示例#1
0
 def _standard_featurizer(max_history: Optional[int] = None) -> "TrackerFeaturizer":
     if max_history is None:
         return FullDialogueTrackerFeaturizer(LabelTokenizerSingleStateFeaturizer())
     else:
         return MaxHistoryTrackerFeaturizer(
             LabelTokenizerSingleStateFeaturizer(), max_history=max_history
         )
示例#2
0
def test_LabelTokenizerSingleStateFeaturizer():
    f = LabelTokenizerSingleStateFeaturizer()
    f.user_labels = ["a_d"]
    f.bot_labels = ["c_b"]
    f.user_vocab = {"a": 0, "d": 1}
    f.bot_vocab = {"b": 1, "c": 0}
    f.num_features = len(f.user_vocab) + len(f.slot_labels) + len(f.bot_vocab)
    # Dictionary: 0    1    2    3
    #            "a"  "d"  "c"  "b"
    encoded = f.encode({
        "a_d": 1.0,
        "prev_c_b": 0.0,
        "e": 1.0,
        "prev_action_listen": 1.0
    })
    assert list(encoded) == [1, 1, 0, 0]
    # "a_d" -> ["a", "d"]  -> 1  1  0  0
    # "prev_c_b" -> ["prev", "c", "b"]  --> only "c_b" count: --> [0 0 0 0]
    # "prev_action_listen" --> ["prev", "action", "listen"] --> ignored because not in labels

    encoded = f.encode({
        "a_d": 1.7,
        "prev_c_b": 2.0,
        "e": 1.0,
        "prev_action_listen": 1.0
    })
    assert encoded == [1.7, 1.7, 2.0, 2.0]
示例#3
0
def test_label_tokenizer_featurizer_uses_correct_dtype_float():
    f = LabelTokenizerSingleStateFeaturizer()
    f.user_labels = ["a_d"]
    f.bot_labels = ["c_b"]
    f.user_vocab = {"a": 0, "d": 1}
    f.bot_vocab = {"b": 1, "c": 0}
    f.num_features = len(f.user_vocab) + len(f.slot_labels) + len(f.bot_vocab)
    encoded = f.encode({
        "a_d": 0.2,
        "prev_c_b": 0.0,
        "prev_action_listen": 1.0
    })
    assert encoded.dtype == np.float64
示例#4
0
def test_label_tokenizer_featurizer_handles_on_non_existing_features():
    f = LabelTokenizerSingleStateFeaturizer()
    f.user_labels = ["a_d"]
    f.bot_labels = ["c_b"]
    f.user_vocab = {"a": 0, "d": 1}
    f.bot_vocab = {"b": 1, "c": 0}
    f.num_features = len(f.user_vocab) + len(f.slot_labels) + len(f.bot_vocab)
    encoded = f.encode({
        "a_d": 1.0,
        "prev_c_b": 0.0,
        "e": 1.0,
        "prev_action_listen": 1.0
    })
    assert (encoded == np.array([1, 1, 0, 0])).all()
示例#5
0
def test_label_tokenizer_featurizer_handles_probabilistic_intents():
    f = LabelTokenizerSingleStateFeaturizer()
    f.user_labels = ["intent_a", "intent_d"]
    f.bot_labels = ["c", "b"]
    f.user_vocab = {"intent": 2, "a": 0, "d": 1}
    f.bot_vocab = {"b": 1, "c": 0}
    f.num_features = len(f.user_vocab) + len(f.slot_labels) + len(f.bot_vocab)
    encoded = f.encode({
        "intent_a": 0.5,
        "prev_b": 0.2,
        "intent_d": 1.0,
        "prev_action_listen": 1.0
    })
    assert (encoded == np.array([0.5, 1.0, 1.5, 0.0, 0.2])).all()