示例#1
0
    def rhot(self, rho0, t, tau):
        """
        Compute the reduced system density matrix :math:`\\rho(t)`

        Parameters
        ----------
        rho0 : :class:`qutip.Qobj`
            initial density matrix or state vector (ket)

        t : float
            current time

        tau : float
            time-delay

        Returns
        -------
        : :class:`qutip.Qobj`
            density matrix at time :math:`t`
        """
        if qt.isket(rho0):
            rho0 = qt.ket2dm(rho0)

        E = self.propagator(t, tau)
        rhovec = qt.operator_to_vector(rho0)
        return qt.vector_to_operator(E*rhovec)
示例#2
0
    def rhot(self, rho0, t, tau):
        """
        Compute the reduced system density matrix :math:`\\rho(t)`

        Parameters
        ----------
        rho0 : :class:`qutip.Qobj`
            initial density matrix or state vector (ket)

        t : float
            current time

        tau : float
            time-delay

        Returns
        -------
        : :class:`qutip.Qobj`
            density matrix at time :math:`t`
        """
        if qt.isket(rho0):
            rho0 = qt.ket2dm(rho0)

        E = self.propagator(t, tau)
        rhovec = qt.operator_to_vector(rho0)
        return qt.vector_to_operator(E*rhovec)
示例#3
0
    def testOperatorVectorNotSquare(self):
        """
        Superoperator: Operator - vector - operator conversion for non-square matrix.
        """
        op1 = Qobj(np.random.rand(6).reshape((3, 2)))
        op2 = vector_to_operator(operator_to_vector(op1))

        assert_((op1 - op2).norm() < 1e-8)
    def testOperatorVector(self):
        """
        Superoperator: Operator - vector - operator conversion.
        """
        N = 3
        rho1 = rand_dm(N)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
示例#5
0
    def testOperatorVector(self):
        """
        Superoperator: Operator - vector - operator conversion.
        """
        N = 3
        rho1 = rand_dm(N)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
示例#6
0
    def testOperatorVectorTensor(self):
        """
        Superoperator: Operator - vector - operator conversion with a tensor product state.
        """
        Na = 3
        Nb = 2
        rhoa = rand_dm(Na)
        rhob = rand_dm(Nb)
        rho1 = tensor(rhoa, rhob)
        rho2 = vector_to_operator(operator_to_vector(rho1))

        assert_((rho1 - rho2).norm() < 1e-8)
示例#7
0
    def testOperatorUnitaryTransform(self):
        """
        Superoperator: Unitary transformation with operators and superoperators
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho * U.dag()
        rho2_vec = spre(U) * spost(U.dag()) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
示例#8
0
    def testOperatorSpostAppl(self):
        """
        Superoperator: apply operator and superoperator from right (spost)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = rho * U
        rho2_vec = spost(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
示例#9
0
    def testOperatorSpreAppl(self):
        """
        Superoperator: apply operator and superoperator from left (spre)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho
        rho2_vec = spre(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
    def testOperatorSpreAppl(self):
        """
        Superoperator: apply operator and superoperator from left (spre)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho
        rho2_vec = spre(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
    def testOperatorSpostAppl(self):
        """
        Superoperator: apply operator and superoperator from right (spost)
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = rho * U
        rho2_vec = spost(U) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
    def testOperatorUnitaryTransform(self):
        """
        Superoperator: Unitary transformation with operators and superoperators
        """
        N = 3
        rho = rand_dm(N)
        U = rand_unitary(N)

        rho1 = U * rho * U.dag()
        rho2_vec = spre(U) * spost(U.dag()) * operator_to_vector(rho)
        rho2 = vector_to_operator(rho2_vec)

        assert_((rho1 - rho2).norm() < 1e-8)
示例#13
0
 def _target_outputs_from_inputs_open_map(self, input_states):
     raise NotImplementedError('Not implemented yet')
     # Note that in case of an open map target, all target states are
     # density matrices, instead of just kets like they would when the
     # target is a unitary gate.
     target_states = []
     for psi in input_states:
         # the open evolution is implemented vectorizing density
         # matrices and maps: `A * rho * B` becomes
         # `unvec(vec(tensor(A, B.T)) * vec(rho))`.
         vec_dm_ket = qutip.operator_to_vector(qutip.ket2dm(psi))
         evolved_ket = self.target_gate * vec_dm_ket
         evolved_ket = qutip.vector_to_operator(evolved_ket)
         target_states.append(evolved_ket)
     return target_states
示例#14
0
文件: piqs.py 项目: yrsdi/qutip
    def prune_eigenstates(self, liouvillian):
        """Remove spurious eigenvalues and eigenvectors of the Liouvillian.

