示例#1
0
def experiment(variant):
    env = NormalizedBoxEnv(gym.make('HalfCheetah-v2'))

    obs_dim = int(np.prod(env.observation_space.shape))
    action_dim = int(np.prod(env.action_space.shape))

    net_size = variant['net_size']
    qf = FlattenMlp(
        hidden_sizes=[net_size, net_size],
        input_size=obs_dim + action_dim,
        output_size=1,
    )
    vf = FlattenMlp(
        hidden_sizes=[net_size, net_size],
        input_size=obs_dim,
        output_size=1,
    )
    policy = TanhGaussianPolicy(
        hidden_sizes=[net_size, net_size],
        obs_dim=obs_dim,
        action_dim=action_dim,
    )
    algorithm = SoftActorCritic(env=env,
                                policy=policy,
                                qf=qf,
                                vf=vf,
                                **variant['algo_params'])
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
def experiment(variant):
    env_params = variant['env_params']
    env = SawyerXYZReachingEnv(**env_params)
    obs_dim = int(np.prod(env.observation_space.shape))
    action_dim = int(np.prod(env.action_space.shape))

    net_size = variant['net_size']
    qf = FlattenMlp(
        hidden_sizes=[net_size, net_size],
        input_size=obs_dim + action_dim,
        output_size=1,
    )
    vf = FlattenMlp(
        hidden_sizes=[net_size, net_size],
        input_size=obs_dim,
        output_size=1,
    )
    policy = TanhGaussianPolicy(
        hidden_sizes=[net_size, net_size],
        obs_dim=obs_dim,
        action_dim=action_dim,
    )
    algorithm = SoftActorCritic(env=env,
                                policy=policy,
                                qf=qf,
                                vf=vf,
                                **variant['algo_params'])
    if ptu.gpu_enabled():
        algorithm.cuda()
    algorithm.train()
示例#3
0
def experiment(variant):
    env = NormalizedBoxEnv(variant['env_class']())
    obs_dim = env.observation_space.low.size
    action_dim = env.action_space.low.size

    variant['algo_kwargs'] = dict(
        num_epochs=variant['num_epochs'],
        num_steps_per_epoch=variant['num_steps_per_epoch'],
        num_steps_per_eval=variant['num_steps_per_eval'],
        max_path_length=variant['max_path_length'],
        min_num_steps_before_training=variant['min_num_steps_before_training'],
        batch_size=variant['batch_size'],
        discount=variant['discount'],
        replay_buffer_size=variant['replay_buffer_size'],
        soft_target_tau=variant['soft_target_tau'],
        target_update_period=variant['target_update_period'],
        train_policy_with_reparameterization=variant[
            'train_policy_with_reparameterization'],
        policy_lr=variant['policy_lr'],
        qf_lr=variant['qf_lr'],
        vf_lr=variant['vf_lr'],
        reward_scale=variant['reward_scale'],
        use_automatic_entropy_tuning=variant.get(
            'use_automatic_entropy_tuning', False))

    M = variant['layer_size']
    qf = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=[M, M],
        # **variant['qf_kwargs']
    )
    vf = FlattenMlp(
        input_size=obs_dim,
        output_size=1,
        hidden_sizes=[M, M],
        # **variant['vf_kwargs']
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=[M, M],
        # **variant['policy_kwargs']
    )
    algorithm = SoftActorCritic(env,
                                policy=policy,
                                qf=qf,
                                vf=vf,
                                **variant['algo_kwargs'])
    if ptu.gpu_enabled():
        qf.cuda()
        vf.cuda()
        policy.cuda()
        algorithm.cuda()
    algorithm.train()