def test_nocond(): f = ConditionalDispatch() # Multiply even numbers by two. f.add(lambda x: 2 * x, lambda x: x % 2 == 0) with pytest.raises(TypeError) as exc_info: f(3) assert "Your input did not fulfill the condition for any function." in str( exc_info.value)
def test_else2(): # This verifies else branches do not catch cases that are covered # by cases added later. f = ConditionalDispatch() # Because gcd(2, 3) == 1, 2 | x and 3 | x are mutually exclusive. f.add(lambda x: 2 * x, lambda x: x % 2 == 0) f.add(lambda x: 3 * x) f.add(lambda x: 4 * x, lambda x: x % 3 == 0) assert f(2) == 4 assert f(3) == 12 assert f(5) == 15
def test_else(): f = ConditionalDispatch() # Multiply even numbers by two. f.add(lambda x: 2 * x, lambda x: x % 2 == 0) f.add(lambda x: 3 * x) assert f(2) == 4 assert f(3) == 9
def oddeven(request): f = ConditionalDispatch() # Multiply even numbers by two. f.add(lambda x: 2 * x, lambda x: x % 2 == 0) # Multiply odd numbers by three. f.add(lambda x: 3 * x, lambda x: x % 2 == 1) return f
class SWavesSpectrogram(LinearTimeSpectrogram): _create = ConditionalDispatch.from_existing(LinearTimeSpectrogram._create) create = classmethod(_create.wrapper()) COPY_PROPERTIES = LinearTimeSpectrogram.COPY_PROPERTIES + [ ('bg', REFERENCE) ] @staticmethod def swavesfile_to_date(filename): _, name = os.path.split(filename) date = name.split('_')[2] return datetime.datetime( int(date[0:4]), int(date[4:6]), int(date[6:]) ) @classmethod def read(cls, filename, **kwargs): """ Read in FITS file and return a new SWavesSpectrogram. """ data = np.genfromtxt(filename, skip_header=2) time_axis = data[:, 0] * 60. data = data[:, 1:].transpose() header = np.genfromtxt(filename, skip_footer=time_axis.size) freq_axis = header[0, :] bg = header[1, :] start = cls.swavesfile_to_date(filename) end = start + datetime.timedelta(seconds=time_axis[-1]) t_delt = 60. t_init = (start - get_day(start)).seconds content = '' t_label = 'Time [UT]' f_label = 'Frequency [KHz]' freq_axis = freq_axis[::-1] data = data[::-1, :] return cls(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, bg) def __init__(self, data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, bg): # Because of how object creation works, there is no avoiding # unused arguments in this case. # pylint: disable=W0613 super(SWavesSpectrogram, self).__init__( data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, set(["SWAVES"]) ) self.bg = bg
class EOVSASpectrogram(LinearTimeSpectrogram): _create = ConditionalDispatch.from_existing(LinearTimeSpectrogram._create) create = classmethod(_create.wrapper()) COPY_PROPERTIES = LinearTimeSpectrogram.COPY_PROPERTIES + [ ('bg', REFERENCE) ] @classmethod def read(cls, filename, **kwargs): """ Read in FITS file and return a new SWavesSpectrogram. """ fl = fits.open(filename, **kwargs) data = fl[0].data freq_axis = fl[1].data.sfreq tdata = fl[2].data mjd = tdata.mjd sec = tdata.time / 1000. start = Time(mjd[0] + sec[0] / 86400., format='mjd').datetime end = Time(mjd[-1] + sec[-1] / 86400., format='mjd').datetime time_axis = sec - sec[0] header = fl[0].header t_delt = 1.0 t_init = (start - get_day(start)).seconds content = 'EOVSA' t_label = 'Time [UT]' f_label = 'Frequency [GHz]' #reverse the frequency axis freq_axis = freq_axis[::-1] data = data[::-1, :] return cls(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content) def __init__(self, data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content): # Because of how object creation works, there is no avoiding # unused arguments in this case. # pylint: disable=W0613 super(EOVSASpectrogram, self).__init__(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, set(["EOVSA"]))
