示例#1
0
def test_different_view_of_last_bp_during_unlock(
    raiden_chain,
    number_of_nodes,
    token_addresses,
    deposit,
    network_wait,
    retry_timeout,
    # UDP does not seem to retry messages until processed
    # https://github.com/raiden-network/raiden/issues/3185
    skip_if_not_matrix,
):
    """Test for https://github.com/raiden-network/raiden/issues/3196#issuecomment-449163888"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )
    token_proxy = app0.raiden.chain.token(token_address)
    initial_balance0 = token_proxy.balance_of(app0.raiden.address)
    initial_balance1 = token_proxy.balance_of(app1.raiden.address)

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_search_for_item(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {
            'lock': {
                'amount': amount_refund
            }
        }},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_search_for_item(app1.raiden,
                                                SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(lock)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task

    with dont_handle_node_change_network_state():
        # now app1 goes offline
        app1.raiden.stop()
        app1.raiden.get()
        assert not app1.raiden

        # Wait for lock expiration so that app0 sends a LockExpired
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )

        # make sure that app0 sent a lock expired message for the secrethash
        wait_for_raiden_event(
            app0.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
            retry_timeout,
        )

        # now app0 closes the channel
        RaidenAPI(app0.raiden).channel_close(
            registry_address=payment_network_identifier,
            token_address=token_address,
            partner_address=app1.raiden.address,
        )

    count = 0
    original_update = app1.raiden.raiden_event_handler.handle_contract_send_channelupdate

    def patched_update(raiden, event):
        nonlocal count
        count += 1
        original_update(raiden, event)

    app1.raiden.raiden_event_handler.handle_contract_send_channelupdate = patched_update
    # and now app1 comes back online
    app1.raiden.start()
    # test for https://github.com/raiden-network/raiden/issues/3216
    assert count == 1, 'Update transfer should have only been called once during restart'
    channel_identifier = get_channelstate(app0, app1,
                                          token_network_identifier).identifier

    # and we wait for settlement
    wait_for_settle(
        raiden=app0.raiden,
        payment_network_id=payment_network_identifier,
        token_address=token_address,
        channel_ids=[channel_identifier],
        retry_timeout=app0.raiden.alarm.sleep_time,
    )

    with gevent.Timeout(10):
        unlock_app0 = wait_for_state_change(
            app0.raiden,
            ContractReceiveChannelBatchUnlock,
            {'participant': app0.raiden.address},
            retry_timeout,
        )
    assert unlock_app0.returned_tokens == 50
    with gevent.Timeout(10):
        unlock_app1 = wait_for_state_change(
            app1.raiden,
            ContractReceiveChannelBatchUnlock,
            {'participant': app1.raiden.address},
            retry_timeout,
        )
    assert unlock_app1.returned_tokens == 50
    final_balance0 = token_proxy.balance_of(app0.raiden.address)
    final_balance1 = token_proxy.balance_of(app1.raiden.address)

    assert final_balance0 - deposit - initial_balance0 == -1
    assert final_balance1 - deposit - initial_balance1 == 1
示例#2
0
def test_refund_transfer_after_2nd_hop(
    raiden_chain,
    number_of_nodes,
    token_addresses,
    deposit,
    network_wait,
):
    """Test the refund transfer sent due to failure after 2nd hop"""
    # Topology:
    #
    #  0 -> 1 -> 2 -> 3
    #
    app0, app1, app2, app3 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2 -> app3
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        initiator_app=app0,
        target_app=app3,
        token_network_identifier=token_network_identifier,
        amount=amount_path,
        identifier=identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app2 -> app3
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app2,
        target_app=app3,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path,
        [],
        app2,
        deposit + amount_path,
        [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app2,
        deposit - amount_path - amount_drain,
        [],
        app3,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 > app3 is the only available path, but the channel
    # app2 -> app3 doesn't have capacity, so a refund will be sent on
    # app2 -> app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app3.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # Lock structures with the correct amount

    send_locked1 = raiden_events_search_for_item(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {
            'lock': {
                'amount': amount_refund
            }
        }},
    )
    assert send_locked1