        Spurious means that the given eigenvector has elements outside of the
        block-diagonal matrix.

        Parameters
        ----------
        liouvillian_eigenstates: list
            A list with the eigenvalues and eigenvectors of the Liouvillian
            including spurious ones.

        Returns
        -------
        correct_eigenstates: list
            The list with the correct eigenvalues and eigenvectors of the
            Liouvillian.
        """
        liouvillian_eigenstates = liouvillian.eigenstates()
        N = self.N
        block_mat = block_matrix(N)
        nnz_tuple_bm = [(i, j) for i, j in zip(*block_mat.nonzero())]

        # 0. Create  a copy of the eigenvalues to approximate values
        eig_val, eig_vec = liouvillian_eigenstates
        tol = 10
        eig_val_round = np.round(eig_val, tol)

        # 2. Use 'block_matrix(N)' to remove eigenvectors with matrix
        # elements
        # outside of the block matrix.
        forbidden_eig_index = []
        for k in range(0, len(eig_vec)):
            dm = vector_to_operator(eig_vec[k])
            nnz_tuple = [(i, j) for i, j in zip(*dm.data.nonzero())]
            for i in nnz_tuple:
                if i not in nnz_tuple_bm:
                    if np.round(dm[i], tol) != 0:
                        forbidden_eig_index.append(k)

        forbidden_eig_index = np.array(list(set(forbidden_eig_index)))
        # 3. Remove the forbidden eigenvalues and eigenvectors.
        correct_eig_val = np.delete(eig_val, forbidden_eig_index)
        correct_eig_vec = np.delete(eig_vec, forbidden_eig_index)
        correct_eigenstates = correct_eig_val, correct_eig_vec
        return correct_eigenstates
示例#15
0
    def prune_eigenstates(self, liouvillian):
        """Remove spurious eigenvalues and eigenvectors of the Liouvillian.

        Spurious means that the given eigenvector has elements outside of the
        block-diagonal matrix.

        Parameters
        ----------
        liouvillian_eigenstates: list
            A list with the eigenvalues and eigenvectors of the Liouvillian
            including spurious ones.

        Returns
        -------
        correct_eigenstates: list
            The list with the correct eigenvalues and eigenvectors of the
            Liouvillian.
        """
        liouvillian_eigenstates = liouvillian.eigenstates()
        N = self.N
        block_mat = block_matrix(N)
        nnz_tuple_bm = [(i, j) for i, j in zip(*block_mat.nonzero())]

        # 0. Create  a copy of the eigenvalues to approximate values
        eig_val, eig_vec = liouvillian_eigenstates
        tol = 10
        eig_val_round = np.round(eig_val, tol)

        # 2. Use 'block_matrix(N)' to remove eigenvectors with matrix
        # elements
        # outside of the block matrix.
        forbidden_eig_index = []
        for k in range(0, len(eig_vec)):
            dm = vector_to_operator(eig_vec[k])
            nnz_tuple = [(i, j) for i, j in zip(*dm.data.nonzero())]
            for i in nnz_tuple:
                if i not in nnz_tuple_bm:
                    if np.round(dm[i], tol) != 0:
                        forbidden_eig_index.append(k)

        forbidden_eig_index = np.array(list(set(forbidden_eig_index)))
        # 3. Remove the forbidden eigenvalues and eigenvectors.
        correct_eig_val = np.delete(eig_val, forbidden_eig_index)
        correct_eig_vec = np.delete(eig_vec, forbidden_eig_index)
        correct_eigenstates = correct_eig_val, correct_eig_vec
        return correct_eigenstates
示例#16
0
    def outfieldcorr(self, rho0, blist, tlist, tau, c1=None, c2=None):
        r"""
        Compute output field expectation value
        <O_n(tn)...O_2(t2)O_1(t1)> for times t1,t2,... and
        O_i = I, b_out, b_out^\dagger, b_loop, b_loop^\dagger


