示例#1
0
def make_dipole(pole_dimensions,
                center,
                length,
                current=-10000,
                trimesh_mode=0,
                triangle_min_size=TRIANGLE_MIN_SIZE,
                triangle_max_size=TRIANGLE_MAX_SIZE,
                longitudinal_divisions=4):
    """
    Construct a complete H-dipole made of iron.
    :param pole_dimensions: (dict) Parameters describing geometry of pole piece. See `_create_point_table`.
    :param center: (float) Center point of dipole in x (longitudinal center for beam frame).
    :param length: (float) Length of the dipole in x
    :param current: (float) Current carried by dipole coils (default: -10000)
    :param trimesh_mode: (int) If 0 (default) then the pole piece is divisioned into polygons based on point ordering
    from coordinate list. If != 0 then a Triangular mesh is automatically generated.
    :param longitudinal_divisions: (int) Number of slices to divide up the dipole into along the x-axis (default: 4)
    :return:
    """
    # coil_factor increases coil size slightly to accommodate sharp corners of pole piece
    coil_length_factor = 1.005
    coil_height_factor = 3. / 4.
    coil_or_factor = 0.85
    # Geometry for the poles
    table_quadrant_one = _create_point_table(**pole_dimensions)
    top_coodinates = _get_all_points_top(table_quadrant_one)
    bottom_coordinates = _get_all_points_bottom(top_coodinates)

    top_pole = create_pole(top_coodinates,
                           center,
                           length,
                           mode=trimesh_mode,
                           triangle_min_size=triangle_min_size,
                           triangle_max_size=triangle_max_size)
    bottom_pole = create_pole(bottom_coordinates,
                              center,
                              length,
                              mode=trimesh_mode,
                              triangle_min_size=triangle_min_size,
                              triangle_max_size=triangle_max_size)

    # Material for the poles (uses Iron)
    ironmat = rad.MatSatIsoFrm([20000, 2], [0.1, 2], [0.1, 2])
    rad.MatApl(top_pole, ironmat)
    rad.MatApl(bottom_pole, ironmat)

    # Coils
    coil_outer_radius = pole_dimensions['pole_separation'] * coil_or_factor
    top_coil = make_racetrack_coil(
        center=[
            0, 0.0,
            pole_dimensions['gap_height'] + pole_dimensions['pole_height'] / 2.
        ],
        radii=[0.1, coil_outer_radius],
        sizes=[
            length * coil_length_factor,
            pole_dimensions['pole_width'] * 2 * coil_length_factor,
            pole_dimensions['pole_height'] * coil_height_factor
        ],
        current=current)
    bottom_coil = make_racetrack_coil(center=[
        0, 0.0, -1. *
        (pole_dimensions['gap_height'] + pole_dimensions['pole_height'] / 2.)
    ],
                                      radii=[0.1, coil_outer_radius],
                                      sizes=[
                                          length * coil_length_factor,
                                          pole_dimensions['pole_width'] * 2 *
                                          coil_length_factor,
                                          pole_dimensions['pole_height'] *
                                          coil_height_factor
                                      ],
                                      current=current)

    # Visualization
    rad.ObjDrwAtr(top_pole, [0, 0.4, 0.8])
    rad.ObjDrwAtr(bottom_pole, [0, 0.4, 0.8])
    rad.ObjDrwAtr(top_coil, [0.2, 0.9, 0.6])
    rad.ObjDrwAtr(bottom_coil, [0.2, 0.9, 0.6])