    send_refund1 = raiden_events_search_for_item(app1.raiden,
                                                 SendRefundTransfer, {})
    assert send_refund1

    lock1 = send_locked1.transfer.lock
    refund_lock1 = send_refund1.transfer.lock
    assert lock1.amount == refund_lock1.amount
    assert lock1.secrethash == refund_lock1.secrethash

    send_locked2 = raiden_events_search_for_item(
        app1.raiden,
        SendLockedTransfer,
        {'transfer': {
            'lock': {
                'amount': amount_refund
            }
        }},
    )
    assert send_locked2

    send_refund2 = raiden_events_search_for_item(app2.raiden,
                                                 SendRefundTransfer, {})
    assert send_refund2

    lock2 = send_locked2.transfer.lock
    refund_lock2 = send_refund2.transfer.lock
    assert lock2.amount == refund_lock2.amount
    assert lock2.secrethash
    assert lock2.expiration

    # channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(lock1)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock1)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path,
        [lockstate_from_lock(lock2)],
        app2,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock2)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app2,
        deposit - amount_path - amount_drain,
        [],
        app3,
        deposit + amount_path + amount_drain,
        [],
    )
示例#3
0
def test_refund_transfer(raiden_chain, token_addresses, deposit, network_wait,
                         skip_if_not_udp):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    direct_transfer(
        app1,
        app2,
        token_network_identifier,
        amount_drain,
        identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synched_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synched_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = next(
        event for _, event in app0.raiden.wal.storage.get_events_by_identifier(
            0, 'latest') if isinstance(event, SendLockedTransfer)
        and event.transfer.lock.amount == amount_refund)
    assert send_locked

    send_refund = next(
        event for _, event in app1.raiden.wal.storage.get_events_by_identifier(
            0, 'latest') if isinstance(event, SendRefundTransfer))
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration

    # Both channels have the amount locked because of the refund message
    assert_synched_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(lock)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock)],
    )
    assert_synched_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )
示例#4
0
def test_refund_transfer(
    raiden_chain,
    number_of_nodes,
    token_addresses,
    deposit,
    network_wait,
    retry_timeout,
    # UDP does not seem to retry messages until processed
    # https://github.com/raiden-network/raiden/issues/3185
    skip_if_not_matrix,
):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_search_for_item(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {
            'lock': {
                'amount': amount_refund
            }
        }},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_search_for_item(app1.raiden,
                                                SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(lock)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task

    # Wait for lock lock expiration but make sure app0 never processes LockExpired
    with dont_handle_lock_expired_mock(app0):
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )
        # make sure that app0 still has the payment task for the secrethash
        # https://github.com/raiden-network/raiden/issues/3183
        assert secrethash in state_from_raiden(
            app0.raiden).payment_mapping.secrethashes_to_task

        # make sure that app1 sent a lock expired message for the secrethash
        send_lock_expired = raiden_events_search_for_item(
            app1.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
        )
        assert send_lock_expired
        # make sure that app0 never got it
        state_changes = app0.raiden.wal.storage.get_statechanges_by_identifier(
            0, 'latest')
        assert not search_for_item(
            state_changes,
            ReceiveLockExpired,
            {'secrethash': secrethash},
        )

    # Out of the handicapped app0 transport.
    # Now wait till app0 receives and processes LockExpired
    receive_lock_expired = wait_for_state_change(
        app0.raiden,
        ReceiveLockExpired,
        {'secrethash': secrethash},
        retry_timeout,
    )
    # And also till app1 received the processed
    wait_for_state_change(
        app1.raiden,
        ReceiveProcessed,
        {'message_identifier': receive_lock_expired.message_identifier},
        retry_timeout,
    )

    # make sure app1 queue has cleared the SendLockExpired
    chain_state1 = views.state_from_app(app1)
    queues1 = views.get_all_messagequeues(chain_state=chain_state1)
    result = [(queue_id, queue) for queue_id, queue in queues1.items()
              if queue_id.recipient == app0.raiden.address and queue]
    assert not result