        Parameters
        ----------
        rho0 : :class:`qutip.Qobj`
            initial density matrix or state vector (ket).

        blist : array_like
            List of integers specifying the field operators:
            0: I (nothing)
            1: b_out
            2: b_out^\dagger
            3: b_loop
            4: b_loop^\dagger

        tlist : array_like
            list of corresponding times t1,..,tn at which to evaluate the field
            operators

        tau : float
            time-delay

        c1 : :class:`qutip.Qobj`
            system collapse operator that couples to the in-loop field in
            question (only needs to be specified if self.L1 has more than one
            element)

        c2 : :class:`qutip.Qobj`
            system collapse operator that couples to the output field in
            question (only needs to be specified if self.L2 has more than one
            element)

        Returns
        -------
        : complex
            expectation value of field correlation function
        """
        E = self.outfieldpropagator(blist, tlist, tau)
        rhovec = qt.operator_to_vector(rho0)
        return (qt.vector_to_operator(E*rhovec)).tr()
示例#17
0
    def outfieldcorr(self, rho0, blist, tlist, tau, c1=None, c2=None):
        """
        Compute output field expectation value
        <O_n(tn)...O_2(t2)O_1(t1)> for times t1,t2,... and
        O_i = I, b_out, b_out^\dagger, b_loop, b_loop^\dagger


        Parameters
        ----------
        rho0 : :class:`qutip.Qobj`
            initial density matrix or state vector (ket).

        blist : array_like
            List of integers specifying the field operators:
            0: I (nothing)
            1: b_out
            2: b_out^\dagger
            3: b_loop
            4: b_loop^\dagger

        tlist : array_like
            list of corresponding times t1,..,tn at which to evaluate the field
            operators

        tau : float
            time-delay

        c1 : :class:`qutip.Qobj`
            system collapse operator that couples to the in-loop field in
            question (only needs to be specified if self.L1 has more than one
            element)

        c2 : :class:`qutip.Qobj`
            system collapse operator that couples to the output field in
            question (only needs to be specified if self.L2 has more than one
            element)

        Returns
        -------
        : complex
            expectation value of field correlation function
        """
        E = self.outfieldpropagator(blist, tlist, tau)
        rhovec = qt.operator_to_vector(rho0)
        return (qt.vector_to_operator(E*rhovec)).tr()
示例#18
0
def rhot(rho0,t,tau,H_S,L1,L2,Id,options=qt.Options()):
    """
    Compute rho(t)
    """
    k= int(t/tau)+1
    s = t-(k-1)*tau
    rhovec = qt.operator_to_vector(rho0)
    G1,E0 = generator(k,H_S,L1,L2)
    E = integrate(G1,E0,0.,s,opt=options)
    if k>1:
        G2,null = generator(k-1,H_S,L1,L2)
        G2 = qt.composite(Id,G2)
        E = integrate(G2,E,s,tau,opt=options)
    E.dims = E0.dims
    E = TensorQobj(E)
    for l in range(k-1):
        E = E.loop()
    sol = qt.vector_to_operator(E*rhovec)
    return sol
示例#19
0
 def test_operator_vector_td(self):
     "Superoperator: operator_to_vector, time-dependent"
     assert_(operator_to_vector(self.t1)(.5) ==
             operator_to_vector(self.t1(.5)))
     vec = operator_to_vector(self.t1)
     assert_(vector_to_operator(vec)(.5) == vector_to_operator(vec(.5)))
示例#20
0
 def fidelitycheck(self, out1, out2, rho0vec):
     fid = np.zeros(len(out1.states))
     for i, E in enumerate(out2.states):
         rhot = vector_to_operator(E * rho0vec)
         fid[i] = fidelity(out1.states[i], rhot)
     return fid
示例#21
0
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    rho0vec = operator_to_vector(rho0)

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
示例#22
0
def ttmsolve(dynmaps, rho0, times, e_ops=[], learningtimes=None, tensors=None,
             **kwargs):
    """
    Solve time-evolution using the Transfer Tensor Method, based on a set of
    precomputed dynamical maps.

