async def _create_project_store(self, project_dir: Text) -> Dict[Text, Any]: default_project = RasaNLUModelConfig.DEFAULT_PROJECT_NAME projects = self._collect_projects(project_dir) project_store = {} if self.model_server is not None: project_store[default_project] = await load_from_server( self.component_builder, default_project, self.project_dir, self.remote_storage, self.model_server, self.wait_time_between_pulls, ) else: for project in projects: project_store[project] = Project( self.component_builder, project, self.project_dir, self.remote_storage, ) if not project_store: project_store[default_project] = Project( project=default_project, project_dir=self.project_dir, remote_storage=self.remote_storage, ) return project_store
def test_dynamic_load_model_with_model_is_none(): LATEST_MODEL_NAME = 'latest_model_name' def mocked_init(*args, **kwargs): return None def mocked_search_for_models(self): pass def mocked_latest_project_model(self): return LATEST_MODEL_NAME with mock.patch.object(Project, "__init__", mocked_init): with mock.patch.object(Project, "_search_for_models", mocked_search_for_models): with mock.patch.object(Project, "_latest_project_model", mocked_latest_project_model): project = Project() project._models = () project.pull_models = None result = project._dynamic_load_model(None) assert result == LATEST_MODEL_NAME
async def start_train_process( self, data_file: Text, project: Text, train_config: RasaNLUModelConfig, model_name: Optional[Text] = None, ) -> Text: """Start a model training.""" if not project: raise InvalidProjectError("Missing project name to train") if self._worker_processes <= self._current_worker_processes: raise MaxWorkerProcessError if project in self.project_store: self.project_store[project].status = STATUS_TRAINING elif project not in self.project_store: self.project_store[project] = Project( self.component_builder, project, self.project_dir, self.remote_storage ) self.project_store[project].status = STATUS_TRAINING loop = asyncio.get_event_loop() logger.debug("New training queued") self._current_worker_processes += 1 self.project_store[project].current_worker_processes += 1 task = loop.run_in_executor( self.pool, do_train_in_worker, train_config, data_file, self.project_dir, project, model_name, self.remote_storage, ) try: model_path = await task model_dir = os.path.basename(os.path.normpath(model_path)) self.project_store[project].update(model_dir) if ( self.project_store[project].current_worker_processes == 1 and self.project_store[project].status == STATUS_TRAINING ): self.project_store[project].status = STATUS_READY return model_path except Exception as e: logger.warning(e) self.project_store[project].status = STATUS_FAILED self.project_store[project].error_message = str(e) raise finally: self._current_worker_processes -= 1 self.project_store[project].current_worker_processes -= 1
async def parse(self, data: Dict[Text, Any]) -> Dict[Text, Any]: project = data.get("project", RasaNLUModelConfig.DEFAULT_PROJECT_NAME) model = data.get("model") if project not in self.project_store: projects = self._list_projects(self.project_dir) cloud_provided_projects = self._list_projects_in_cloud() projects.extend(cloud_provided_projects) if project not in projects: raise InvalidProjectError( "No project found with name '{}'.".format(project) ) else: try: self.project_store[project] = Project( self.component_builder, project, self.project_dir, self.remote_storage, ) except Exception as e: raise InvalidProjectError( "Unable to load project '{}'. Error: {}".format(project, e) ) time = data.get("time") response = self.project_store[project].parse(data["text"], time, model) if self.responses: self.responses.info(response) return self.format_response(response)
def test_dynamic_load_model_with_exists_model(): MODEL_NAME = 'model_name' def mocked_init(*args, **kwargs): return None with mock.patch.object(Project, "__init__", mocked_init): project = Project() project._models = (MODEL_NAME, ) project.pull_models = None result = project._dynamic_load_model(MODEL_NAME) assert result == MODEL_NAME
def start_train_process(self, data_file: Text, project: Text, train_config: RasaNLUModelConfig, model_name: Optional[Text] = None) -> Deferred: """Start a model training.""" if not project: raise InvalidProjectError("Missing project name to train") if self._training_processes <= self._current_training_processes: raise MaxTrainingError if project in self.project_store: self.project_store[project].status = STATUS_TRAINING elif project not in self.project_store: self.project_store[project] = Project(self.component_builder, project, self.project_dir, self.remote_storage) self.project_store[project].status = STATUS_TRAINING def training_callback(model_path): model_dir = os.path.basename(os.path.normpath(model_path)) self.project_store[project].update(model_dir) self._current_training_processes -= 1 self.project_store[project].current_training_processes -= 1 if (self.project_store[project].status == STATUS_TRAINING and self.project_store[project].current_training_processes == 0): self.project_store[project].status = STATUS_READY return model_path def training_errback(failure): logger.warning(failure) self._current_training_processes -= 1 self.project_store[project].current_training_processes -= 1 self.project_store[project].status = STATUS_FAILED self.project_store[project].error_message = str(failure) return failure logger.debug("New training queued") self._current_training_processes += 1 self.project_store[project].current_training_processes += 1 result = self.pool.submit(do_train_in_worker, train_config, data_file, path=self.project_dir, project=project, fixed_model_name=model_name, storage=self.remote_storage) result = deferred_from_future(result) result.addCallback(training_callback) result.addErrback(training_errback) return result
def test_dynamic_load_model_with_refresh_exists_model(): MODEL_NAME = 'model_name' def mocked_init(*args, **kwargs): return None def mocked_search_for_models(self): self._models = (MODEL_NAME, ) with mock.patch.object(Project, "__init__", mocked_init): with mock.patch.object(Project, '_search_for_models', mocked_search_for_models): project = Project() project._models = () project.pull_models = None result = project._dynamic_load_model(MODEL_NAME) assert result == MODEL_NAME