    # and now wait for 1 more block so that the payment task can be deleted
    wait_for_block(
        raiden=app0.raiden,
        block_number=app0.raiden.get_block_number() + 1,
        retry_timeout=retry_timeout,
    )

    # and since the lock expired message has been sent and processed then the
    # payment task should have been deleted from both nodes
    # https://github.com/raiden-network/raiden/issues/3183
    assert secrethash not in state_from_raiden(
        app0.raiden).payment_mapping.secrethashes_to_task
    assert secrethash not in state_from_raiden(
        app1.raiden).payment_mapping.secrethashes_to_task
示例#5
0
def test_withdraw_both_participants(
        tester_registry_address,
        deposit,
        settle_timeout,
        reveal_timeout,
        tester_channels,
        tester_chain,
        tester_token,
):

    pkey0, pkey1, nettingchannel, channel0, channel1 = tester_channels[0]
    pseudo_random_generator = random.Random()

    address0 = privatekey_to_address(pkey0)
    address1 = privatekey_to_address(pkey1)

    initial_balance0 = tester_token.balanceOf(address0, sender=pkey0)
    initial_balance1 = tester_token.balanceOf(address1, sender=pkey0)

    secret = b'secretsecretsecretsecretsecretse'
    secrethash = sha3(secret)

    lock_amount = 31
    lock01_expiration = tester_chain.block.number + settle_timeout - 1 * reveal_timeout
    lock10_expiration = tester_chain.block.number + settle_timeout - 2 * reveal_timeout

    new_block = Block(tester_chain.block.number)
    channel.state_transition(
        channel0,
        new_block,
        pseudo_random_generator,
        new_block.block_number,
    )
    channel.state_transition(
        channel1,
        new_block,
        pseudo_random_generator,
        new_block.block_number,
    )

    # using the same secrethash and amount is intentional
    lock01 = Lock(lock_amount, lock01_expiration, secrethash)
    lock10 = Lock(lock_amount, lock10_expiration, secrethash)

    mediated01 = make_mediated_transfer(
        tester_registry_address,
        channel0,
        channel1,
        address0,
        address1,
        lock01,
        pkey0,
        secret,
    )

    mediated10 = make_mediated_transfer(
        tester_registry_address,
        channel1,
        channel0,
        address1,
        address0,
        lock10,
        pkey1,
        secret,
    )

    mediated01_hash = sha3(mediated01.packed().data[:-65])
    nettingchannel.close(
        mediated01.nonce,
        mediated01.transferred_amount,
        mediated01.locksroot,
        mediated01_hash,
        mediated01.signature,
        sender=pkey1,
    )
    tester_chain.mine(number_of_blocks=1)

    mediated10_hash = sha3(mediated10.packed().data[:-65])
    nettingchannel.updateTransfer(
        mediated10.nonce,
        mediated10.transferred_amount,
        mediated10.locksroot,
        mediated10_hash,
        mediated10.signature,
        sender=pkey0,
    )
    tester_chain.mine(number_of_blocks=1)

    lock_state01 = lockstate_from_lock(mediated01.lock)
    proof01 = channel.compute_proof_for_lock(
        channel1.partner_state,
        secret,
        lock_state01,
    )
    nettingchannel.withdraw(
        proof01.lock_encoded,
        b''.join(proof01.merkle_proof),
        proof01.secret,
        sender=pkey1,
    )

    lock_state10 = lockstate_from_lock(mediated10.lock)
    proof10 = channel.compute_proof_for_lock(
        channel0.partner_state,
        secret,
        lock_state10,
    )
    nettingchannel.withdraw(
        proof10.lock_encoded,
        b''.join(proof10.merkle_proof),
        proof10.secret,
        sender=pkey0,
    )

    tester_chain.mine(number_of_blocks=settle_timeout + 1)
    nettingchannel.settle(sender=pkey0)