    # Element Division
    rad.ObjDivMag(top_pole, [longitudinal_divisions, 1, 1])
    rad.ObjDivMag(bottom_pole, [longitudinal_divisions, 1, 1])

    return rad.ObjCnt([top_pole, bottom_pole, top_coil, bottom_coil])
示例#2
0
    def build(self):
        """Create a quadrupole with the given geometry."""
        if self.solve_state < SolveState.SHAPES:
            self.define_shapes()

        rad.UtiDelAll()
        origin = [0, 0, 0]
        nx = [1, 0, 0]
        ny = [0, 1, 0]
        nz = [0, 0, 1]

        tip_mesh = round(self.min_mesh)
        pole_mesh = round(self.min_mesh * self.pole_mult)
        yoke_mesh = round(self.min_mesh * self.yoke_mult)

        length = self.length

        # Subdivide the pole tip cylindrically. The axis is where the edge of the tapered pole meets the Y-axis.
        points = rotate45(self.tip_points)
        x2, y2 = points[-2]  # top right of pole
        x3, y3 = points[-3]  # bottom right of pole
        m = (y2 - y3) / (x2 - x3)
        c = y2 - m * x2
        pole_tip = rad.ObjThckPgn(length / 2, length, points, "z")
        # Slice off the chamfer (note the indexing at the end here - selects the pole not the cut-off piece)
        pole_tip = rad.ObjCutMag(pole_tip, [length - self.chamfer, 0, self.r], [1, 0, -1])[0]
        n_div = max(1, round(math.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) / pole_mesh))
        # We have to specify the q values here (second element of each sublist in the subdivision argument)
        # otherwise weird things happen
        mesh = [[n_div, 4], [tip_mesh / 3, 1], [tip_mesh, 1]]
        div_opts = 'Frame->Lab;kxkykz->Size'
        # rad.ObjDivMag(pole_tip, [[tip_mesh, 1], [tip_mesh, 1], [tip_mesh, 3]], div_opts)
        rad.ObjDivMag(pole_tip, mesh, "cyl", [[[0, c, 0], nz], nx, 1], div_opts)
        rad.TrfOrnt(pole_tip, rad.TrfRot(origin, nz, -math.pi / 4))

        pole = rad.ObjThckPgn(length / 2, length, rotate45(self.pole_points), "z")
        rad.ObjDivMag(pole, [pole_mesh, ] * 3, div_opts)
        rad.TrfOrnt(pole, rad.TrfRot(origin, nz, -math.pi / 4))

        # Need to split yoke since Radia can't build concave blocks
        points = rotate45(self.yoke_points[:2] + self.yoke_points[-2:])
        # yoke1 is the part that joins the pole to the yoke
        # Subdivide this cylindrically since the flux goes around a corner here
        # The axis is the second point (x1, y1)
        x1, y1 = points[1]
        yoke1 = rad.ObjThckPgn(length / 2, length, points, "z")
        cyl_div = [[[x1, y1, 0], nz], [self.width, self.width, 0], 1]
        # The first (kr) argument, corresponding to radial subdivision,
        # in rad.ObjDivMag cuts by number not size even though kxkykz->Size is specified.
        # So we have to fudge this. It seems to require a larger number to give the right number of subdivisions.
        n_div = max(1, round(2 * self.width / yoke_mesh))
        rad.ObjDivMag(yoke1, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)
        rad.TrfOrnt(yoke1, rad.TrfRot(origin, nz, -math.pi / 4))

        # For the second part of the yoke, we use cylindrical subdivision again. But the axis is not on the corner;
        # instead we calculate the point where the two lines converge (xc, yc).
        points = self.yoke_points[1:3] + self.yoke_points[-3:-1]
        x0, y0 = points[0]
        x1, y1 = points[1]
        x2, y2 = points[2]
        x3, y3 = points[3]
        m1 = (y3 - y0) / (x3 - x0)
        m2 = (y2 - y1) / (x2 - x1)
        c1 = y0 - m1 * x0
        c2 = y1 - m2 * x1
        xc = (c2 - c1) / (m1 - m2)
        yc = m1 * xc + c1
        yoke2 = rad.ObjThckPgn(length / 2, length, points, 'z')
        cyl_div = [[[xc, yc, 0], nz], [x3 - xc, y3 - yc, 0], 1]
        n_div = max(1, round(0.7 * n_div))  # this is a bit of a fudge
        rad.ObjDivMag(yoke2, [n_div, yoke_mesh, yoke_mesh], "cyl", cyl_div, div_opts)

