示例#1
0
def MakeNormalPlot(weights):
    """Generates a normal probability plot of birth weights."""
    rankit.MakeNormalPlot(
        weights,
        root='nsfg_birthwgt_normal',
        ylabel='Birth weights (oz)',
    )
示例#2
0
def MakeFigures():
    pops = populations.Process()
    print len(pops)

    cdf = Cdf.MakeCdfFromList(pops, 'populations')

    myplot.Cdf(cdf,
               root='populations',
               title='City/Town Populations',
               xlabel='population',
               ylabel='CDF',
               legend=False)

    myplot.Cdf(cdf,
               root='populations_logx',
               title='City/Town Populations',
               xlabel='population',
               ylabel='CDF',
               xscale='log',
               legend=False)

    myplot.Cdf(cdf,
               root='populations_loglog',
               complement=True,
               title='City/Town Populations',
               xlabel='population',
               ylabel='Complementary CDF',
               yscale='log',
               xscale='log',
               legend=False)

    t = [math.log(x) for x in pops]
    t.sort()
    rankit.MakeNormalPlot(t, 'populations_rankit')
示例#3
0
 def MakeFigures(self):
     """Generates CDFs and normal prob plots for weights and log weights."""
     weights = [record.wtkg2 for record in self.records
                if record.wtkg2 != 'NA']
     self.MakeNormalModel(weights, root='brfss_weight_model')
     rankit.MakeNormalPlot(weights,
                           root='brfss_weight_normal',
                           title='Adult weight',
                           ylabel='Weight (kg)')
     
     log_weights = [math.log(weight) for weight in weights]
     xmax = math.log(175.0)
     axis = [3.5, 5.2, 0, 1]
     self.MakeNormalModel(log_weights, 
                          root='brfss_weight_log',
                          xmax=xmax,
                          xlabel='adult weight (log kg)',
                          axis=axis)
     rankit.MakeNormalPlot(log_weights, 
                           root='brfss_weight_lognormal',
                           title='Adult weight',
                           ylabel='Weight (log kg)')
示例#4
0
def main():
    results = relay.ReadResults()
    speeds = relay.GetSpeeds(results)
    rankit.MakeNormalPlot(speeds, root='relay_normal', ylabel='Speed (MPH)')
示例#5
0
#生成10个不同随机变量的随机数之和,重复多次,计算其分布
import numpy as np 
import random
import rankit

def once():
	binomial = np.random.binomial(2, 0.4)
	poisson = np.random.poisson(2)
	uniform = random.uniform(1, 10)
	chisquare = np.random.chisquare(2)
	normal = np.random.normal(3, 3)
	lognormal = np.random.lognormal(2, 3)
	standard_t = np.random.standard_t(2)
	exponential = np.random.exponential(2)
	triangular = np.random.triangular(1, 3, 10)
	beta = np.random.beta(3, 2)
	gamma = np.random.gamma(3)
	weibull = np.random.weibull(3)
	gumbel = np.random.gumbel(3, 2)
	return (
		binomial + poisson + uniform + chisquare + normal + lognormal
		+ standard_t + exponential + triangular + beta + gamma + weibull + gumbel)

if __name__ == "__main__":
	rankit.MakeNormalPlot([once() for i in range(10000)])