    balance0 = initial_balance0 + deposit - lock01.amount + lock10.amount
    balance1 = initial_balance1 + deposit + lock01.amount - lock10.amount
    assert tester_token.balanceOf(address0, sender=pkey0) == balance0
    assert tester_token.balanceOf(address1, sender=pkey0) == balance1
    assert tester_token.balanceOf(nettingchannel.address, sender=pkey0) == 0
示例#6
0
def test_withdraw(
        tester_registry_address,
        deposit,
        settle_timeout,
        reveal_timeout,
        tester_channels,
        tester_chain,
        tester_token,
):

    pkey0, pkey1, nettingchannel, channel0, channel1 = tester_channels[0]
    pseudo_random_generator = random.Random()

    address0 = privatekey_to_address(pkey0)
    address1 = privatekey_to_address(pkey1)

    initial_balance0 = tester_token.balanceOf(address0, sender=pkey0)
    initial_balance1 = tester_token.balanceOf(address1, sender=pkey0)

    lock_amount = 31
    lock_expiration = tester_chain.block.number + reveal_timeout + 5
    secret = b'secretsecretsecretsecretsecretse'
    secrethash = sha3(secret)
    new_block = Block(tester_chain.block.number)
    channel.state_transition(
        channel0,
        new_block,
        pseudo_random_generator,
        new_block.block_number,
    )
    channel.state_transition(
        channel1,
        new_block,
        pseudo_random_generator,
        new_block.block_number,
    )
    lock0 = Lock(lock_amount, lock_expiration, secrethash)

    mediated0 = make_mediated_transfer(
        tester_registry_address,
        channel0,
        channel1,
        address0,
        address1,
        lock0,
        pkey0,
        secret,
    )

    # withdraw the pending transfer sent to us by our partner
    lock_state = lockstate_from_lock(mediated0.lock)
    proof = channel.compute_proof_for_lock(
        channel1.partner_state,
        secret,
        lock_state,
    )

    mediated0_hash = sha3(mediated0.packed().data[:-65])
    nettingchannel.close(
        mediated0.nonce,
        mediated0.transferred_amount,
        mediated0.locksroot,
        mediated0_hash,
        mediated0.signature,
        sender=pkey1,
    )

    tester_chain.mine(number_of_blocks=1)

    nettingchannel.withdraw(
        proof.lock_encoded,
        b''.join(proof.merkle_proof),
        proof.secret,
        sender=pkey1,
    )

    tester_chain.mine(number_of_blocks=settle_timeout + 1)
    nettingchannel.settle(sender=pkey0)

    balance0 = initial_balance0 + deposit - lock0.amount
    balance1 = initial_balance1 + deposit + lock0.amount
    assert tester_token.balanceOf(address0, sender=pkey0) == balance0
    assert tester_token.balanceOf(address1, sender=pkey0) == balance1
    assert tester_token.balanceOf(nettingchannel.address, sender=pkey0) == 0
示例#7
0
def test_refund_transfer(
        raiden_chain,
        number_of_nodes,
        token_addresses,
        deposit,
        network_wait,
        retry_timeout,
        # UDP does not seem to retry messages until processed
        # https://github.com/raiden-network/raiden/issues/3185
        skip_if_not_matrix,
):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [],
        app1, deposit + amount_path, [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait() is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_must_contain_entry(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_must_contain_entry(app1.raiden, SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [lockstate_from_lock(lock)],
        app1, deposit + amount_path, [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task

    # Wait for lock lock expiration but make sure app0 never processes LockExpired
    with dont_handle_lock_expired_mock(app0):
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )
        # make sure that app0 still has the payment task for the secrethash
        # https://github.com/raiden-network/raiden/issues/3183
        assert secrethash in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task

        # make sure that app1 sent a lock expired message for the secrethash
        send_lock_expired = raiden_events_must_contain_entry(
            app1.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
        )
        assert send_lock_expired
        # make sure that app0 never got it
        state_changes = app0.raiden.wal.storage.get_statechanges_by_identifier(0, 'latest')
        assert not must_contain_entry(
            state_changes,
            ReceiveLockExpired,
            {'secrethash': secrethash},
        )

