示例#1
0
def floquet_master_equation_rates(f_modes_0,
                                  f_energies,
                                  c_op,
                                  H,
                                  T,
                                  args,
                                  J_cb,
                                  w_th,
                                  kmax=5,
                                  f_modes_table_t=None):
    """
    Calculate the rates and matrix elements for the Floquet-Markov master
    equation.

    Parameters
    ----------

    f_modes_0 : list of :class:`qutip.qobj` (kets)
        A list of initial Floquet modes.

    f_energies : array
        The Floquet energies.

    c_op : :class:`qutip.qobj`
        The collapse operators describing the dissipation.

    H : :class:`qutip.qobj`
        System Hamiltonian, time-dependent with period `T`.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    J_cb : callback functions
        A callback function that computes the noise power spectrum, as
        a function of frequency, associated with the collapse operator `c_op`.

    w_th : float
        The temperature in units of frequency.

    k_max : int
        The truncation of the number of sidebands (default 5).

    f_modes_table_t : nested list of :class:`qutip.qobj` (kets)
        A lookup-table of Floquet modes at times precalculated by
        :func:`qutip.floquet.floquet_modes_table` (optional).

    Returns
    -------

    output : list

        A list (Delta, X, Gamma, A) containing the matrices Delta, X, Gamma
        and A used in the construction of the Floquet-Markov master equation.

    """

    N = len(f_energies)
    M = 2 * kmax + 1

    omega = (2 * pi) / T

    Delta = np.zeros((N, N, M))
    X = np.zeros((N, N, M), dtype=complex)
    Gamma = np.zeros((N, N, M))
    A = np.zeros((N, N))

    nT = 100
    dT = T / nT
    tlist = np.arange(dT, T + dT / 2, dT)

    if f_modes_table_t is None:
        f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                              np.linspace(0, T, nT + 1), H, T,
                                              args)

    for t in tlist:
        # TODO: repeated invocations of floquet_modes_t is
        # inefficient...  make a and b outer loops and use the mesolve
        # instead of the propagator.

        # f_modes_t = floquet_modes_t(f_modes_0, f_energies, t, H, T, args)
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        for a in range(N):
            for b in range(N):
                k_idx = 0
                for k in range(-kmax, kmax + 1, 1):
                    X[a, b, k_idx] += (dT / T) * exp(-1j * k * omega * t) * \
                        (f_modes_t[a].dag() * c_op * f_modes_t[b])[0, 0]
                    k_idx += 1

    Heaviside = lambda x: ((np.sign(x) + 1) / 2.0)
    for a in range(N):
        for b in range(N):
            k_idx = 0
            for k in range(-kmax, kmax + 1, 1):
                Delta[a, b, k_idx] = f_energies[a] - f_energies[b] + k * omega
                Gamma[a, b, k_idx] = 2 * pi * Heaviside(Delta[a, b, k_idx]) * \
                    J_cb(Delta[a, b, k_idx]) * abs(X[a, b, k_idx]) ** 2
                k_idx += 1

    for a in range(N):
        for b in range(N):
            for k in range(-kmax, kmax + 1, 1):
                k1_idx = k + kmax
                k2_idx = -k + kmax
                A[a, b] += Gamma[a, b, k1_idx] + \
                    n_thermal(abs(Delta[a, b, k1_idx]), w_th) * \
                    (Gamma[a, b, k1_idx] + Gamma[b, a, k2_idx])

    return Delta, X, Gamma, A
示例#2
0
def floquet_master_equation_rates(f_modes_0, f_energies, c_op, H, T,
                                  args, J_cb, w_th, kmax=5,
                                  f_modes_table_t=None):
    """
    Calculate the rates and matrix elements for the Floquet-Markov master
    equation.

    Parameters
    ----------

    f_modes_0 : list of :class:`qutip.qobj` (kets)
        A list of initial Floquet modes.

    f_energies : array
        The Floquet energies.

    c_op : :class:`qutip.qobj`
        The collapse operators describing the dissipation.

    H : :class:`qutip.qobj`
        System Hamiltonian, time-dependent with period `T`.

    T : float
        The period of the time-dependence of the hamiltonian.

    args : dictionary
        Dictionary with variables required to evaluate H.

    J_cb : callback functions
        A callback function that computes the noise power spectrum, as
        a function of frequency, associated with the collapse operator `c_op`.

    w_th : float
        The temperature in units of frequency.

    k_max : int
        The truncation of the number of sidebands (default 5).

    f_modes_table_t : nested list of :class:`qutip.qobj` (kets)
        A lookup-table of Floquet modes at times precalculated by
        :func:`qutip.floquet.floquet_modes_table` (optional).

    Returns
    -------

    output : list

        A list (Delta, X, Gamma, A) containing the matrices Delta, X, Gamma
        and A used in the construction of the Floquet-Markov master equation.

    """

    N = len(f_energies)
    M = 2 * kmax + 1

    omega = (2 * pi) / T

    Delta = np.zeros((N, N, M))
    X = np.zeros((N, N, M), dtype=complex)
    Gamma = np.zeros((N, N, M))
    A = np.zeros((N, N))

    nT = 100
    dT = T / nT
    tlist = np.arange(dT, T + dT / 2, dT)

    if f_modes_table_t is None:
        f_modes_table_t = floquet_modes_table(f_modes_0, f_energies,
                                              np.linspace(0, T, nT + 1), H, T,
                                              args)

    for t in tlist:
        # TODO: repeated invocations of floquet_modes_t is
        # inefficient...  make a and b outer loops and use the mesolve
        # instead of the propagator.

        # f_modes_t = floquet_modes_t(f_modes_0, f_energies, t, H, T, args)
        f_modes_t = floquet_modes_t_lookup(f_modes_table_t, t, T)
        for a in range(N):
            for b in range(N):
                k_idx = 0
                for k in range(-kmax, kmax + 1, 1):
                    X[a, b, k_idx] += (dT / T) * exp(-1j * k * omega * t) * \
                        (f_modes_t[a].dag() * c_op * f_modes_t[b])[0, 0]
                    k_idx += 1

    Heaviside = lambda x: ((np.sign(x) + 1) / 2.0)
    for a in range(N):
        for b in range(N):
            k_idx = 0
            for k in range(-kmax, kmax + 1, 1):
                Delta[a, b, k_idx] = f_energies[a] - f_energies[b] + k * omega
                Gamma[a, b, k_idx] = 2 * pi * Heaviside(Delta[a, b, k_idx]) * \
                    J_cb(Delta[a, b, k_idx]) * abs(X[a, b, k_idx]) ** 2
                k_idx += 1

    for a in range(N):
        for b in range(N):
            for k in range(-kmax, kmax + 1, 1):
                k1_idx = k + kmax
                k2_idx = -k + kmax
                A[a, b] += Gamma[a, b, k1_idx] + \
                    n_thermal(abs(Delta[a, b, k1_idx]), w_th) * \
                    (Gamma[a, b, k1_idx] + Gamma[b, a, k2_idx])

    return Delta, X, Gamma, A