def test_broker_from_config(): cfg = utils.read_endpoint_config(EVENT_BROKER_ENDPOINT_FILE, "event_broker") actual = PikaProducer.from_endpoint_config(cfg) expected = PikaProducer("localhost", "username", "password", "queue") assert actual.host == expected.host assert actual.credentials.username == expected.credentials.username assert actual.queue == expected.queue
def run(core_dir, nlu_dir): pika_broker = None if ENABLE_ANALYTICS: pika_broker = PikaProducer(url, username, password, queue=queue) configs = { 'user': os.getenv('ROCKETCHAT_BOT_USERNAME'), 'password': os.getenv('ROCKETCHAT_BOT_PASSWORD'), 'server_url': os.getenv('ROCKETCHAT_URL'), } input_channel = RocketChatInput(user=configs['user'], password=configs['password'], server_url=configs['server_url']) _tracker_store = InMemoryTrackerStore(domain=None, event_broker=pika_broker) _endpoints = AvailableEndpoints.read_endpoints(None) _interpreter = NaturalLanguageInterpreter.create(nlu_dir) _agent = load_agent(core_dir, interpreter=_interpreter, tracker_store=_tracker_store, endpoints=_endpoints) http_server = start_server([input_channel], "", "", 5005, _agent) try: http_server.serve_forever() except Exception as exc: logger.exception(exc)
def create_agent(model: Text, endpoints: Text = None) -> 'Agent': from rasa_core.broker import PikaProducer from rasa_core.interpreter import RasaNLUInterpreter import rasa_core.run from rasa_core.tracker_store import TrackerStore from rasa_core.utils import AvailableEndpoints core_path, nlu_path = get_model_subdirectories(model) _endpoints = AvailableEndpoints.read_endpoints(endpoints) _interpreter = None if os.path.exists(nlu_path): _interpreter = RasaNLUInterpreter(model_directory=nlu_path) else: _interpreter = None logging.info("No NLU model found. Running without NLU.") _broker = PikaProducer.from_endpoint_config(_endpoints.event_broker) _tracker_store = TrackerStore.find_tracker_store(None, _endpoints.tracker_store, _broker) return rasa_core.run.load_agent(core_path, interpreter=_interpreter, tracker_store=_tracker_store, endpoints=_endpoints)
def do_interactive_learning(cmdline_args, stories, additional_arguments): _endpoints = AvailableEndpoints.read_endpoints(cmdline_args.endpoints) _interpreter = NaturalLanguageInterpreter.create(cmdline_args.nlu, _endpoints.nlu) if cmdline_args.core: if cmdline_args.finetune: raise ValueError("--core can only be used without " "--finetune flag.") logger.info("Loading a pre-trained model. This means that " "all training-related parameters will be ignored.") _broker = PikaProducer.from_endpoint_config(_endpoints.event_broker) _tracker_store = TrackerStore.find_tracker_store( None, _endpoints.tracker_store, _broker) _agent = Agent.load(cmdline_args.core, interpreter=_interpreter, generator=_endpoints.nlg, tracker_store=_tracker_store, action_endpoint=_endpoints.action) else: if cmdline_args.out: model_directory = cmdline_args.out else: model_directory = tempfile.mkdtemp(suffix="_core_model") _agent = train_dialogue_model(cmdline_args.domain, stories, model_directory, _interpreter, _endpoints, cmdline_args.dump_stories, cmdline_args.config[0], None, additional_arguments) interactive.run_interactive_learning( _agent, stories, finetune=cmdline_args.finetune, skip_visualization=cmdline_args.skip_visualization)
def do_interactive_learning(cmdline_args, stories, additional_arguments): _endpoints = AvailableEndpoints.read_endpoints(cmdline_args.endpoints) _interpreter = NaturalLanguageInterpreter.create(cmdline_args.nlu, _endpoints.nlu) if (isinstance(cmdline_args.config, list) and len(cmdline_args.config) > 1): raise ValueError("You can only pass one config file at a time") if cmdline_args.core and cmdline_args.finetune: raise ValueError("--core can only be used without --finetune flag.") elif cmdline_args.core: logger.info("loading a pre-trained model. " "all training-related parameters will be ignored") _broker = PikaProducer.from_endpoint_config(_endpoints.event_broker) _tracker_store = TrackerStore.find_tracker_store( None, _endpoints.tracker_store, _broker) _agent = Agent.load(cmdline_args.core, interpreter=_interpreter, generator=_endpoints.nlg, tracker_store=_tracker_store, action_endpoint=_endpoints.action) else: if not cmdline_args.out: raise ValueError("you must provide a path where the model " "will be saved using -o / --out") _agent = train_dialogue_model(cmdline_args.domain, stories, cmdline_args.out, _interpreter, _endpoints, cmdline_args.dump_stories, cmdline_args.config[0], None, additional_arguments) interactive.run_interactive_learning( _agent, stories, finetune=cmdline_args.finetune, skip_visualization=cmdline_args.skip_visualization)
arg_parser = create_argument_parser() cmdline_args = arg_parser.parse_args() logging.getLogger('werkzeug').setLevel(logging.WARN) logging.getLogger('matplotlib').setLevel(logging.WARN) utils.configure_colored_logging(cmdline_args.loglevel) utils.configure_file_logging(cmdline_args.loglevel, cmdline_args.log_file) logger.info("Rasa process starting") _endpoints = AvailableEndpoints.read_endpoints(cmdline_args.endpoints) _interpreter = NaturalLanguageInterpreter.create(cmdline_args.nlu, _endpoints.nlu) _broker = PikaProducer.from_endpoint_config(_endpoints.event_broker) _tracker_store = TrackerStore.find_tracker_store( None, _endpoints.tracker_store, _broker) _agent = load_agent(cmdline_args.core, interpreter=_interpreter, tracker_store=_tracker_store, endpoints=_endpoints) serve_application(_agent, cmdline_args.connector, cmdline_args.port, cmdline_args.credentials, cmdline_args.cors, cmdline_args.auth_token, cmdline_args.enable_api, cmdline_args.jwt_secret,
def test_broker_not_in_config(): cfg = utils.read_endpoint_config(DEFAULT_ENDPOINTS_FILE, "event_broker") actual = PikaProducer.from_endpoint_config(cfg) assert actual is None