    # Out of the handicapped app0 transport.
    # Now wait till app0 receives and processes LockExpired
    receive_lock_expired = wait_for_state_change(
        app0.raiden,
        ReceiveLockExpired,
        {'secrethash': secrethash},
        retry_timeout,
    )
    # And also till app1 received the processed
    wait_for_state_change(
        app1.raiden,
        ReceiveProcessed,
        {'message_identifier': receive_lock_expired.message_identifier},
        retry_timeout,
    )

    # make sure app1 queue has cleared the SendLockExpired
    chain_state1 = views.state_from_app(app1)
    queues1 = views.get_all_messagequeues(chain_state=chain_state1)
    result = [
        (queue_id, queue)
        for queue_id, queue in queues1.items()
        if queue_id.recipient == app0.raiden.address and
        queue
    ]
    assert not result

    # and now wait for 1 more block so that the payment task can be deleted
    wait_for_block(
        raiden=app0.raiden,
        block_number=app0.raiden.get_block_number() + 1,
        retry_timeout=retry_timeout,
    )

    # and since the lock expired message has been sent and processed then the
    # payment task should have been deleted from both nodes
    # https://github.com/raiden-network/raiden/issues/3183
    assert secrethash not in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task
    assert secrethash not in state_from_raiden(app1.raiden).payment_mapping.secrethashes_to_task
示例#8
0
def test_refund_transfer_after_2nd_hop(
        raiden_chain,
        number_of_nodes,
        token_addresses,
        deposit,
        network_wait,
):
    """Test the refund transfer sent due to failure after 2nd hop"""
    # Topology:
    #
    #  0 -> 1 -> 2 -> 3
    #
    app0, app1, app2, app3 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2 -> app3
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        initiator_app=app0,
        target_app=app3,
        token_network_identifier=token_network_identifier,
        amount=amount_path,
        identifier=identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app2 -> app3
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app2,
        target_app=app3,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [],
        app1, deposit + amount_path, [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path, [],
        app2, deposit + amount_path, [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app2, deposit - amount_path - amount_drain, [],
        app3, deposit + amount_path + amount_drain, [],
    )

    # app0 -> app1 -> app2 > app3 is the only available path, but the channel
    # app2 -> app3 doesn't have capacity, so a refund will be sent on
    # app2 -> app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app3.raiden.address,
        identifier_refund,
    )
    assert async_result.wait() is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # Lock structures with the correct amount

    send_locked1 = raiden_events_must_contain_entry(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked1

    send_refund1 = raiden_events_must_contain_entry(app1.raiden, SendRefundTransfer, {})
    assert send_refund1

    lock1 = send_locked1.transfer.lock
    refund_lock1 = send_refund1.transfer.lock
    assert lock1.amount == refund_lock1.amount
    assert lock1.secrethash == refund_lock1.secrethash

    send_locked2 = raiden_events_must_contain_entry(
        app1.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked2

    send_refund2 = raiden_events_must_contain_entry(app2.raiden, SendRefundTransfer, {})
    assert send_refund2

    lock2 = send_locked2.transfer.lock
    refund_lock2 = send_refund2.transfer.lock
    assert lock2.amount == refund_lock2.amount
    assert lock2.secrethash
    assert lock2.expiration

    # channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [lockstate_from_lock(lock1)],
        app1, deposit + amount_path, [lockstate_from_lock(refund_lock1)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path, [lockstate_from_lock(lock2)],
        app2, deposit + amount_path, [lockstate_from_lock(refund_lock2)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app2, deposit - amount_path - amount_drain, [],
        app3, deposit + amount_path + amount_drain, [],
    )
示例#9
0
def test_different_view_of_last_bp_during_unlock(
        raiden_chain,
        number_of_nodes,
        token_addresses,
        deposit,
        network_wait,
        retry_timeout,
        # UDP does not seem to retry messages until processed
        # https://github.com/raiden-network/raiden/issues/3185
        skip_if_not_matrix,
):
    """Test for https://github.com/raiden-network/raiden/issues/3196#issuecomment-449163888"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )
    token_proxy = app0.raiden.chain.token(token_address)
    initial_balance0 = token_proxy.balance_of(app0.raiden.address)
    initial_balance1 = token_proxy.balance_of(app1.raiden.address)