        yoke3 = rad.ObjThckPgn(length / 2, length, self.yoke_points[2:6], "z")
        rad.ObjDivMag(yoke3, [yoke_mesh, ] * 3, div_opts)

        steel = rad.ObjCnt([pole_tip, pole, yoke1, yoke2, yoke3])
        rad.ObjDrwAtr(steel, [0, 0, 1], 0.001)  # blue steel
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, -math.pi / 2))
        rad.ObjDrwOpenGL(steel)
        rad.TrfOrnt(steel, rad.TrfRot(origin, ny, math.pi / 2))
        # rad.TrfMlt(steel, rad.TrfPlSym([0, 0, 0], [1, -1, 0]), 2)  # reflect along X=Y line to create a quadrant
        rad.TrfZerPerp(steel, origin, [1, -1, 0])
        rad.TrfZerPerp(steel, origin, nz)
        steel_material = rad.MatSatIsoFrm([2000, 2], [0.1, 2], [0.1, 2])
        steel_material = rad.MatStd('Steel42')
        steel_material = rad.MatSatIsoFrm([959.703184, 1.41019852], [33.9916543, 0.5389669], [1.39161186, 0.64144324])
        rad.MatApl(steel, steel_material)

        coil = rad.ObjRaceTrk(origin, [5, 5 + self.coil_width],
                              [self.coil_x * 2 - self.r, length * 2], self.coil_height, 4, self.current_density)
        rad.TrfOrnt(coil, rad.TrfRot(origin, nx, -math.pi / 2))
        rad.TrfOrnt(coil, rad.TrfTrsl([0, self.r + self.taper_height + self.coil_height / 2, 0]))
        rad.TrfOrnt(coil, rad.TrfRot(origin, nz, -math.pi / 4))
        rad.ObjDrwAtr(coil, [1, 0, 0], 0.001)  # red coil
        quad = rad.ObjCnt([steel, coil])

        rad.TrfZerPara(quad, origin, nx)
        rad.TrfZerPara(quad, origin, ny)

        # rad.ObjDrwOpenGL(quad)
        self.radia_object = quad
        self.solve_state = SolveState.BUILT
示例#3
0
    def geom(circ):

        eps = 0
        ironcolor = [0, 0.5, 1]
        coilcolor = [1, 0, 0]
        ironmat = radia.MatSatIsoFrm([20000, 2], [0.1, 2], [0.1, 2])

        # Pole faces
        lx1 = thick / 2
        ly1 = width
        lz1 = 20
        l1 = [lx1, ly1, lz1]

        k1 = [[thick / 4. - chamfer / 2., 0, gap / 2.],
              [thick / 2. - chamfer, ly1 - 2. * chamfer]]
        k2 = [[thick / 4., 0., gap / 2. + chamfer], [thick / 2., ly1]]
        k3 = [[thick / 4., 0., gap / 2. + lz1], [thick / 2, ly1]]
        g1 = radia.ObjMltExtRtg([k1, k2, k3])
        radia.ObjDivMag(g1, n1)
        radia.ObjDrwAtr(g1, ironcolor)

        # Vertical segment on top of pole faces
        lx2 = thick / 2
        ly2 = ly1
        lz2 = 30
        l2 = [lx2, ly2, lz2]
        p2 = [thick / 4, 0, lz1 + gap / 2 + lz2 / 2 + 1 * eps]
        g2 = radia.ObjRecMag(p2, l2)
        radia.ObjDivMag(g2, n2)
        radia.ObjDrwAtr(g2, ironcolor)

        # Corner
        lx3 = thick / 2
        ly3 = ly2
        lz3 = ly2 * 1.25
        l3 = [lx3, ly3, lz3]
        p3 = [thick / 4, 0, lz1 + gap / 2 + lz2 + lz3 / 2 + 2 * eps]
        g3 = radia.ObjRecMag(p3, l3)

        typ = [
            [p3[0], p3[1] + ly3 / 2, p3[2] - lz3 / 2],
            [1, 0, 0],
            [p3[0], p3[1] - ly3 / 2, p3[2] - lz3 / 2],
            lz3 / ly3
        ]

        if circ == 1:
            radia.ObjDivMag(g3, [nbr, nbp, n3[1]], 'cyl', typ)
        else:
            radia.ObjDivMag(g3, n3)
        radia.ObjDrwAtr(g3, ironcolor)

