示例#1
0
 def test_random_integers(self):
     self._set_common_state()
     self._is_state_common()
     with suppress_warnings() as sup:
         sup.record(DeprecationWarning)
         compare_2_input(self.nprs.random_integers,
                         self.rg.random_integers,
                         is_scalar=True)
     self._is_state_common()
def test_multivariate_normal_method(seed, method):
    from numpy.random import MT19937 as NPMT19937

    random = ExtendedGenerator(NPMT19937(seed))
    mean = (0.123456789, 10)
    cov = [[1, 0], [0, 1]]
    size = (3, 2)
    actual = random.multivariate_normal(mean, cov, size, method=method)
    desired = np.array([
        [
            [-1.747478062846581, 11.25613495182354],
            [-0.9967333370066214, 10.342002097029821],
        ],
        [
            [0.7850019631242964, 11.181113712443013],
            [0.8901349653255224, 8.873825399642492],
        ],
        [
            [0.7130260107430003, 9.551628690083056],
            [0.7127098726541128, 11.991709234143173],
        ],
    ])

    assert_array_almost_equal(actual, desired, decimal=15)

    # Check for default size, was raising deprecation warning
    actual = random.multivariate_normal(mean, cov, method=method)
    desired = np.array([0.233278563284287, 9.424140804347195])
    assert_array_almost_equal(actual, desired, decimal=15)

    # Check path with scalar size works correctly
    scalar = random.multivariate_normal(mean, cov, 3, method=method)
    tuple1d = random.multivariate_normal(mean, cov, (3, ), method=method)
    assert scalar.shape == tuple1d.shape == (3, 2)

    # Check that non symmetric covariance input raises exception when
    # check_valid='raises' if using default svd method.
    mean = [0, 0]
    cov = [[1, 2], [1, 2]]
    assert_raises(ValueError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  check_valid="raise")

    # Check that non positive-semidefinite covariance warns with
    # RuntimeWarning
    cov = [[1, 2], [2, 1]]
    assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
    assert_warns(RuntimeWarning,
                 random.multivariate_normal,
                 mean,
                 cov,
                 method="eigh")
    assert_raises(LinAlgError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  method="cholesky")

    # and that it doesn't warn with RuntimeWarning check_valid='ignore'
    assert_no_warnings(random.multivariate_normal,
                       mean,
                       cov,
                       check_valid="ignore")

    # and that it raises with RuntimeWarning check_valid='raises'
    assert_raises(ValueError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  check_valid="raise")
    assert_raises(
        ValueError,
        random.multivariate_normal,
        mean,
        cov,
        check_valid="raise",
        method="eigh",
    )

    # check degenerate samples from singular covariance matrix
    cov = [[1, 1], [1, 1]]
    if method in ("svd", "eigh"):
        samples = random.multivariate_normal(mean,
                                             cov,
                                             size=(3, 2),
                                             method=method)
        assert_array_almost_equal(samples[..., 0], samples[..., 1], decimal=6)
    else:
        assert_raises(LinAlgError,
                      random.multivariate_normal,
                      mean,
                      cov,
                      method="cholesky")

    cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
    with suppress_warnings() as sup:
        random.multivariate_normal(mean, cov, method=method)
        w = sup.record(RuntimeWarning)
        assert len(w) == 0

    mu = np.zeros(2)
    cov = np.eye(2)
    assert random.multivariate_normal(mu, cov, size=3).shape == (3, 2)
    assert_raises(ValueError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  check_valid="other")
    assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)),
                  cov)
    assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2)))
    assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3))
示例#3
0
 def test_random_integers(self):
     with suppress_warnings() as sup:
         sup.record(DeprecationWarning)
         vals = self.rg.random_integers(10, 20, 10)
     assert_(len(vals) == 10)
def test_multivariate_normal(seed):
    random.bit_generator.seed(seed)
    mean = (0.123456789, 10)
    cov = [[1, 0], [0, 1]]
    size = (3, 2)
    actual = random.multivariate_normal(mean, cov, size)
    desired = np.array([
        [
            [-3.34929721161096100, 9.891061435770858],
            [-0.12250896439641100, 9.295898449738300],
        ],
        [
            [0.48355927611635563, 10.127832101772366],
            [3.11093021424924300, 10.283109168794352],
        ],
        [
            [-0.20332082341774727, 9.868532121697195],
            [-1.33806889550667330, 9.813657233804179],
        ],
    ])

    assert_array_almost_equal(actual, desired, decimal=15)

    # Check for default size, was raising deprecation warning
    actual = random.multivariate_normal(mean, cov)
    desired = np.array([-1.097443117192574, 10.535787051184261])
    assert_array_almost_equal(actual, desired, decimal=15)

    # Check that non positive-semidefinite covariance warns with
    # RuntimeWarning
    mean = [0, 0]
    cov = [[1, 2], [2, 1]]
    assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)

    # and that it doesn"t warn with RuntimeWarning check_valid="ignore"
    assert_no_warnings(random.multivariate_normal,
                       mean,
                       cov,
                       check_valid="ignore")

    # and that it raises with RuntimeWarning check_valid="raises"
    assert_raises(ValueError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  check_valid="raise")

    cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
    with suppress_warnings() as sup:
        random.multivariate_normal(mean, cov)
        w = sup.record(RuntimeWarning)
        assert len(w) == 0

    mu = np.zeros(2)
    cov = np.eye(2)
    assert_raises(ValueError,
                  random.multivariate_normal,
                  mean,
                  cov,
                  check_valid="other")
    assert_raises(ValueError, random.multivariate_normal, np.zeros((2, 1, 1)),
                  cov)
    assert_raises(ValueError, random.multivariate_normal, mu, np.empty((3, 2)))
    assert_raises(ValueError, random.multivariate_normal, mu, np.eye(3))