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    mediated_transfer(
        initiator_app=app1,
        target_app=app2,
        token_network_identifier=token_network_identifier,
        amount=amount_drain,
        identifier=identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [],
        app1, deposit + amount_path, [],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait() is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_must_contain_entry(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked
    secrethash = send_locked.transfer.lock.secrethash

    send_refund = raiden_events_must_contain_entry(app1.raiden, SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.transfer.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration
    assert lock.secrethash == refund_lock.secrethash

    # Both channels have the amount locked because of the refund message
    assert_synced_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [lockstate_from_lock(lock)],
        app1, deposit + amount_path, [lockstate_from_lock(refund_lock)],
    )
    assert_synced_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # Additional checks for LockExpired causing nonce mismatch after refund transfer:
    # https://github.com/raiden-network/raiden/issues/3146#issuecomment-447378046
    # At this point make sure that the initiator has not deleted the payment task
    assert secrethash in state_from_raiden(app0.raiden).payment_mapping.secrethashes_to_task

    with dont_handle_node_change_network_state():
        # now app1 goes offline
        app1.raiden.stop()
        app1.raiden.get()
        assert not app1.raiden

        # Wait for lock expiration so that app0 sends a LockExpired
        wait_for_block(
            raiden=app0.raiden,
            block_number=channel.get_sender_expiration_threshold(lock) + 1,
            retry_timeout=retry_timeout,
        )

        # make sure that app0 sent a lock expired message for the secrethash
        wait_for_raiden_event(
            app0.raiden,
            SendLockExpired,
            {'secrethash': secrethash},
            retry_timeout,
        )

        # now app0 closes the channel
        RaidenAPI(app0.raiden).channel_close(
            registry_address=payment_network_identifier,
            token_address=token_address,
            partner_address=app1.raiden.address,
        )

    count = 0
    original_update = app1.raiden.raiden_event_handler.handle_contract_send_channelupdate

    def patched_update(raiden, event):
        nonlocal count
        count += 1
        original_update(raiden, event)

    app1.raiden.raiden_event_handler.handle_contract_send_channelupdate = patched_update
    # and now app1 comes back online
    app1.raiden.start()
    # test for https://github.com/raiden-network/raiden/issues/3216
    assert count == 1, 'Update transfer should have only been called once during restart'
    channel_identifier = get_channelstate(app0, app1, token_network_identifier).identifier

    # and we wait for settlement
    wait_for_settle(
        raiden=app0.raiden,
        payment_network_id=payment_network_identifier,
        token_address=token_address,
        channel_ids=[channel_identifier],
        retry_timeout=app0.raiden.alarm.sleep_time,
    )

    with gevent.Timeout(10):
        unlock_app0 = wait_for_state_change(
            app0.raiden,
            ContractReceiveChannelBatchUnlock,
            {'participant': app0.raiden.address},
            retry_timeout,
        )
    assert unlock_app0.returned_tokens == 50
    with gevent.Timeout(10):
        unlock_app1 = wait_for_state_change(
            app1.raiden,
            ContractReceiveChannelBatchUnlock,
            {'participant': app1.raiden.address},
            retry_timeout,
        )
    assert unlock_app1.returned_tokens == 50
    final_balance0 = token_proxy.balance_of(app0.raiden.address)
    final_balance1 = token_proxy.balance_of(app1.raiden.address)

    assert final_balance0 - deposit - initial_balance0 == -1
    assert final_balance1 - deposit - initial_balance1 == 1
示例#10
0
def test_refund_transfer(raiden_chain, number_of_nodes, token_addresses, deposit, network_wait):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]
    payment_network_identifier = app0.raiden.default_registry.address
    token_network_identifier = views.get_token_network_identifier_by_token_address(
        views.state_from_app(app0),
        payment_network_identifier,
        token_address,
    )