    Parameters
    ----------
    dynmaps : list of :class:`qutip.Qobj`
        List of precomputed dynamical maps (superoperators),
        or a callback function that returns the
        superoperator at a given time.

    rho0 : :class:`qutip.Qobj`
        Initial density matrix or state vector (ket).

    times : array_like
        list of times :math:`t_n` at which to compute :math:`\\rho(t_n)`.
        Must be uniformily spaced.

    e_ops : list of :class:`qutip.Qobj` / callback function
        single operator or list of operators for which to evaluate
        expectation values.

    learningtimes : array_like
        list of times :math:`t_k` for which we have knowledge of the dynamical
        maps :math:`E(t_k)`.

    tensors : array_like
        optional list of precomputed tensors :math:`T_k`

    kwargs : dictionary
        Optional keyword arguments. See
        :class:`qutip.nonmarkov.ttm.TTMSolverOptions`.

    Returns
    -------
    output: :class:`qutip.solver.Result`
        An instance of the class :class:`qutip.solver.Result`.
    """

    opt = TTMSolverOptions(dynmaps=dynmaps, times=times,
                           learningtimes=learningtimes, **kwargs)

    diff = None

    if isket(rho0):
        rho0 = ket2dm(rho0)

    output = Result()
    e_sops_data = []

    if callable(e_ops):
        n_expt_op = 0
        expt_callback = True

    else:
        try:
            tmp = e_ops[:]
            del tmp

            n_expt_op = len(e_ops)
            expt_callback = False

            if n_expt_op == 0:
                # fall back on storing states
                opt.store_states = True

            for op in e_ops:
                e_sops_data.append(spre(op).data)
                if op.isherm and rho0.isherm:
                    output.expect.append(np.zeros(len(times)))
                else:
                    output.expect.append(np.zeros(len(times), dtype=complex))
        except TypeError:
            raise TypeError("Argument 'e_ops' should be a callable or" +
                            "list-like.")

    if tensors is None:
        tensors, diff = _generatetensors(dynmaps, learningtimes, opt=opt)

    if rho0.isoper:
        # vectorize density matrix
        rho0vec = operator_to_vector(rho0)
    else:
        # rho0 might be a super in which case we should not vectorize
        rho0vec = rho0

    K = len(tensors)
    states = [rho0vec]
    for n in range(1, len(times)):
        states.append(None)
        for k in range(n):
            if n-k < K:
                states[-1] += tensors[n-k]*states[k]
    for i, r in enumerate(states):
        if opt.store_states or expt_callback:
            if r.type == 'operator-ket':
                states[i] = vector_to_operator(r)
            else:
                states[i] = r
            if expt_callback:
                # use callback method
                e_ops(times[i], states[i])
        for m in range(n_expt_op):
            if output.expect[m].dtype == complex:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 0)
            else:
                output.expect[m][i] = expect_rho_vec(e_sops_data[m], r, 1)

    output.solver = "ttmsolve"
    output.times = times

    output.ttmconvergence = diff

    if opt.store_states:
        output.states = states

    return output
示例#23
0
def current_from_L(L_dict, n_c_RC):
    ss = steadystate(L_dict['H_S'], [L_dict['L']])
    return -(qt.vector_to_operator(L_dict['L_R'] * qt.operator_to_vector(ss)) *
             n_c_RC).tr()
示例#24
0
def current_from_ss(ss, L_R, n_c_RC):
    return -(qt.vector_to_operator(L_R * qt.operator_to_vector(ss)) *
             n_c_RC).tr()
示例#25
0
 def fidelitycheck(self, out1, out2, rho0vec):
     fid = np.zeros(len(out1.states))
     for i, E in enumerate(out2.states):
         rhot = vector_to_operator(E * rho0vec)
         fid[i] = fidelity(out1.states[i], rhot)
     return fid
 def test_operator_vector_td(self):
     "Superoperator: operator_to_vector, time-dependent"
     assert_(
         operator_to_vector(self.t1)(.5) == operator_to_vector(self.t1(.5)))
     vec = operator_to_vector(self.t1)
     assert_(vector_to_operator(vec)(.5) == vector_to_operator(vec(.5)))