示例#1
0
def test_multiple_candidate_minerva():
    test_file = 'src/r2b2/tests/data/full_multi_cand.json'
    with open(test_file, 'r') as tf:
        data = json.load(tf)
        test = 'testx'
        # Get contest from test
        contest_data = data[test]['election']['contests']['contest_1']
        contest = Contest(contest_data['contest_ballots'],
                          contest_data['tally'], contest_data['num_winners'],
                          contest_data['reported_winners'],
                          ContestType[contest_data['contest_type']])
        audit = Minerva(data[test]['alpha'], 1.0, contest)

        for r in data[test]['rounds']:
            sample_raw = data[test]['rounds'][r]['pvalue']['observations']
            sample_size = sum(sample_raw)
            sample = {}
            for i, c in enumerate(contest.candidates):
                sample[c] = sample_raw[i]
            audit.execute_round(sample_size, sample)
            assert abs(
                data[test]['rounds'][r]['pvalue']['expected']['pvalue'] -
                audit.pvalue_schedule[-1]) < tol
            for pair in data[test]['rounds'][r]['pvalue']['expected'][
                    'pairwise']:
                assert abs(data[test]['rounds'][r]['pvalue']['expected']
                           ['pairwise'][pair] -
                           audit.sub_audits[pair].pvalue_schedule[-1]) < tol
示例#2
0
def test_execute_round_minerva():
    contest = Contest(100000, {
        'A': 60000,
        'B': 40000
    }, 1, ['A'], ContestType.MAJORITY)
    minerva = Minerva(.1, .1, contest)
    assert not minerva.execute_round(100, {'A': 57, 'B': 43})
    assert not minerva.stopped
    assert minerva.sample_ballots['A'] == [57]
    assert minerva.sample_ballots['B'] == [43]
    assert not minerva.sub_audits['A-B'].stopped
    assert minerva.rounds == [100]
    assert not minerva.execute_round(200, {'A': 112, 'B': 88})
    assert not minerva.stopped
    assert minerva.sample_ballots['A'] == [57, 112]
    assert minerva.sample_ballots['B'] == [43, 88]
    assert not minerva.sub_audits['A-B'].stopped
    assert minerva.rounds == [100, 200]
    assert minerva.execute_round(400, {'A': 221, 'B': 179})
    assert minerva.stopped
    assert minerva.sample_ballots['A'] == [57, 112, 221]
    assert minerva.sample_ballots['B'] == [43, 88, 179]
    assert minerva.sub_audits['A-B'].stopped
    assert minerva.rounds == [100, 200, 400]
    assert minerva.get_risk_level() < 0.1
def test_minerva_arlo():
    with open('tests/data/arlo_tests.json', 'r') as tf:
        data = json.load(tf)
        for test in data:
            contest_data = data[test]['contest']
            contest = Contest(contest_data['contest_ballots'], contest_data['tally'], contest_data['num_winners'],
                              contest_data['reported_winners'], ContestType[contest_data['contest_type']])
            if data[test]['audit_type'] != 'minerva':
                pass
            audit = Minerva(data[test]['alpha'], 1.0, contest)
            for r in data[test]['rounds']:
                round_data = data[test]['rounds'][r]
                audit.execute_round(round_data['sample_size'], round_data['sample'])

            assert audit.stopped == bool(data[test]['expected']['stopped'])
            assert abs(audit.get_risk_level() - data[test]['expected']['pvalue']) < tol
示例#4
0
def test_minerva_georgia_senate_2020():
    ga_senate_race = Contest(2453876 + 2358432, {
        'A': 2453876,
        'B': 2358432
    }, 1, ['A'], ContestType.PLURALITY)

    ga_senate_audit = Minerva(.1, 1.0, ga_senate_race)
    irrelevant_scale_up = 1.0238785631
    estimates = []
    for sprob in [.7, .8, .9]:
        estimates.append(
            math.ceil(irrelevant_scale_up *
                      ga_senate_audit.next_sample_size(sprob=sprob)))
    assert estimates == [10486, 13205, 18005]
    ga_senate_audit.execute_round(9903, {'A': 4950, 'B': 9903 - 4950})
    assert abs(ga_senate_audit.pvalue_schedule[-1] -
               0.527638189598802) < .000001
    ga_senate_audit.execute_round(24000, {'A': 11900, 'B': 24000 - 11900})
    assert abs(ga_senate_audit.pvalue_schedule[-1] -
               2.663358309286826) < .000001
    ga_senate_audit.execute_round(45600, {'A': 24000, 'B': 45600 - 24000})
    assert abs(ga_senate_audit.pvalue_schedule[-1]) < 0.000001

