def test_get_num_of_features(): session_data = { "text_features": [ np.array( [ np.random.rand(5, 14), np.random.rand(2, 14), np.random.rand(3, 14), np.random.rand(1, 14), np.random.rand(3, 14), ] ), np.array( [ scipy.sparse.csr_matrix(np.random.randint(5, size=(5, 10))), scipy.sparse.csr_matrix(np.random.randint(5, size=(2, 10))), scipy.sparse.csr_matrix(np.random.randint(5, size=(3, 10))), scipy.sparse.csr_matrix(np.random.randint(5, size=(1, 10))), scipy.sparse.csr_matrix(np.random.randint(5, size=(3, 10))), ] ), ] } num_features = EmbeddingIntentClassifier._get_num_of_features( session_data, "text_features" ) assert num_features == 24
def test_check_labels_features_exist(messages, expected): attribute = TEXT_ATTRIBUTE assert ( EmbeddingIntentClassifier._check_labels_features_exist(messages, attribute) == expected )
def test_compute_default_label_features(): label_features = [ Message("test a"), Message("test b"), Message("test c"), Message("test d"), ] output = EmbeddingIntentClassifier._compute_default_label_features(label_features) output = output[0] for i, o in enumerate(output): assert isinstance(o, np.ndarray) assert o[0][i] == 1 assert o.shape == (1, len(label_features))
def test_text_features_present(session_data, expected): assert EmbeddingIntentClassifier._text_features_present( session_data) == expected