()

    #
    # check initial state
    #
    if isket(rho0):
        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # prepare output array
    #
    n_tsteps = len(tlist)
    dt = tlist[1] - tlist[0]

    output = Result()
    output.solver = "fmmesolve"
    output.times = tlist

    if isinstance(e_ops, FunctionType):
        n_expt_op = 0
        expt_callback = True

    elif isinstance(e_ops, list):

        n_expt_op = len(e_ops)
        expt_callback = False

        if n_expt_op == 0:
            output.states = []
        else:
            if not f_modes_table:
                raise TypeError("The Floquet mode table has to be provided " +
                                "when requesting expectation values.")

            output.expect = []
            output.num_expect = n_expt_op
            for op in e_ops:
                if op.isherm:
                    output.expect.append(np.zeros(n_tsteps))
                else:
                    output.expect.append(np.zeros(n_tsteps, dtype=complex))

    else:
        raise TypeError("Expectation parameter must be a list or a function")

    #
    # transform the initial density matrix to the eigenbasis: from
    # computational basis to the floquet basis
    #
    if ekets is not None:
        rho0 = rho0.transform(ekets)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full())
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(R.data.data, R.data.indices, R.data.indptr)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # start evolution
    #
    rho = Qobj(rho0)

    t_idx = 0
    for t in tlist:
        if not r.successful():
            break

        rho.data = vec2mat(r.y)

        if expt_callback:
            # use callback method
            if floquet_basis:
                e_ops(t, Qobj(rho))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                e_ops(t, Qobj(rho).transform(f_modes_t, True))
        else:
            # calculate all the expectation values, or output rho if
            # no operators
            if n_expt_op == 0:
                if floquet_basis:
                    output.states.append(Qobj(rho))
                else:
                    f_modes_table_t, T = f_modes_table
                    f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                    output.states.append(Qobj(rho).transform(f_modes_t, True))
            else:
                f_modes_table_t, T = f_modes_table
                f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
                for m in range(0, n_expt_op):
                    output.expect[m][t_idx] = \
                        expect(e_ops[m], rho.transform(f_modes_t, False))

        r.integrate(r.t + dt)
        t_idx += 1

    return output