class Spectrogram(Parent): """ Spectrogram Class. .. warning:: This module is under development! Use at your own risk. Attributes ---------- data : `~numpy.ndarray` two-dimensional array of the image data of the spectrogram. time_axis : `~numpy.ndarray` one-dimensional array containing the offset from the start for each column of data. freq_axis : `~numpy.ndarray` one-dimensional array containing information about the frequencies each row of the image corresponds to. start : `~datetime.datetime` starting time of the measurement end : `~datetime.datetime` end time of the measurement t_init : int offset from the start of the day the measurement began. If None gets automatically set from start. t_label : str label for the time axis f_label : str label for the frequency axis content : str header for the image instruments : str array instruments that recorded the data, may be more than one if it was constructed using combine_frequencies or join_many. """ # Contrary to what pylint may think, this is not an old-style class. # pylint: disable=E1002,W0142,R0902 # This needs to list all attributes that need to be # copied to maintain the object and how to handle them. COPY_PROPERTIES = [ ('time_axis', COPY), ('freq_axis', COPY), ('instruments', COPY), ('start', REFERENCE), ('end', REFERENCE), ('t_label', REFERENCE), ('f_label', REFERENCE), ('content', REFERENCE), ('t_init', REFERENCE), ] _create = ConditionalDispatch.from_existing(Parent._create) @property def shape(self): return self.data.shape @property def dtype(self): return self.data.dtype def _get_params(self): """ Implementation detail. """ return { name: getattr(self, name) for name, _ in self.COPY_PROPERTIES } def _slice(self, y_range, x_range): """ Return new spectrogram reduced to the values passed as slices. Implementation detail. """ data = self.data[y_range, x_range] params = self._get_params() soffset = 0 if x_range.start is None else x_range.start soffset = int(soffset) eoffset = self.shape[1] if x_range.stop is None else x_range.stop # pylint: disable=E1101 eoffset -= 1 eoffset = int(eoffset) params.update({ 'time_axis': self.time_axis[ x_range.start:x_range.stop:x_range.step ] - self.time_axis[soffset], 'freq_axis': self.freq_axis[ y_range.start:y_range.stop:y_range.step], 'start': self.start + datetime.timedelta( seconds=self.time_axis[soffset]), 'end': self.start + datetime.timedelta( seconds=self.time_axis[eoffset]), 't_init': self.t_init + self.time_axis[soffset], }) return self.__class__(data, **params) def _with_data(self, data): new = copy(self) new.data = data return new def __init__(self, data, time_axis, freq_axis, start, end, t_init=None, t_label="Time", f_label="Frequency", content="", instruments=None): # Because of how object creation works, there is no avoiding # unused arguments in this case. self.data = data if t_init is None: diff = start - get_day(start) t_init = diff.seconds if instruments is None: instruments = set() self.start = start self.end = end self.t_label = t_label self.f_label = f_label self.t_init = t_init self.time_axis = time_axis self.freq_axis = freq_axis self.content = content self.instruments = instruments def time_formatter(self, x, pos): """ This returns the label for the tick of value x at a specified pos on the time axis. """ # Callback, cannot avoid unused arguments. # pylint: disable=W0613 x = int(x) if x >= len(self.time_axis) or x < 0: return "" return self.format_time( self.start + datetime.timedelta( seconds=float(self.time_axis[x]) ) ) @staticmethod def format_time(time): """ Override to configure default plotting. """ return time.strftime("%H:%M:%S") @staticmethod def format_freq(freq): """ Override to configure default plotting. """ return "{freq:0.1f}".format(freq=freq) def peek(self, *args, **kwargs): """ Plot spectrum onto current axes. Parameters ---------- *args : dict **kwargs : dict Any additional plot arguments that should be used when plotting. Returns ------- fig : `~matplotlib.Figure` A plot figure. """ figure() ret = self.plot(*args, **kwargs) plt.show() return ret def plot(self, figure=None, overlays=[], colorbar=True, vmin=None, vmax=None, linear=True, showz=True, yres=DEFAULT_YRES, max_dist=None, **matplotlib_args): """ Plot spectrogram onto figure. Parameters ---------- figure : `~matplotlib.Figure` Figure to plot the spectrogram on. If None, new Figure is created. overlays : list List of overlays (functions that receive figure and axes and return new ones) to be applied after drawing. colorbar : bool Flag that determines whether or not to draw a colorbar. If existing figure is passed, it is attempted to overdraw old colorbar. vmin : float Clip intensities lower than vmin before drawing. vmax : float Clip intensities higher than vmax before drawing. linear : bool If set to True, "stretch" image to make frequency axis linear. showz : bool If set to True, the value of the pixel that is hovered with the mouse is shown in the bottom right corner. yres : int or None To be used in combination with linear=True. If None, sample the image with half the minimum frequency delta. Else, sample the image to be at most yres pixels in vertical dimension. Defaults to 1080 because that's a common screen size. max_dist : float or None If not None, mask elements that are further than max_dist away from actual data points (ie, frequencies that actually have data from the receiver and are not just nearest-neighbour interpolated). """ # [] as default argument is okay here because it is only read. # pylint: disable=W0102,R0914 if linear: delt = yres if delt is not None: delt = max( (self.freq_axis[0] - self.freq_axis[-1]) / (yres - 1), _min_delt(self.freq_axis) / 2. ) delt = float(delt) data = _LinearView(self.clip_values(vmin, vmax), delt) freqs = np.arange( self.freq_axis[0], self.freq_axis[-1], -data.delt ) else: data = np.array(self.clip_values(vmin, vmax)) freqs = self.freq_axis figure = plt.gcf() if figure.axes: axes = figure.axes[0] else: axes = figure.add_subplot(111) params = { 'origin': 'lower', 'aspect': 'auto', } params.update(matplotlib_args) if linear and max_dist is not None: toplot = ma.masked_array(data, mask=data.make_mask(max_dist)) else: toplot = data im = axes.imshow(toplot, **params) xa = axes.get_xaxis() ya = axes.get_yaxis() xa.set_major_formatter( FuncFormatter(self.time_formatter) ) if linear: # Start with a number that is divisible by 5. init = (self.freq_axis[0] % 5) / data.delt nticks = 15. # Calculate MHz difference between major ticks. dist = (self.freq_axis[0] - self.freq_axis[-1]) / nticks # Round to next multiple of 10, at least ten. dist = max(round(dist, -1), 10) # One pixel in image space is data.delt MHz, thus we can convert # our distance between the major ticks into image space by dividing # it by data.delt. ya.set_major_locator( IndexLocator( dist / data.delt, init ) ) ya.set_minor_locator( IndexLocator( dist / data.delt / 10, init ) ) def freq_fmt(x, pos): # This is necessary because matplotlib somehow tries to get # the mid-point of the row, which we do not need here. x = x + 0.5 return self.format_freq(self.freq_axis[0] - x * data.delt) else: freq_fmt = _list_formatter(freqs, self.format_freq) ya.set_major_locator(MaxNLocator(integer=True, steps=[1, 5, 10])) ya.set_major_formatter( FuncFormatter(freq_fmt) ) axes.set_xlabel(self.t_label) axes.set_ylabel(self.f_label) # figure.suptitle(self.content) figure.suptitle( ' '.join([ get_day(self.start).strftime("%d %b %Y"), 'Radio flux density', '(' + ', '.join(self.instruments) + ')', ]) ) for