def test_write_upon_reset_false(): with helpers.tempdir() as temp: env = gym.make('CartPole-v0') env = Monitor(env, directory=temp, video_callable=False, write_upon_reset=False) env.reset() files = glob.glob(os.path.join(temp, '*')) assert not files, "Files: {}".format(files) env.close() files = glob.glob(os.path.join(temp, '*')) assert len(files) > 0
def test_write_upon_reset_true(): with helpers.tempdir() as temp: env = gym.make('CartPole-v0') # TODO: Fix Cartpole to not configure itself automatically # assert not env._configured env = Monitor(env, directory=temp, video_callable=False, write_upon_reset=True) env.configure() env.reset() files = glob.glob(os.path.join(temp, '*')) assert len(files) > 0, "Files: {}".format(files) env.close() files = glob.glob(os.path.join(temp, '*')) assert len(files) > 0
def test_steps_limit_restart(): with helpers.tempdir() as temp: env = gym.make('test.StepsLimitCartpole-v0') env = Monitor(env, temp, video_callable=False) env.reset() # Episode has started _, _, done, info = env.step(env.action_space.sample()) assert done == False # Limit reached, now we get a done signal and the env resets itself _, _, done, info = env.step(env.action_space.sample()) assert done == True assert env.episode_id == 1 env.close()
def test(): benchmark = registration.Benchmark(id='MyBenchmark-v0', scorer=scoring.ClipTo01ThenAverage(), tasks=[{ 'env_id': 'CartPole-v0', 'trials': 1, 'max_timesteps': 5 }, { 'env_id': 'CartPole-v0', 'trials': 1, 'max_timesteps': 100, }]) with helpers.tempdir() as temp: env = gym.make('CartPole-v0') env = wrappers.Monitor(env, directory=temp, video_callable=False) env.seed(0) env.set_monitor_mode('evaluation') rollout(env) env.set_monitor_mode('training') for i in range(2): rollout(env) env.set_monitor_mode('evaluation') rollout(env, good=True) env.close() results = monitoring.load_results(temp) evaluation_score = benchmark.score_evaluation( 'CartPole-v0', results['data_sources'], results['initial_reset_timestamps'], results['episode_lengths'], results['episode_rewards'], results['episode_types'], results['timestamps']) benchmark_score = benchmark.score_benchmark({ 'CartPole-v0': evaluation_score['scores'], }) assert np.all( np.isclose(evaluation_score['scores'], [0.00089999999999999998, 0.0054000000000000003 ])), "evaluation_score={}".format(evaluation_score) assert np.isclose( benchmark_score, 0.00315), "benchmark_score={}".format(benchmark_score)
def test_only_complete_episodes_written(): with helpers.tempdir() as temp: env = gym.make('CartPole-v0') env = Monitor(env, temp, video_callable=False) env.reset() d = False while not d: _, _, d, _ = env.step(env.action_space.sample()) env.reset() env.step(env.action_space.sample()) env.close() # Only 1 episode should be written results = monitoring.load_results(temp) assert len(results['episode_lengths']) == 1, "Found {} episodes written; expecting 1".format(len(results['episode_lengths']))
def test_env_reuse(): with helpers.tempdir() as temp: env = gym.make('Autoreset-v0') env = Monitor(env, temp) env.reset() _, _, done, _ = env.step(None) assert not done _, _, done, _ = env.step(None) assert done _, _, done, _ = env.step(None) assert not done _, _, done, _ = env.step(None) assert done env.close()
def test_no_monitor_reset_unless_done(): def assert_reset_raises(env): errored = False try: env.reset() except error.Error: errored = True assert errored, "Env allowed a reset when it shouldn't have" with helpers.tempdir() as temp: # Make sure we can reset as we please without monitor env = gym.make('CartPole-v0') env.reset() env.step(env.action_space.sample()) env.step(env.action_space.sample()) env.reset() # can reset once as soon as we start env = Monitor(env, temp, video_callable=False) env.reset() # can reset multiple times in a row env.reset() env.reset() env.step(env.action_space.sample()) env.step(env.action_space.sample()) assert_reset_raises(env) # should allow resets after the episode is done d = False while not d: _, _, d, _ = env.step(env.action_space.sample()) env.reset() env.reset() env.step(env.action_space.sample()) assert_reset_raises(env) env.close()