        # Horizontal segment between the corners
        lx4 = thick / 2
        ly4 = 80
        lz4 = lz3
        l4 = [lx4, ly4, lz4]
        p4 = [thick / 4, ly3 / 2 + eps + ly4 / 2, p3[2]]
        g4 = radia.ObjRecMag(p4, l4)
        radia.ObjDivMag(g4, n4)
        radia.ObjDrwAtr(g4, ironcolor)

        # The other corner
        lx5 = thick / 2
        ly5 = lz4 * 1.25
        lz5 = lz4
        l5 = [lx5, ly5, lz5]
        p5 = [thick / 4, p4[1] + eps + (ly4 + ly5) / 2, p4[2]]
        g5 = radia.ObjRecMag(p5, l5)

        typ = [
            [p5[0], p5[1] - ly5 / 2, p5[2] - lz5 / 2],
            [1, 0, 0],
            [p5[0], p5[1] + ly5 / 2, p5[2] - lz5 / 2],
            lz5 / ly5
        ]

        if circ == 1:
            radia.ObjDivMag(g5, [nbr, nbp, n5[0]], 'cyl', typ)
        else:
            radia.ObjDivMag(g5, n5)
        radia.ObjDrwAtr(g5, ironcolor)

        # Vertical segment inside the coil
        lx6 = thick / 2
        ly6 = ly5
        lz6 = gap / 2 + lz1 + lz2
        l6 = [lx6, ly6, lz6]
        p6 = [thick / 4, p5[1], p5[2] - (lz6 + lz5) / 2 - eps]
        g6 = radia.ObjRecMag(p6, l6)
        radia.ObjDivMag(g6, n6)
        radia.ObjDrwAtr(g6, ironcolor)

        # Generation of the coil
        r_min = 5
        r_max = 40
        h = 2 * lz6 - 5

        cur_dens = current / h / (r_max - r_min)
        pc = [0, p6[1], 0]
        coil = radia.ObjRaceTrk(pc, [r_min, r_max], [thick, ly6], h, 3, cur_dens)
        radia.ObjDrwAtr(coil, coilcolor)

        # Make container and set the colors
        g = radia.ObjCnt([g1, g2, g3, g4, g5, g6])
        radia.ObjDrwAtr(g, ironcolor)
        radia.MatApl(g, ironmat)
        t = radia.ObjCnt([g, coil])

        # Define the symmetries
        radia.TrfZerPerp(g, [0, 0, 0], [1, 0, 0])
        radia.TrfZerPara(g, [0, 0, 0], [0, 0, 1])
        return t
示例#4
0
    #Segmentation Params
    nx = 2
    ny = 2
    n1 = [nx, ny, 3]
    n2 = [nx, ny, 3]
    np3 = 2
    nr3 = ny
    n4 = [nx, 3, ny]
    np5 = ceil(np3 / 2)
    print()
    nr5 = ny

    t0 = time()
    rad.UtiDelAll()
    ironmat = rad.MatSatIsoFrm([2000, 2], [0.1, 2], [0.1, 2])
    g = Geom()
    size = rad.ObjDegFre(g)

    t1 = time()
    Nmax = 10000
    res = rad.Solve(g, 0.00001, Nmax)
    t2 = time()

    Bz = rad.Fld(g, 'Bz', [0, 1, 0]) * 1000
    Iz = rad.FldInt(g, 'inf', 'ibz', [-1, 1, 0], [1, 1, 0])
    Iz1 = rad.FldInt(g, 'inf', 'ibz', [-1, 10, 0], [1, 10, 0]) / 10

    print('M_Max H_Max N_Iter = ', round(res[1], 4), 'T', round(res[2], 4),
          'T', round(res[3]))
    if (res[3] == Nmax): print('Unstable or Incomplete Relaxation')