tl in xa.get_ticklabels(): tl.set_fontsize(10) tl.set_rotation(30) figure.add_axes(axes) figure.subplots_adjust(bottom=0.2) figure.subplots_adjust(left=0.2) if showz: axes.format_coord = self._mk_format_coord( data, figure.gca().format_coord) if colorbar: if len(figure.axes) > 1: Colorbar(figure.axes[1], im).set_label("Intensity") else: figure.colorbar(im).set_label("Intensity") for overlay in overlays: figure, axes = overlay(figure, axes) for ax in figure.axes: ax.autoscale() if isinstance(figure, SpectroFigure): figure._init(self, freqs) return axes def __getitem__(self, key): only_y = not isinstance(key, tuple) if only_y: return self.data[int(key)] elif isinstance(key[0], slice) and isinstance(key[1], slice): return self._slice(key[0], key[1]) elif isinstance(key[1], slice): # return Spectrum( # XXX: Right class # super(Spectrogram, self).__getitem__(key), # self.time_axis[key[1].start:key[1].stop:key[1].step] # ) return np.array(self.data[key]) elif isinstance(key[0], slice): return Spectrum( self.data[key], self.freq_axis[key[0].start:key[0].stop:key[0].step] ) return self.data[int(key)] def clip_freq(self, vmin=None, vmax=None): """ Return a new spectrogram only consisting of frequencies in the interval [vmin, vmax]. Parameters ---------- vmin : float All frequencies in the result are greater or equal to this. vmax : float All frequencies in the result are smaller or equal to this. """ left = 0 if vmax is not None: while self.freq_axis[left] > vmax: left += 1 right = len(self.freq_axis) - 1 if vmin is not None: while self.freq_axis[right] < vmin: right -= 1 return self[left:right + 1, :] def auto_find_background(self, amount=0.05): """ Automatically find the background. This is done by first subtracting the average value in each channel and then finding those times which have the lowest standard deviation. Parameters ---------- amount : float The percent amount (out of 1) of lowest standard deviation to consider. """ # pylint: disable=E1101,E1103 data = self.data.astype(to_signed(self.dtype)) # Subtract average value from every frequency channel. tmp = (data - np.average(self.data, 1).reshape(self.shape[0], 1)) # Get standard deviation at every point of time. # Need to convert because otherwise this class's __getitem__ # is used which assumes two-dimensionality. sdevs = np.asarray(np.std(tmp, 0)) # Get indices of values with lowest standard deviation. cand = sorted(list(range(self.shape[1])), key=lambda y: sdevs[y]) # Only consider the best 5 %. return cand[:max(1, int(amount * len(cand)))] def auto_const_bg(self): """ Automatically determine background. """ realcand = self.auto_find_background() bg = np.average(self.data[:, realcand], 1) return bg.reshape(self.shape[0], 1) def subtract_bg(self): """ Perform constant background subtraction. """ return self._with_data(self.data - self.auto_const_bg()) def randomized_auto_const_bg(self, amount): """ Automatically determine background. Only consider a randomly chosen subset of the image. Parameters ---------- amount : int Size of random sample that is considered for calculation of the background. """ cols = [randint(0, self.shape[1] - 1) for _ in range(amount)] # pylint: disable=E1101,E1103 data = self.data.astype(to_signed(self.dtype)) # Subtract average value from every frequency channel. tmp = (data - np.average(self.data, 1).reshape(self.shape[0], 1)) # Get standard deviation at every point of time. # Need to convert because otherwise this class's __getitem__ # is used which assumes two-dimensionality. tmp = tmp[:, cols] sdevs = np.asarray(np.std(tmp, 0)) # Get indices of values with lowest standard deviation. cand = sorted(list(range(amount)), key=lambda y: sdevs[y]) # Only consider the best 5 %. realcand = cand[:max(1, int(0.05 * len(cand)))] # Average the best 5 % bg = np.average(self[:, [cols[r] for r in realcand]], 1) return bg.reshape(self.shape[0], 1) def randomized_subtract_bg(self, amount): """ Perform randomized constant background subtraction. Does not produce the same result every time it is run. Parameters ---------- amount : int Size of random sample that is considered for calculation of the background. """ return self._with_data(self.data - self.randomized_auto_const_bg(amount)) def clip_values(self, vmin=None, vmax=None, out=None): """ Clip intensities to be in the interval [vmin, vmax]. Any values greater than the maximum will be assigned the maximum, any values lower than the minimum will be assigned the minimum. If either is left out or None, do not clip at that side of the interval. Parameters ---------- min : int or float New minimum value for intensities. max : int or float New maximum value for intensities """ # pylint: disable=E1101 if vmin is None: vmin = int(self.data.min()) if vmax is None: vmax = int(self.data.max()) return self._with_data(self.data.clip(vmin, vmax, out)) def rescale(self, vmin=0, vmax=1, dtype=np.dtype('float32')): """ Rescale intensities to [vmin, vmax]. Note that vmin ≠ vmax and spectrogram.min() ≠ spectrogram.max(). Parameters ---------- vmin : float or int New minimum value in the resulting spectrogram. vmax : float or int New maximum value in the resulting spectrogram. dtype : `numpy.dtype` Data-type of the resulting spectrogram. """ if vmax == vmin: raise ValueError("Maximum and minimum must be different.") if self.data.max() == self.data.min(): raise ValueError("Spectrogram needs to contain distinct values.") data = self.data.astype(dtype) # pylint: disable=E1101 return self._with_data( vmin + (vmax - vmin) * (data - self.data.min()) / # pylint: disable=E1101 (self.data.max() - self.data.min()) # pylint: disable=E1101 ) def interpolate(self, frequency): """ Linearly interpolate intensity at unknown frequency using linear interpolation of its two neighbours. Parameters ---------- frequency : float or int Unknown frequency for which to linearly interpolate the intensities. freq_axis[0] >= frequency >= self_freq_axis[-1] """ lfreq, lvalue = None, None for freq, value in zip(self.freq_axis, self.data[:, :]): if freq < frequency: break lfreq, lvalue = freq, value else: raise ValueError("Frequency not in interpolation range") if lfreq is None: raise ValueError("Frequency not in interpolation range") diff = frequency - freq # pylint: disable=W0631 ldiff = lfreq - frequency return (ldiff * value + diff * lvalue) / (diff + ldiff) # pylint: disable=W0631 def linearize_freqs(self, delta_freq=None): """ Rebin frequencies so that the frequency axis is linear. Parameters ---------- delta_freq : float Difference between consecutive values on the new frequency axis. Defaults to half of smallest delta in current frequency axis. Compare Nyquist-Shannon sampling theorem. """ if delta_freq is None: # Nyquist–Shannon sampling theorem delta_freq = _min_delt(self.freq_axis) / 2. nsize = int((self.freq_axis.max() - self.freq_axis.min()) / delta_freq + 1) new = np.zeros((int(nsize), self.shape[1]), dtype=self.data.dtype) freqs = self.freq_axis - self.freq_axis.max() freqs = freqs / delta_freq midpoints = np.round((freqs[:-1] + freqs[1:]) / 2) fillto = np.concatenate( [midpoints - 1, np.round([freqs[-1]]) - 1] ) fillfrom = np.concatenate( [np.round([freqs[0]]), midpoints - 1] ) fillto = np.abs(fillto) fillfrom = np.abs(fillfrom) for row, from_, to_ in zip(self, fillfrom, fillto): new[int(from_): int(to_)] = row vrs = self._get_params() vrs.update({ 'freq_axis': np.linspace( self.freq_axis.max(), self.freq_axis.min(), nsize ) }) return self.