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_network_identifier,
        amount_path,
        identifier_path,
        timeout=network_wait * number_of_nodes,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    direct_transfer(
        app1,
        app2,
        token_network_identifier,
        amount_drain,
        identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synched_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [],
        app1, deposit + amount_path, [],
    )
    assert_synched_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_network_identifier,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait() is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount

    send_locked = raiden_events_must_contain_entry(
        app0.raiden,
        SendLockedTransfer,
        {'transfer': {'lock': {'amount': amount_refund}}},
    )
    assert send_locked

    send_refund = raiden_events_must_contain_entry(app1.raiden, SendRefundTransfer, {})
    assert send_refund

    lock = send_locked.transfer.lock
    refund_lock = send_refund.lock
    assert lock.amount == refund_lock.amount
    assert lock.secrethash
    assert lock.expiration

    # Both channels have the amount locked because of the refund message
    assert_synched_channel_state(
        token_network_identifier,
        app0, deposit - amount_path, [lockstate_from_lock(lock)],
        app1, deposit + amount_path, [lockstate_from_lock(refund_lock)],
    )
    assert_synched_channel_state(
        token_network_identifier,
        app1, deposit - amount_path - amount_drain, [],
        app2, deposit + amount_path + amount_drain, [],
    )
示例#11
0
def test_refund_transfer(raiden_chain, token_addresses, deposit, network_wait):
    """A failed transfer must send a refund back.

    TODO:
        - Unlock the token on refund #1091
        - Clear the merkletree and update the locked amount #193
        - Remove the refund message type #490"""
    # Topology:
    #
    #  0 -> 1 -> 2
    #
    app0, app1, app2 = raiden_chain
    token_address = token_addresses[0]

    # make a transfer to test the path app0 -> app1 -> app2
    identifier_path = 1
    amount_path = 1
    mediated_transfer(
        app0,
        app2,
        token_address,
        amount_path,
        identifier_path,
        timeout=network_wait,
    )

    # drain the channel app1 -> app2
    identifier_drain = 2
    amount_drain = deposit * 8 // 10
    direct_transfer(
        app1,
        app2,
        token_address,
        amount_drain,
        identifier_drain,
        timeout=network_wait,
    )

    # wait for the nodes to sync
    gevent.sleep(0.2)

    assert_synched_channel_state(
        token_address,
        app0,
        deposit - amount_path,
        [],
        app1,
        deposit + amount_path,
        [],
    )
    assert_synched_channel_state(
        token_address,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )

    # app0 -> app1 -> app2 is the only available path, but the channel app1 ->
    # app2 doesn't have capacity, so a refund will be sent on app1 -> app0
    identifier_refund = 3
    amount_refund = 50
    async_result = app0.raiden.mediated_transfer_async(
        token_address,
        amount_refund,
        app2.raiden.address,
        identifier_refund,
    )
    assert async_result.wait(
    ) is False, 'there is no path with capacity, the transfer must fail'

    gevent.sleep(0.2)

    # A lock structure with the correct amount
    app0_messages = app0.raiden.protocol.transport.get_sent_messages(
        app0.raiden.address)
    mediated_message = list(message for message in app0_messages
                            if isinstance(message, LockedTransfer)
                            and message.target == app2.raiden.address)[-1]
    assert mediated_message

    app1_messages = app1.raiden.protocol.transport.get_sent_messages(
        app1.raiden.address)
    refund_message = next(message for message in app1_messages
                          if isinstance(message, RefundTransfer)
                          and message.recipient == app0.raiden.address)
    assert refund_message

    assert mediated_message.lock.amount == refund_message.lock.amount
    assert mediated_message.lock.secrethash == refund_message.lock.secrethash
    assert mediated_message.lock.expiration > refund_message.lock.expiration

    # Both channels have the amount locked because of the refund message
    assert_synched_channel_state(
        token_address,
        app0,
        deposit - amount_path,
        [lockstate_from_lock(mediated_message.lock)],
        app1,
        deposit + amount_path,
        [lockstate_from_lock(refund_message.lock)],
    )
    assert_synched_channel_state(
        token_address,
        app1,
        deposit - amount_path - amount_drain,
        [],
        app2,
        deposit + amount_path + amount_drain,
        [],
    )