    ga_senate_audit = Minerva(.1, 1.0, ga_senate_race)
    ga_senate_audit.execute_round(17605, {'A': 8900, 'B': 17605 - 8900})
    assert abs(ga_senate_audit.get_risk_level() - 0.081750333563781) < .000001

    ga_senate_audit = Minerva(.1, 1.0, ga_senate_race)
    ga_senate_audit.execute_round(17605, {'A': 17605, 'B': 0})
    assert ga_senate_audit.get_risk_level() == 0

    ga_senate_audit = Minerva(.1, 1.0, ga_senate_race)
    ga_senate_audit.execute_round(17605, {'A': 0, 'B': 17605})
    assert abs(ga_senate_audit.get_risk_level() - 1) < 0.000001
def test_minerva_second_round_estimate_2016():
    with open('tests/data/2016_pres_trials.json', 'r') as json_file:
        data = json.load(json_file)

    out = {}
    out['data_check'] = {}

    for state in data:
        out['data_check'][state] = {}

        clinton = data[state]['tally']['Clinton']
        trump = data[state]['tally']['Trump']
        print(state)
        tally = {"Clinton": clinton, "Trump": trump}
        margin = abs((clinton - trump) / (clinton + trump))
        if margin < .10:
            continue

        contest = Contest(clinton + trump, tally, 1,
                          [max(tally, key=tally.get)], ContestType.PLURALITY)
        if tally['Clinton'] > tally['Trump']:
            rep_winner = 'Clinton'
            rep_loser = 'Trump'
        else:
            rep_winner = 'Trump'
            rep_loser = 'Clinton'

        for sim_type in [
                'underlying_reported_first_5',
                'underlying_reported_not_stop_5', 'underlying_tied_first_5'
        ]:
            out['data_check'][state][sim_type] = []
            for trial in data[state][sim_type]:
                n = trial['relevant_sample_size']
                k = trial['winner_ballots']
                minerva = Minerva(.1, 1.0, contest)
                minerva.execute_round(n, {rep_winner: k, rep_loser: n - k})
                p_value = minerva.get_risk_level()
                stop = minerva.stopped
                if stop:
                    minerva.next_min_winner_ballots()
                    minerva.truncate_dist_null()
                    minerva.truncate_dist_reported()
                next_round_data = minerva.next_sample_size(verbose=True)
                out['data_check'][state][sim_type].append({
                    "n":
                    n,
                    "k":
                    k,
                    "p_value":
                    p_value,
                    "stop":
                    bool(stop),
                    "kmin":
                    minerva.sub_audits[rep_winner + '-' +
                                       rep_loser].min_winner_ballots[-1],
                    "next_round_size":
                    next_round_data[0],
                    "next_round_kmin":
                    next_round_data[1],
                    "next_round_sprob":
                    next_round_data[2]
                })

            with open(
                    'tests/data/test_minerva_second_round_estimate_2016.json',
                    'w') as output:
                json.dump(out, output, sort_keys=True, indent=4)

    # Now that the file has been generated, compare to PV version.
    with open('tests/data/gm_test_minerva_second_round_estimate_2016.json',
              'r') as json_file:
        data_canonical = json.load(json_file)
    with open('tests/data/test_minerva_second_round_estimate_2016.json',
              'r') as json_file:
        data_test = json.load(json_file)

    for state in data_canonical['data_check']:
        if data_canonical['data_check'][state] == {}:
            continue
        for sim_type in [
                'underlying_reported_first_5',
                'underlying_reported_not_stop_5', 'underlying_tied_first_5'
        ]:
            for i in range(5):
                assert data_canonical['data_check'][state][sim_type][i][
                    'n'] == data_test['data_check'][state][sim_type][i]['n']
                assert data_canonical['data_check'][state][sim_type][i][
                    'k'] == data_test['data_check'][state][sim_type][i]['k']
                assert data_canonical['data_check'][state][sim_type][i][
                    'kmin'] == data_test['data_check'][state][sim_type][i][
                        'kmin']
                assert data_canonical['data_check'][state][sim_type][i][
                    'stop'] == data_test['data_check'][state][sim_type][i][
                        'stop']
                assert data_canonical['data_check'][state][sim_type][i]['next_round_size'] == \
                    data_test['data_check'][state][sim_type][i]['next_round_size']
                assert abs(data_canonical['data_check'][state][sim_type][i]
                           ['p_value'] - data_test['data_check'][state]
                           [sim_type][i]['p_value']) < .000001
                assert abs(data_canonical['data_check'][state][sim_type][i]
                           ['next_round_sprob'] - data_test['data_check']
                           [state][sim_type][i]['next_round_sprob']) < .000001