__class__(new, **vrs) def freq_overlap(self, other): """ Get frequency range present in both spectrograms. Returns (min, max) tuple. Parameters ---------- other : Spectrogram other spectrogram with which to look for frequency overlap """ lower = max(self.freq_axis[-1], other.freq_axis[-1]) upper = min(self.freq_axis[0], other.freq_axis[0]) if lower > upper: raise ValueError("No overlap.") return lower, upper def time_to_x(self, time): """ Return x-coordinate in spectrogram that corresponds to the passed `~datetime.datetime` value. Parameters ---------- time : `~sunpy.time.parse_time` compatible str `~datetime.datetime` to find the x coordinate for. """ diff = time - self.start diff_s = SECONDS_PER_DAY * diff.days + diff.seconds if self.time_axis[-1] < diff_s < 0: raise ValueError("Out of bounds") for n, elem in enumerate(self.time_axis): if diff_s < elem: return n - 1 # The last element is the searched one. return n def at_freq(self, freq): return self[np.nonzero(self.freq_axis == freq)[0], :] @staticmethod def _mk_format_coord(spec, fmt_coord): def format_coord(x, y): shape = list(map(int, spec.shape)) xint, yint = int(x), int(y) if 0 <= xint < shape[1] and 0 <= yint < shape[0]: pixel = spec[yint][xint] else: pixel = "" return '{!s} z={!s}'.format(fmt_coord(x, y), pixel) return format_coord
class CallistoSpectrogram(LinearTimeSpectrogram): """ Class used for dynamic spectra coming from the Callisto network. Attributes ---------- header : `~astropy.io.fits.Header` main header of the FITS file axes_header : `~astropy.io.fits.Header` header for the axes table swapped : bool flag that specifies whether originally in the file the x-axis was frequency """ # XXX: Determine those from the data. SIGMA_SUM = 75 SIGMA_DELTA_SUM = 20 _create = ConditionalDispatch.from_existing(LinearTimeSpectrogram._create) create = classmethod(_create.wrapper()) # Contrary to what pylint may think, this is not an old-style class. # pylint: disable=E1002,W0142,R0902 # This needs to list all attributes that need to be # copied to maintain the object and how to handle them. COPY_PROPERTIES = LinearTimeSpectrogram.COPY_PROPERTIES + [ ('header', REFERENCE), ('swapped', REFERENCE), ('axes_header', REFERENCE) ] # List of instruments retrieved in July 2012 from # http://soleil.i4ds.ch/solarradio/data/2002-20yy_Callisto/ INSTRUMENTS = { 'ALASKA', 'ALMATY', 'BIR', 'DARO', 'HB9SCT', 'HUMAIN', 'HURBANOVO', 'KASI', 'KENYA', 'KRIM', 'MALAYSIA', 'MRT1', 'MRT2', 'OOTY', 'OSRA', 'SWMC', 'TRIEST', 'UNAM' } def save(self, filepath): """ Save modified spectrogram back to filepath. Parameters ---------- filepath : str path to save the spectrogram to """ main_header = self.get_header() data = fits.PrimaryHDU(self, header=main_header) # XXX: Update axes header. freq_col = fits.Column(name="frequency", format="D8.3", array=self.freq_axis) time_col = fits.Column(name="time", format="D8.3", array=self.time_axis) cols = fits.ColDefs([freq_col, time_col]) table = fits.new_table(cols, header=self.axes_header) hdulist = fits.HDUList([data, table]) hdulist.writeto(filepath) def get_header(self): """ Returns the updated header. """ header = self.header.copy() if self.swapped: header['NAXIS2'] = self.shape[1] # pylint: disable=E1101 header['NAXIS1'] = self.shape[0] # pylint: disable=E1101 else: header['NAXIS1'] = self.shape[1] # pylint: disable=E1101 header['NAXIS2'] = self.shape[0] # pylint: disable=E1101 return header @classmethod def read(cls, filename, **kwargs): """ Reads in FITS file and return a new CallistoSpectrogram. Any unknown (i.e. any except filename) keyword arguments get passed to fits.open. Parameters ---------- filename : str path of the file to read """ fl = fits.open(filename, **kwargs) data = fl[0].data axes = fl[1] header = fl[0].header start = _parse_header_time( header['DATE-OBS'], header.get('TIME-OBS', header.get('TIME$_OBS'))) end = _parse_header_time( header['DATE-END'], header.get('TIME-END', header.get('TIME$_END'))) swapped = "time" not in header["CTYPE1"].lower() # Swap dimensions so x-axis is always time. if swapped: t_delt = header["CDELT2"] t_init = header["CRVAL2"] - t_delt * header["CRPIX2"] t_label = header["CTYPE2"] f_delt = header["CDELT1"] f_init = header["CRVAL1"] - t_delt * header["CRPIX1"] f_label = header["CTYPE1"] data = data.transpose() else: t_delt = header["CDELT1"] t_init = header["CRVAL1"] - t_delt * header["CRPIX1"] t_label = header["CTYPE1"] f_delt = header["CDELT2"] f_init = header["CRVAL2"] - t_delt * header["CRPIX2"] f_label = header["CTYPE2"] # Table may contain the axes data. If it does, the other way of doing # it might be very wrong. if axes is not None: try: # It's not my fault. Neither supports __contains__ nor .get tm = axes.data['time'] except KeyError: tm = None try: fq = axes.data['frequency'] except KeyError: fq = None if tm is not None: # Fix dimensions (whyever they are (1, x) in the first place) time_axis = np.squeeze(tm) else: # Otherwise, assume it's linear. time_axis = \ np.linspace(0, data.shape[1] - 1) * t_delt + t_init # pylint: disable=E1101 if fq is not None: freq_axis = np.squeeze(fq) else: freq_axis = \ np.linspace(0, data.shape[0] - 1) * f_delt + f_init # pylint: disable=E1101 content = header["CONTENT"] instruments = {header["INSTRUME"]} fl.close() return cls(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, instruments, header, axes.header, swapped) def __init__(self, data, time_axis, freq_axis, start, end, t_init=None, t_delt=None, t_label="Time", f_label="Frequency", content="", instruments=None, header=None, axes_header=None, swapped=False): # Because of how object creation works, there is no avoiding # unused arguments in this case. # pylint: disable=W0613 super(CallistoSpectrogram, self).__init__(data, time_axis, freq_axis, start, end, t_init, t_delt, t_label, f_label, content, instruments) self.header = header self.axes_header = axes_header self.swapped = swapped @classmethod def is_datasource_for(cls, header): """ Check if class supports data from the given FITS file. Parameters ---------- header : `~astropy.io.fits.Header` main header of the FITS file """ return header.get('instrume', '').strip() in cls.INSTRUMENTS def remove_border(self): """ Remove duplicate entries on the borders. """ left = 0 while self.freq_axis[left] == self.freq_axis[0]: left += 1 right = self.shape[0] - 1 while self.freq_axis[right] == self.freq_axis[-1]: right -= 1 return self[left - 1:right + 2, :] @classmethod def read_many(cls, filenames, sort_by=None): """ Returns a list of CallistoSpectrogram objects read from filenames. Parameters ---------- filenames : list of str list of paths to read from sort_by : str optional attribute of the resulting objects to sort from, e.g. start to sort by starting time. """ objs = list(map(cls.read, filenames)) if sort_by is not None: objs.sort(key=lambda x: getattr(x, sort_by)) return objs @classmethod def from_range(cls, instrument, start, end, **kwargs): """ Automatically download data from instrument between start and end and join it together. Parameters ---------- instrument : str instrument to retrieve the data from start : `~sunpy.time.parse_time` compatible start of the measurement end : `~sunpy.time.parse_time` compatible end of the measurement """ kw = { 'maxgap': None, 'fill': cls.JOIN_REPEAT, } kw.update(kwargs) if SUNPY_LT_1: start = parse_time(start) end = parse_time(end) else: start = parse_time(start).datetime end = parse_time(end).datetime urls = query(start, end, [instrument]) data = list(map(cls.from_url, urls)) freq_buckets = defaultdict(list) for elem in data: freq_buckets[tuple(elem.freq_axis)].append(elem) try: return cls.combine_frequencies( [cls.join_many(elem, **kw) for elem in freq_buckets.values()]) except ValueError: raise ValueError("No data found.") def _overlap(self, other): """ Find frequency and time overlap of two spectrograms. """ one, two = self.intersect_time([self, other]) ovl = one.freq_overlap(two) return one.clip_freq(*ovl), two.clip_freq(*ovl) @staticmethod def _to_minimize(a, b): """ Function to be minimized for matching to frequency channels. """ def _fun(p): if p[0] <= 0.2 or abs(p[1]) >= a.max(): return float("inf") return a - (p[0] * b + p[1]) return _fun def _homogenize_params(self, other, maxdiff=1): """ Return triple with a tuple of indices (in self and other, respectively), factors and constants at these frequencies. Parameters ---------- other : `radiospectra.CallistoSpectrogram` Spectrogram to be homogenized with the current one. maxdiff : float Threshold for which frequencies are considered equal. """ pairs_indices = [ (x, y) for x, y, d in minimal_pairs(self.freq_axis, other.freq_axis) if d <= maxdiff ] pairs_data = [(self[n_one, :], other[n_two, :]) for n_one, n_two in pairs_indices] # XXX: Maybe unnecessary. pairs_data_gaussian = [(gaussian_filter1d(a, 15), gaussian_filter1d(b, 15)) for a, b in pairs_data] # If we used integer arithmetic, we would accept more invalid # values. pairs_data_gaussian64 = np.float64(pairs_data_gaussian) least = [ leastsq(self._to_minimize(a, b), [1, 0])[0] for a, b in pairs_data_gaussian64 ] factors = [x for x, y in least] constants = [y for x, y in least] return pairs_indices, factors, constants def homogenize(self, other, maxdiff=1): """ Return overlapping part of self and other as (self, other) tuple. Homogenize intensities so that the images can be used with combine_frequencies. Note that this works best when most of the picture is signal, so use :py:meth:`in_interval` to select the subset of your image before applying this method. Parameters ---------- other : `radiospectra.CallistoSpectrogram` Spectrogram to be homogenized with the current one. maxdiff : float Threshold for which frequencies are considered equal. """ one, two = self._overlap(other) pairs_indices, factors, constants = one._homogenize_params( two, maxdiff) # XXX: Maybe (xd.freq_axis[x] + yd.freq_axis[y]) / 2. pairs_freqs = [one.freq_axis[x] for x, y in pairs_indices] # XXX: Extrapolation does not work this way. # XXX: Improve. f1 = np.polyfit(pairs_freqs, factors, 3) f2 = np.polyfit(pairs_freqs, constants, 3) return (one, two * np.polyval(f1, two.freq_axis)[:, np.newaxis] + np.polyval(f2, two.freq_axis)[:, np.newaxis]) def extend(self, minutes=15, **kwargs): """ Requests subsequent files from the server. If minutes is negative, retrieve preceding files. """ if len(self.instruments) != 1: raise ValueError instrument = next(iter(self.instruments)) if minutes > 0: data = CallistoSpectrogram.from_range( instrument, self.end, self.end + datetime.timedelta(minutes=minutes)) else: data = CallistoSpectrogram.from_range( instrument, self.start - datetime.timedelta(minutes=-minutes), self.start) data = data.clip_freq(self.freq_axis[-1], self.freq_axis[0]) return CallistoSpectrogram.join_many([self, data], **kwargs) @classmethod def from_url(cls, url): """ Returns CallistoSpectrogram read from URL. Parameters ---------- url : str URL to retrieve the data from Returns ------- newSpectrogram : `radiospectra.CallistoSpectrogram` """ return cls.read(url)
def test_types(): f = ConditionalDispatch() f.add(lambda x: 2 * x, lambda x: x % 2 == 0, [int]) with pytest.raises(TypeError): f(2.0)